Interspike interval analysis of retinal ganglion cell receptive fields

Daniel L. Rathbun¹, Henry J. Alitto¹, Theodore G. Weyand², and W. Martin Usrey¹

¹Center for Neuroscience, University of California, Davis, CA 95618
²Cell Biology and Anatomy, LSU Medical Center, New Orleans, LA 70112

Running title: ISI and retinal receptive fields

Keywords: retina, LGN, coding, vision, cat

Correspondence:
W. Martin Usrey
Center for Neuroscience
University of California, Davis
1544 Newton Court
Davis, CA 95618

530 754-5468 phone
530 757-8827 fax

wmusrey@ucdavis.edu
Abstract

The interspike interval (ISI) preceding a retinal spike has a strong influence on whether retinal spikes will drive postsynaptic responses in the LGN. This ISI-based filtering of retinal spikes could, in principle, be utilized as a mechanism for processing visual information en route from retina to cortex; however, this form of processing has not been previously explored. Using a white-noise stimulus and reverse-correlation analysis, we compared the receptive fields associated with retinal spikes over a range of ISIs (0-120 msec). Results show that while the location and sign of retinal ganglion cell receptive fields are invariant to ISI, the size and amplitude of receptive fields do vary with ISI. These results support the notion that ISI-based filtering of retinal spikes can serve as a mechanism for shaping receptive fields.
Introduction

All visual information leaving the eye is communicated in the spiking activity of retinal ganglion cells. Retinal ganglion cells innervate a variety of postsynaptic targets, but the target most responsible for transmitting visual information to the cerebral cortex is the lateral geniculate nucleus (LGN) of the thalamus. Recordings of activity from synaptically connected retinal ganglion cells and LGN cells show that retinal ganglion cells produce many more spikes than their geniculate targets (Hubel and Wiesel 1961; Levick et al. 1972; Kaplan et al. 1987; Usrey et al. 1999). As a result, not every retinal spike evokes a geniculate response. One factor that has a strong influence on whether a retinal spike will trigger a geniculate spike is retinal interspike interval (ISI; Mastronarde 1987; Usrey et al. 1998; Levine and Cleland 2001; Rowe and Fischer 2001; Weyand 2001; Sincich et al., 2007). In particular, retinal spikes preceded by short ISIs (<10 msec) have the greatest efficacy for driving a postsynaptic spike. The efficacy for driving a postsynaptic spike then decreases progressively with ISI to ~ 30 msec, beyond which there is no detectable influence of ISI on the production of postsynaptic spikes. Given the dependence of spike transfer on ISI, the question arises: are retinal spikes that occur with different ISIs driven by similar or distinct visual stimuli? If visual information varies with ISI, then ISI-dependent spike transfer could serve to filter visual information between the retina and LGN.

To determine whether the receptive field properties of retinal ganglion cells vary with ISI, we stimulated retinal ganglion cells with a white-noise stimulus and used reverse correlation analysis to examine ISI-specific receptive fields. Results show that while the retinotopic location and center/surround signature (on vs. off) of receptive fields remains constant over the range of ISIs examined, the amplitude of center and surround subregions is
dynamic, as both decrease with ISI. Results also show that ISI has an influence on the relative strength of the center and surround subregions of the receptive field. These results, taken together with those from studies examining the relationship between ISI and retinogeniculate spike transfer (Mastronarde 1987; Usrey et al. 1998; Levine and Cleland 2001; Rowe and Fischer 2001; Weyand 2001; Sincich et al., 2007), provide support for the idea that ISI filtering of retinal spikes may serve as a mechanism for refining the visual signal as it travels from retina to cortex.
Materials and Methods

Experimental design

Extracellular recordings were made from retinal ganglion cell axons in the optic tract of six adult cats. To determine the average visual stimulus that precedes spikes occurring at specific ISIs, neuronal responses to a white-noise stimulus were sorted according to ISI. Spatiotemporal receptive field maps were then calculated for these ISI-specific subsets of spikes using reverse-correlation analysis.

Surgery and preparation

All surgical and experimental procedures were carried out with the approval of the Animal Care and Use Committee at the University of California, Davis. Surgical anesthesia was induced with ketamine (10 mg/kg, IM) and continued with thiopental sodium (20 mg/kg, IV, supplemented as needed). Following a tracheotomy, animals were placed in a stereotaxic apparatus where the temperature, electrocardiogram (ECG), electroencephalogram (EEG), and expired CO₂ were continuously monitored. Anesthesia was maintained by a continuous infusion of thiopental sodium (2-3 mg/kg/hr, IV). If physiological monitoring indicated a low level of anesthesia, additional thiopental was given and the rate of infusion increased. A midline scalp incision was made and wound margins were infused with lidocaine. A small craniotomy was made above the optic tract and the dura was reflected. To minimize eye movements, the lateral margin of each eye was dissected and the sclera was glued to a rigid post attached to the stereotaxic frame. Pupils were dilated with 1% atropine sulfate and nictitating membranes were retracted with 10% phenylephrine. The eyes were fitted with
contact lenses and focused on a tangent screen located 172 cm in front of the animal. Once all surgical procedures were complete, animals were paralyzed with vecuronium bromide (0.2 mg/Kg/hr, IV) and mechanically respired.

Electrophysiological recordings and visual stimuli

Single-unit recordings were made from retinal ganglion cell axons in the optic tract using tungsten-in-glass microelectrodes. Neuronal responses were amplified, filtered, and recorded to a PC equipped with a Power 1401 data acquisition interface and the Spike 2 software package (Cambridge Electronic Design, Cambridge, England). Spike isolation was based on waveform analysis (on-line and off-line) and presence of a refractory period, as indicated by the autocorrelogram (Usrey and Reid 1999, 2000; Usrey et al. 2000, 2003).

Visual stimuli were created with a VSG2/5 visual stimulus generator (Cambridge Research Systems, Rochester, England). Stimuli were presented on a gamma-calibrated Sony monitor with a mean luminance of 40 candelas/m². Receptive fields of retinal ganglion cells were mapped quantitatively using a binary white-noise stimulus (Sutter, 1992; Reid and Shapley, 1992; Reid et al. 1997). The white-noise stimulus consisted of a 16x16 grid of squares (pixels) that were white or black for equal amounts of time, as determined by an “m-sequence”. The monitor ran at 140 Hz and the stimulus was updated every frame of the display (7.1 msec). The white-noise stimulus therefore took ~4 minutes to complete. A complete run of the white-noise stimulus was generally repeated 7-10 times so that large numbers of spikes (mean = 78,500; range: 15,000-130,000) could be collected for analysis. Individual stimulus pixels in the 16x16 grid were small enough (~0.2-0.5° degrees for eccentricities 5-20°) so that response maps could be generated with a reasonable level of detail. To do so, the size of individual pixels was adjusted such that the receptive field center
typically fell within 16 to 25 pixels, thereby keeping the surround within the 16x16 pixel array.

Data analysis

Reverse-correlation analysis

Spatiotemporal receptive-fields (response maps or kernels) were calculated from ganglion cell responses to the white-noise stimulus using reverse correlation analysis (Sutter 1987, 1992; Reid et al. 1997; see Jones and Palmer 1987; Citron et al. 1981; Wolfe and Palmer 1998). Before performing this analysis, spikes were sorted into 5 categories: all spikes and spikes with preceding ISIs of 0-10 msec, 10-20 msec, 20-30 msec, and 30-120 msec. To ensure that subsequent analysis and comparisons between receptive field maps were based on maps generated from equal numbers of spikes, spikes in each of the five categories were randomly selected to match the number of spikes in the category containing the fewest spikes. Following this procedure, the average number of spikes in each spike category was 9,918 +/- 1,256. For each delay between stimulus and response and for each of the 16x16 pixels in the stimulus, we then calculated the average stimulus to precede a spike.

Comparing spatial receptive fields

For each ISI-specific category of spikes, the spatial receptive field was averaged over 21.3 msec (3 display frames) centered on the best delay between stimulus and maximum center response. Past studies have used a similar window to capture both the center and surround responses of retinal ganglion cells and LGN neurons (Usrey et al. 1999; Usrey and Reid, 2000; Alonso et al. 2001). For individual cells, this delay did not differ for different ISI
categories of spikes. Receptive fields were then fit to a difference of Gaussians (DOG) equation,

$$RF(x, y) = \left(A_C \cdot e^{\frac{-1}{2} \left(\frac{x^2 + y^2}{\sigma_c^2} \right)} - A_S \cdot e^{\frac{-1}{2} \left(\frac{x^2 + y^2}{\sigma_s^2} \right)} \right)$$

where A_C and A_S are the unsigned amplitudes, respectively, of the center and surround subregions. Their spatial extents correspond to σ_c and σ_s across the spatial dimension (x,y) and are aligned, coextensive, and circularly symmetric. We further constrained the surround to be smaller in amplitude than the center and to have a sigma of 10 pixels or less. A constrained non-linear optimization procedure (MATLAB function: fmincon; Optimization Toolbox; The Mathworks Inc., Natick, MA) was used to minimize the squared error (i.e., $\sum (\text{Data-Fit})^2$) when fitting spatial maps. In total, 337 fits were made for each response map by varying the starting parameters of the fitting procedure and results reported come from fits with the least error. The volume under the center (V_C) and surround (V_S) Gaussians are given by the following two equations.

$$V_C = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A_C \cdot e^{\frac{-1}{2} \left(\frac{x^2 + y^2}{\sigma_c^2} \right)} \, dx \, dy$$

$$V_S = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A_S \cdot e^{\frac{-1}{2} \left(\frac{x^2 + y^2}{\sigma_s^2} \right)} \, dx \, dy$$
Amplitude, sigma, and volume estimates from the DOG fits were used to compare receptive fields with a difference index (DI) using the equation,

\[DI = \frac{\alpha - \beta}{\alpha + \beta} \]

where \(\alpha \) is either the amplitude, sigma or volume estimate from the ISI-specific receptive field and \(\beta \) is the corresponding estimate from the all spikes receptive field. According to this index, values near +1 would correspond to cells with ISI-specific estimates that are much greater than their all spikes’ estimates, whereas values near –1 would correspond to cells with ISI-specific estimates that are much less than their all spikes’ estimates. Volume estimates were also used to calculate a center/surround index (CSI) for each cell and each ISI category using the equation,

\[CSI = \frac{V_C - V_S}{V_C + V_S} \]

Statistical Analysis

Non-parametric tests were used for all statistical analysis. For pair-wise comparisons, we used Wilcoxon’s signed-rank test. For multiple comparisons, we used Friedman’s ANOVA followed by the Dunn-Sidak test. When population means are reported, they are accompanied by the standard error of the mean (sem).
Results

Distribution of interspike intervals (ISIs) and ISI-dependent receptive fields

We recorded responses from the axons of 20 retinal ganglion cells in adult cats while cells were excited with a white-noise stimulus (see Methods). Recordings were held for sufficient time to allow large numbers of spikes to be collected for statistical analysis (mean = 78,500 +/-9,230 spikes). Similar to previous reports, we found that most spikes from retinal ganglion cells occur following short ISIs (Usrey et al. 1998; Levine and Cleland 2001). Across our sample of 11 X cells and 9 Y cells, 94.7 +/-1.7% of all spikes occurred with preceding ISIs <120 msec (mean ISI = 28.6 +/- 2.1 msec; Figures 1A and B). Although past studies examining the LGN have shown that the receptive fields of burst spikes differ from those of tonic spikes (Alitto et al., 2005), we could not perform a similar analysis in the present study as bursts were extremely rare in our sample of retinal ganglion cells (~1%, data not shown).

[Figure 1]

For all subsequent analysis, spikes were sorted into the following 5 categories: all spikes (therefore all ISIs), and spikes with preceding ISIs of 0-10 msec, 10-20 msec, 20-30 msec, and 30-120 msec. For each cell, these categories were matched in spike number to ensure that comparisons were made between equal numbers of spikes (see Methods). It is worth noting that none of the reported results differed significantly when using all of the spikes in a category for analysis (p>0.05). In addition, there was not a systemic and significant difference between X cells and Y cells in terms of their all-spikes normalized, ISI-specific receptive fields (described below).
Using spike-count matched data sets for each cell, reverse-correlation analysis was used to determine the average stimulus to evoke a response from spikes across the 5 categories of ISI. Receptive field maps from an on-center cell and an off-center cell are shown in Figure 2. For both cells, as for every cell in our data set, the center/surround signature (i.e. on vs. off) of receptive fields did not vary with ISI. Similarly, the spatial location of where the ISI-specific receptive fields were centered did not vary between the different ISI categories (p=0.18).

[Figure 2]

While the sign and location of receptive fields were unaffected by ISI, more subtle features of the receptive field did vary with ISI. Perhaps most notable was the relationship between ISI and the extent to which spikes were driven by the visual stimulus. As shown in Figure 2, receptive fields were strongest (indicated in pixel brightness) for spikes with ISIs between 0 to 10 msec. Because the number of spikes contributing to the analysis is equal for each ISI-specific category, pixel brightness in Figure 2 can also be viewed as a direct measure of the correlation between stimulus and response. Across our sample of retinal ganglion cells (n=20), receptive field maps made from spikes with ISIs of 0-10 msec always contained the brightest pixel (strongest response) when compared to receptive field maps made from spikes with longer ISIs. Given the inverse relationship that exists between ISI and neuronal firing rate, this result is consistent with the widely accepted view that strong stimuli produce high firing rates.

Comparing ISI-specific receptive fields
The center/surround receptive field is frequently fit using a difference of Gaussians (DOG) equation (see Methods). The DOG equation can also be applied to fit the ISI-specific receptive fields of retinal ganglion cells (Figure 2). To quantify the relationship between ISI and the strength of the receptive field center and surround, we first compared the amplitude of Gaussian fits made to the center and surround subregions of each cell’s ISI-specific receptive field. For all cells, the peak amplitude of the receptive field center was always greater for spikes with preceding ISIs less than 10 msec than for the spike count matched subset of all spikes (Figure 3A and I; p<<0.001; also see Figure 2). Similarly, the peak amplitude of the receptive field surround was greater for spikes with ISIs less than 10 msec than for the all spikes category of spikes (Figure 3B and I; p<0.001; also see Figure 2). At ISIs greater than 10 msec, the peak amplitude of fits to the center subregion decreased to levels below that for all spikes (Figure 3C,E,G and I; p<0.05). Likewise, for spikes with ISIs greater than 10 msec, the peak amplitude of the surround also decreased, on average, to levels below that for all spikes (p<0.01), however, this decrease was not significant for spikes with ISIs between 20-30 msec (Figure 3D,F,H and I). Given the differences in peak amplitude associated with different ISI categories of spikes, it is worth noting that there was not a significant difference in the fitting error associated with fits to shortest and longest ISI receptive fields (0-10 msec vs. 30-120 msec).

[Figure 3]

We next examined whether the spatial extent of the retinal ganglion cell receptive field varies with ISI. To do so, sigma values from Gaussian fits were used to compare center and surround subregions across the five categories of ISI. For the receptive field center, sigma values calculated from each of the ISI-specific receptive fields were very similar to those
calculated from spike count matched subsets of all spikes (Figure 4A,C,E,G and I).

Nevertheless, there were slight, but significant, shifts in center sigma as a function of ISI. In particular, center sigma values calculated from spikes with ISIs less than 10 msec were significantly greater than those calculated from the all spikes category of spikes (Figure 4A and I; p<0.001). In contrast, center sigma values calculated from spikes with ISIs greater than 30 msec were significantly less than those calculated from the all spikes category (Figure 4G and I; p<0.05). Sigma values for the receptive field surround were generally more variable than those for the center (Figure 4B,D,F,H and I). In particular, a subset of cells displayed a substantial increase in their surround sigma as ISI increased above 30 msec (Figure 4H).

[Figure 4]

Because the overall strength of the receptive field center and surround depends on both the amplitude and spatial extent of visual responses, we used the volume under each subregion’s Gaussian fit as a measure of the subregion’s overall strength. We then compared values across the 5 categories of ISI. For the receptive field center, strength estimates were significantly greater for receptive fields calculated from spikes with ISIs less than 10 msec than for receptive fields calculated from the all spikes category of spikes (Figure 5A and I; p<<0.001). In contrast, at longer ISIs (20-30 and 30-120 msec), strength estimates for the receptive field center were less than those for the all spikes category (Figure 5E,G, and I; p<0.01 for both comparisons). Similar to the receptive field center, strength estimates for the receptive field surround were significantly greater for spikes with ISIs less than 10 msec than for the all spikes category (Figure 5B and I; p<0.01). For ISIs between 10 and 20 msec, strength estimates for the surround were less than those for the all spikes category (Figure 5D and I; p<0.01). At longer ISIs, strength estimates for the surround displayed more variability,
as values were greater for some cells and less for others compared to values based on the all spikes category of spikes (Figure 5F,H and I). With these results in mind, it is interesting to note that index values for the surround were significantly lower than those for the center at short ISIs (0-10 and 10-20 msec; p<0.05 and p<0.01 respectively) and significantly greater than those for the center at longer ISIs (20-30 and 30-120 msec; p<0.05 and p<0.001, respectively). These results indicate that ISI has a differential influence on the mechanisms that underlie the strength of the center and surround.

[Figure 5]

Finally, we wished to determine whether or not the relative strength of the receptive field center and surround varies with interspike spike interval. To do so, we used a center-surround index to quantify the relative strength of the center and surround subregions of the receptive field (see Methods). With this index, values near +1 correspond to cells whose centers are much stronger than their surrounds, whereas values near –1 correspond to cells whose surrounds are much stronger than their centers. We calculated center-surround index values first using the peak amplitude of each subregion and then using each subregion’s overall strength (volume under the Gaussian fit). Across our population of retinal ganglion cells, center-surround index values based on peak amplitude estimates were quite similar (Figure 6A). In contrast, index values based on estimates of the overall strength of individual subregions varied significantly with ISI (Figure 6B). In particular, while center-surround index values for spikes occurring with ISIs between 0-10 msec and 10-20 msec were positive (0.20 +/-0.05 and 0.34 +/- 0.08, respectively), index values decreased significantly (p<0.05) with ISIs between 20-30 msec and 30-120 msec (0.001 +/-0.060 and -0.03 +/-0.08, respectively) indicating a decrease in the relative strength of the center compared to the
surround with increasing ISI. This finding is consistent with the observation that the size of the surround increases with ISI for some cells.

[Figure 6]
Discussion

Using white-noise stimuli and reverse-correlation analysis, we examined the relationship between ISI and the center/surround receptive field of retinal ganglion cells. Two properties of retinal spike trains provided the motivation for this analysis. First, retinal ganglion cells produce many more spikes than their postsynaptic targets in the LGN (Hubel and Wiesel 1961; Cleland et al. 1971a,b; Kaplan et al. 1987; Usrey et al. 1998). Accordingly, only a subset of retinal spikes directly triggers LGN responses. Second, retinal spikes are not equal in their ability to drive LGN responses, as spikes following short ISIs (<30 msec) are much more effective than those following longer ISIs (Mastronarde 1987; Usrey et al. 1998; Levine and Cleland 2001; Rowe and Fischer 2001; Weyand 2001; Sincich et al., 2007). In principle, this ISI-dependent filtering of retinal spikes could be used as a mechanism for processing visual information en route from retina to cortex.

Stability and dynamics of retinal receptive fields

Across our sample of retinal ganglion cells, results show that the sign (on vs. off) and location of receptive fields are invariant over a wide range of ISIs (from <10 msec to 120 msec). Although the strength of the receptive field center and surround both decrease with increasing ISI, as predicted from a linear model, this decrease is not equal for the two subregions. Consequently, there is an ISI-dependent increase in the relative strength of the surround compared to the center that appears to rely on non-linear mechanisms and an increase in the size of the surround. Although a definitive explanation for this finding goes beyond the scope of this study, one possibility is that there exists a relationship between local contrast, ISI and surround size. For instance, past studies of neurons in primary visual cortex report an inverse relationship between stimulus contrast and the size of the classical receptive
field (Sceniak et al. 1999; see also Kremmers et al. 2001; Solomon et al. 2002; Nolt et al. 2004). Because low-contrast stimuli generally evoke responses with lower firing rates and longer ISIs compared to high-contrast stimuli, the possibility exists that similar or shared mechanisms might underlie the dynamics of receptive field size in both retina and cortex.

Retinal spikes are more effective at driving LGN responses when they occur following ISIs <30 msec and most effective when they occur following ISIs <10 msec (Mastronarde 1987; Usrey et al. 1998; Levine and Cleland 2001; Rowe and Fischer 2001; Weyand 2001; Sincich et al., 2007). It is therefore noteworthy that the amplitude of Gaussian fits to the receptive field center and surround is greatest for receptive fields calculated from spikes that occur with ISIs <10 msec. Because receptive field maps were always calculated using equal numbers of spikes, these amplitude differences do not reflect differences in the absolute number of spikes. Instead, amplitude comparisons provide a direct measure of the correlation between stimulus and response. From this perspective, short ISI spikes (<10 msec) are more frequently associated with an optimal visual stimulus than longer ISI spikes. Thus, through ISI filtering of retinal spikes, it appears that the LGN is able to refine the visual signal that it conveys to cortex.

Center/surround strength: retina vs. LGN

In general, the receptive fields of LGN neurons are very similar to those of their retinal inputs in terms of sign (on vs. off), spatial location, color selectivity, contrast sensitivity and X/Y classification (Hubel and Wiesel 1961; Cleland et al.1971a,b; Levick et al. 1972; So and Shapley 1981; Lee et al. 1983; Cleland and Lee 1985; Kaplan et al. 1987; Mastronarde 1987, 1992; Reid and Shapley 1992; Usrey et al. 1999). Despite these similarities, a well-documented difference between retinal and geniculate receptive fields is
an increase in the relative strength of the LGN surround compared to the center (Hubel and Wiesel, 1961; Levick et al. 1972; Singer and Creutzfeldt 1970; Singer et al. 1972; Usrey et al. 1999). Given the results of past studies showing that retinal spikes following short ISIs are more likely to drive LGN responses than spikes following longer ISIs (Mastronarde 1987; Usrey et al. 1998; Levine and Cleland 2001; Rowe and Fischer 2001; Weyand 2001; Sincich et al., 2007), the possibility exists that the stronger surround of LGN cells simply reflects the receptive field properties of the retinal spikes that are most likely to drive the LGN; namely, retinal spikes that follow short ISIs. If so, then the relative strength of the surround and center subregions of retinal receptive fields should vary with ISI such that spikes following short ISIs have relatively stronger surrounds than spikes following longer ISIs. Despite the appealing nature of this possibility, results from the present study, using the same white-noise stimulus used previously to document the increased surrounds of LGN cells (Usrey et al. 1999), reveal the opposite relationship. Namely, the relative strength of the surround is greater for long ISI spikes (>30 msec) than for short ISI spikes (<30 msec). It therefore seems likely that the increased strength of the LGN surround results from non-retinal sources of input. Possible sources of this input include LGN interneurons, neurons in the reticular nucleus, and/or corticogeniculate feedback neurons.

ISI, rate codes, temporal codes and visual processing

Since Adrian’s early description of rate coding by retinal ganglion cells in the Conger eel (Adrian and Mathews, 1927), it has been recognized that certain stimuli increase the firing rate of neurons while other stimuli decrease the firing rate. Without doubt, the concept of rate coding is one of the most important concepts in neuroscience and forms the foundation for nearly every study of sensory and motor processing. Nevertheless, recent work has shown
that the precise timing of individual spikes within cells and between cells can influence
synaptic communication as well as carry unique or additional information between neurons in
the visual pathway (Usrey et al., 1998, 2000; Kara et al., 2000; Reich et al., 2000; Reinagel
and Reid, 2000; Yao and Dan, 2001; reviewed in Usrey and Reid, 1999; deCharms and Zador,
2000; Hess et al. 2003; Dan and Poo, 2006).

In the present study, we compared the receptive fields associated with retinal spikes
that occur with different preceding ISIs. It is important to note that ISI and firing rate are
intimately related measures of a cell’s spiking behavior. As a result, ISI can be viewed both
as a potential parameter for temporal coding as well as a measure of a cell’s instantaneous
firing rate. With this in mind, results from past studies of retinal ganglion cell activity show
that the efficacy of a retinal spike in driving an LGN response is more affected by the
immediately preceding ISI than by prior preceding ISIs in the spike train (Usrey et al. 1998).
This finding is consistent with the idea that the membrane time constant of an LGN neuron is
too brief to allow for much of a rate calculation (Koch et al. 1996). Moreover, because LGN
neurons receive synaptic input from just one or a small number of retinal ganglion cells
(Cleland et al.1971a,b; Hamos et al. 1987; Mastronarde 1987; Usrey et al. 1999; Sincich et al.,
2007), LGN neurons do not have much of an opportunity to integrate the overall firing rate of
a population of retinal inputs as a mechanism to reach spike threshold. Consistent with this
view, layer 4 neurons in primary visual cortex, which receive much more convergent input
from the LGN than LGN neurons receive from the retina (reviewed in Reid and Usrey, 2004),
appear to rely less on the ISIs of individual inputs and more on the relationship of activity
between inputs as a means to reach spike threshold (Usrey et al. 2000; see also Roy and
Alloway, 2001; Bruno and Sakmann, 2006). Beyond layer 4 of visual cortex and on into
extrastriate cortex, convergence is a dominant theme for visual circuits, thus ISI is likely to play even less of a role in spike transfer. While this line of thinking is certainly speculative, it suggests that the retinogeniculate circuit is perhaps the best-suited circuit in the visual system for an ISI-based mechanism for spike filtering and visual processing.
Acknowledgements: This work was supported by EY13588, EY12576, the McKnight Foundation, the Esther A. and Joseph Klingenstein Fund, and the Alfred P. Sloan Foundation. Kelly Henning, Daniel Sperka and Austin Collins provided expert technical assistance.
References

Levine MW and Cleland BG. An analysis of the effect of retinal ganglion cell impulses upon the firing probability of neurons in the dorsal lateral geniculate nucleus of the cat. *Brain Research* 902: 244-254, 2001.

Figure Legends

Figure 1. Distribution of ISIs and visual response latencies.
A. Distribution of ISIs across the sample of 20 retinal ganglion cells. Cells were excited with a white-noise stimulus (see Methods). Error bars indicate standard error of the mean (sem).
B. Distribution of latencies to peak visual response. The peak visual response was determined from each cell’s impulse response using the cell’s entire spike train. The sample includes 11 X cells and 9 Y cells.

Figure 2. Spatial receptive fields of two retinal ganglion cells. Cells were excited with a white-noise stimulus and receptive field maps were made using reverse-correlation analysis. For each cell, the left column of panels shows the all-spikes and ISI-specific receptive field maps and the right column of panels shows the difference of Gaussians (DOG) fit for each map. In both columns, red indicates on responses and blue indicates off responses. Accordingly, cell 1 has an on-center/off-surround receptive field, cell 2 has an off-center/on-surround receptive field. Color-coded response maps and Gaussian fits are both normalized to the peak value for each cell across the five ISI categories. In all cases, the peak value corresponded to the 0-10 msec ISI category. Scale bars indicate 1 degree of visual angle.

Figure 3. The peak amplitude of the receptive field center and surround varies with ISI.
A-H. Scatterplots showing the relationship between the ISI-specific peak amplitude of a receptive field subregion (center and surround) and the all-spikes subregion. Amplitude estimates taken from Gaussian fits to the center and surround subregions of the receptive field (see Methods).
I. Difference index showing the
relationship between the ISI-specific amplitude estimates and the all-spikes estimates (see Methods). According to this index, values near +1 would correspond to cells with ISI-specific amplitude estimates that are much greater than their all spikes’ estimates, whereas values near –1 would correspond to cells with ISI-specific amplitude estimates that are much less than their all spikes’ estimates. Error bars indicate standard error of the mean (sem).

Figure 4. The size (sigma) of the receptive field center and surround varies with ISI. **A-H.** Scatterplots showing the relationship between the ISI-specific sigma values for the receptive field center and surround and the all-spikes values. Sigma values taken from Gaussian fits to the center and surround of the receptive field (see Methods). **I.** Difference index showing the relationship between the ISI-specific sigma estimates and the all-spikes estimates (see Methods). According to this index, values near +1 would correspond to cells with ISI-specific sigma values that are much greater than their all spikes’ values, whereas values near –1 would correspond to cells with ISI-specific sigma values that are much lower than their all spikes’ values. Error bars indicate standard error of the mean (sem).

Figure 5. The strength (volume) of the receptive field center and surround varies with ISI. **A-H.** Scatterplots showing the relationship between the ISI-specific volume estimates of the receptive field center and surround and the all-spikes estimates. Volume estimates taken from Gaussian fits to the center and surround of the receptive field (see Methods). **I.** Difference index showing the relationship between the ISI-
specific volume estimates and the all-spikes estimates (see Methods).
Accordingly, values near +1 would correspond to cells with ISI-specific strength
estimates that are much greater than their all spikes’ values, whereas values near –
1 would correspond to cells with ISI-specific strength estimates that are much less
than their all spikes’ values. Error bars indicate standard error of the mean (sem).

Figure 6. The relative strength of the center and surround subregions of the receptive field
varies with ISI. **A.** Comparison of center/surround index values based on
amplitude estimates of the receptive field center and surround (see Methods). **B.**
Comparison of center/surround index values based on volume estimates of the
receptive field center and surround (see Methods). Error bars indicate standard
error of the mean (sem).
Cell 1

White-Noise RF Gaussian Fits

All ISI's

ISI's 0-10 msec

ISI's 10-20 msec

ISI's 20-30 msec

ISI's 30-120 msec

Cell 2

White-Noise RF Gaussian Fits

Excited by Dark

Excited by Light