DENDRITIC SPINE REMODELING AFTER SPINAL CORD INJURY ALTERS NEURONAL SIGNAL PROCESSING

Andrew M. Tan¹, Jin-Sung Choi¹, Stephen G. Waxman, & Bryan C. Hains

Departments of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516

¹ designates co-first authors

keywords: spinal cord injury, dendritic spine, neuropathic pain, dorsal horn neuron

Corresponding author: Stephen G. Waxman, M.D., Ph.D.
Center for Neuroscience and Regeneration Research
VA CT Healthcare System (127A)
950 Campbell Avenue, BLDG 34
West Haven, CT 06516
Tel: 203-937-3802
Fax: 203-937-3801
email: stephen.waxman@yale.edu

of pages: 43
of Figs: 12
Abstract: 147
Introduction: 583
Discussion: 1158

Acknowledgements: The work was supported in part by grants from the Medical Research Service and Rehabilitation Research Service, Department of Veterans Affairs. The Center for Neuroscience and Regeneration Research is a Collaboration of the Paralyzed Veterans of America and the United Spinal Association. B.C.H. was funded by The American Pain Society and The Dana Foundation.
Central sensitization, a prolonged hyperexcitability of dorsal horn nociceptive neurons, is a major contributor to abnormal pain-processing after spinal cord injury (SCI). Dendritic spines are micron-sized dendrite protrusions which can regulate the efficacy of synaptic transmission. Here we used a computational approach to study whether changes in dendritic spine shape, density and distribution can individually, or in combination, adversely modify the input-output function of a postsynaptic neuron to create a hyperexcitable neuronal state. The results demonstrate that a conversion from thin shaped to more mature, mushroom shaped spine structures results in enhanced synaptic transmission and fidelity, improved frequency-following ability, and reduced inhibitory gating effectiveness. Increasing the density and re-distributing spines towards the soma results in a greater probability of action potential activation. Our results demonstrate that changes in dendritic spine morphology, documented in previous studies on spinal cord injury, contribute to the generation of pain following SCI.
Central sensitization, a mechanism thought to contribute to chronic neuropathic pain conditions, can result from PNS or CNS injury (Ji et al. 2003; Woolf 1994). Hyperexcitability of dorsal horn (DH) nociceptive neurons results from central sensitization and is associated with allodynia, a painful response to normally non-noxious stimuli, and hyperalgesia, a heightened sensitivity to painful stimuli caused by pain-signal amplification within the CNS (Finnerup et al. 2003; Finnerup et al. 2001). The hyperexcitable state of DH neurons after injury is chronic and resilient, which suggests that injury-induced changes to pain-sensory signal processing within the nervous system reside in a firmly established pathological state. Processes that are known to contribute to DH hyperexcitability include: the loss of inhibitory GABAergic input (Drew et al. 2004), changes to postsynaptic receptors (Agrawal and Fehlings 1997; South et al. 2003), abnormal expression of sodium ion channels (Hains et al. 2003; Waxman and Hains 2006), and aberrant remodeling of afferent fibers and their branches (Romero et al. 2000; Woolf et al. 1992).

Localized increases in synaptic strength through the de novo formation and/or elaboration of postsynaptic dendritic spines constitute a structural basis for learning and memory in the CNS. Similar cellular mechanisms may also contribute to neuropathic pain after SCI (Ji et al. 2003). Dendritic spines are micron-sized protrusions from dendrites that provide postsynaptic sites for presynaptic input. Dendritic spines are associated with highly convergent inputs, e.g. on pyramidal cells and neurons in the spinal cord DH (Svendsen et al. 1999; Yuste and Majewska 2001). Dendritic spines regulate the efficacy of synaptic transmission, and can thereby alter the transmission of
electrical information in sensory pathways (Bourne and Harris 2007; Calabrese et al. 2006). Changes in dendritic spine morphology after injury can therefore alter the input-output function of neurons (Pongracz 1985; Segev and Rall 1988). Our previous data (Tan et al. 2008) and evidence in the literature as described below indicate that dendritic spine morphology can change following an activity-dependent event and after disease and injury: (1) Dendritic spines can elaborate from a thin, filopodia-like structure to a mushroom shape, a structure associated with increased synaptic efficacy and fidelity (Bourne and Harris 2007; Yuste and Majewska 2001); (2) the density of spines can increase along the dendrite, providing more sites for postsynaptic connections (Bonhoeffer and Yuste 2002; Yuste and Bonhoeffer 2001), and (3) spines can redistribute along the dendrite (Kim et al. 2006; Ruiz-Marcos and Valverde 1969). It is not yet known whether dendritic spine remodeling can contribute to the hyperexcitable state of nociceptive dorsal horn neurons associated with neuropathic pain after SCI.

Here we asked whether changes in dendritic spine morphology can contribute to the neuronal hyperexcitability associated with neuropathic pain. To address this question we used the NEURON simulation environment to model the effects of dendritic spine shape, distribution and density on the transduction of signals onto a postsynaptic neuron. The results demonstrate that a switch from thin spines to a mushroom spine shape as observed in DH neurons after SCI (Tan et al. 2008) produces alterations in the synaptic potential waveform and input-output functions that can contribute to neuronal hyperexcitability. A simultaneous increase in spine density and distribution of spines closer to the soma, which are also observed in DH neurons after SCI (Tan et al. 2008), produce an amplification of excitatory postsynaptic input. These results suggest a new
mechanism that contributes to neuropathic pain, and suggest that methods that disrupt injury-induced changes in dendritic spine morphology may provide a new therapeutic approach to pain following SCI.
Materials and Methods

Spinal cord injury: In vivo experiments were performed in accordance with National Institutes of Health guidelines for the care and use of laboratory animals and were approved by the Yale University Institutional Animal Use Committee. Adult male Sprague Dawley rats (175-200 gm) were anesthetized with a mixture of ketamine and xylazine (80/5 mg/kg, i.p.) and subjected to spinal cord contusion injury. Briefly, the NYU/MASCIS impact injury device (Gruner 1992) was used to produce SCI at spinal segment T9 (Hains and Waxman 2006). Following laminectomy, a 2.0-mm-diameter rod (10 gm) was dropped from a 25 mm height onto the exposed spinal cord. Sham control animals underwent laminectomy only. Postoperative treatments included twice daily subcutaneous injections of 0.9% saline solution for rehydration (2.0 cc) and Baytril (0.3 cc, 22.7 mg/ml) to prevent bladder infection. Bladders were manually expressed twice daily until reflex bladder function returned, usually within 10 d after injury. Animals were housed under a 12 hr light/dark cycle in a pathogen-free area with water and food given ad libitum.

Histology: Intact and SCI rats were sacrificed 31 days post-surgery for Golgi-Cox staining using a FD Rapid GolgiStain Kit (FD Neurotechnologies; Ellicot, MD). Fresh unfixed spinal cord tissue was removed, washed in distilled water, and immersed in the impregnation solutions (FD Neurotechnologies). Following a series of steps according to manufacturer instructions, 200 µm-thick tissue sections were cut on a vibratome and mounted on gelatinized glass slides. Sections were stained, rinsed twice in distilled water, dehydrated, cleared, and cover-slipped. Five criteria were used to sample and
analyze whole cells with morphology similar to those observed for wide-dynamic range neurons identified by Woolf (1987): (1) neurons were located within lamina IV and V, (2) Golgi-stained neurons must have had dendrites and spines that were completely impregnated, appearing as a continuous length, (3) at least one dendrite extended into an adjacent lamina relative to the origin of the cell body, (4) at least half of the primary dendritic branches remained within the thickness of the tissue section, such that their endings were not cut and instead appeared to taper into an ending, and (5) the cell body diameter was 20-50µm. Images similar to those shown in Fig. 1 were captured with a Nikon Eclipse E800 microscope with a HQ Coolsnap camera (Roper Scientific; Tucson, Arizona).

Membrane and ionic mechanisms. The modeling parameters we used have been described previously (Miller et al. 1985; Rusakov et al. 1996; Wilson 1984). Passive membrane resistivity was: $R_m = 10 \, \text{k} \Omega \cdot \text{cm}^2$; capacitance was: $C_m = 1.0 \, \mu \text{F/cm}^2$; cytoplasmic resistivity in the soma and dendrites was: $R_a = 100 \, \Omega \cdot \text{cm}$, and $R_a = 200 \, \Omega \cdot \text{cm}$, respectively, in dendritic spines to account for dense “packing” of organelles such as the spine apparatus. Somatic active membranes incorporated Hodgkin-Huxley (H-H) channels (Hodgkin and Huxley 1952) with parameters: sodium conductance, $g_{\text{NA}} = 0.12 \, \text{S/cm}^2$; potassium conductance, $g_{\text{K}} = 0.036 \, \text{S/cm}^2$; and passive leak conductance, $g_{\text{L}} = 0.3 \, \text{mS/cm}^2$ as provided in NEURON. Dendritic spine head active membranes contained H-H channel densities set at 10-times (10· H-H) that in the soma. H-H channel models have been used in previous computational studies with similar ion channel densities, membrane resistances and capacitance (Lopez-Aguado et al. 2002; Rusakov et al. 1996;
Segev and Rall 1988; 1998). The only variable parameter was geometry. All other parameters remained numerically constant in our model. Because these active and passive membrane parameters were held constant, the qualitative results reported here are dependent on the geometry of the dendritic branch, spines, and soma, rather than on changes in ionic mechanisms or passive membrane properties.

Modeling synaptic input. An α-function was used to simulate synaptic conductance. This integrated modeling tool in NEURON for simulating postsynaptic input conductances is based on an approximation of actual postsynaptic potential waveforms obtained from electrophysiological recordings rather than the underlying electrochemical mechanisms. The α-function, however, can be used to approximate most synaptic currents with a small number of parameters and provides a widely-used model for computing postsynaptic current (Destexhe et al. 1994; Rall et al. 1967). The synaptic current (i) generated by the α-function is as follows:

$$i = g_{\text{max}} \left(\frac{t}{\tau_{\text{input}}} \right) \exp\left(-\frac{t}{\tau_{\text{input}}} \right) (v-e)$$

where t is the time of synaptic activation, τ_{input} is a time constant of synaptic conductance which is equal to the time when input transient reaches its peak conductance (g_{max}), and e is the reversal potential of neurotransmitter evoked synaptic current. For voltage-independent α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type excitatory current, the time to peak was set (Frank and Fuortes 1956; Pongracz 1985), where $\tau_{\text{input}} = 0.2$ msec, and maximum conductance (g_{max}) was varied throughout
experiments (Wilson 1984). The reversal potential upon reaching maximum conductance was set to $e = 0$ mV. For gamma-aminobutyric acid (GABA)-type inhibitory current, the time to peak was set at $\tau_{\text{input}} = 7$ msec for figure 11 because of lack of effect on excitability with shorter τ_{input}, and maximum conductance (g_{max}) was varied between 50 and 1000 nS. GABA synaptic currents had a reversal potential of -75 mV. For the purpose of examining the effects on waveform shape produced through varying the time to maximum conductance we set $\tau_{\text{input}} = 0.05, 0.2, 0.5, 1, 3, 5, \text{ and } 7$ msec for both excitatory and inhibitory synaptic models (Figs. 2 through 5).

Preliminary simulation experiments showed that mushroom spines had faster and larger postsynaptic responses compared with thin spines. To clarify the time constant of the dendritic spine itself (τ_{spine}), we used a step depolarization to model presynaptic input, as opposed to an α-function (see Supplemental Figure). Briefly, we applied a step depolarization ($V_{\text{hold}} = -70$ mV, $V_{\text{test}} = 0$ mV) on all spine models and fit the resultant output (Supplemental Figure, panels B-E) with a monoexponential function to obtain τ_{spine} (Panel F). Thus, we defined the spine time constant as the monoexponential change of membrane potential at the base of the dendritic spine in response to the delivery of a step depolarization (from -70 mV to 0 mV) at the spine head. The resultant output, however, from most of the spine models did not fit well with a monoexponential function (see Panel F) or even with a biexponential function for some spine models. The τ_{spine} in all models was larger than 0.1 msec, suggesting that τ_{spine} might have been slower than the fastest τ_{input}. However, the resultant output produced by a τ_{input} of 0.05 msec (red line, Panels B-E) was always slower than that produced by the step depolarization (black line,
Panels B-E), indicating that simulations even with τ_{input} of 0.05 msec, which is faster than τ_{spine}, produced interpretable results.

Modeling dendritic spines. Dimensional information about dendritic spines located on dorsal horn neurons is available from our previous report (Tan et al 2008), and we used spine geometries that fell within these published ranges to derive parameters for the spine neck, spine head, and spine volume (Calabrese et al. 2006; Galofre et al. 1987; Garcia-Lopez et al. 2006; Harris and Kater 1994; Kim et al. 2006). To construct spines and examine the effects of spine shape on the signal transduction onto the parent dendritic branch, we used a two-compartment model: spine neck and head. To consider the effects of geometric changes only (Segev and Rall 1998), we modeled spine shapes based on two different assumptions for underlying spine shape change (see Results). For the first assumption (#1: dendritic spines mature in shape by the addition of cellular material) we modeled three spines each having the same neck dimensions (neck diameter (d_n) = 0.5 μm, neck length (l_n) = 0.5 μm) while varying the size of the spine head: small (1x), head diameter (d_h) = 0.5 μm, head length (l_h) = 0.5 μm; medium (2x), d_h = 1.0 μm, l_h = 1.0 μm; large (3x), d_h = 1.5 μm, l_h = 1.5 μm. These three sets of parameters produced thin, intermediate, and mushroom shaped spines, respectively (see Fig. 3 and 4: panels A, B, and C). We also modeled spines based upon a second assumption (#2: dendritic spines change shape via local cytoskeletal rearrangement and independent of the addition of cellular material). Here all spines were modeled with similar volume, reflecting a conservation of cytoplasmic mass, while varying the dimensions of the spine neck and head: thin spine shape, d_n = 0.5 μm, l_n = 3.0 μm, d_h = 0.5 μm, l_h = 0.5 μm; intermediate
spine shape, \(d_n = 0.5 \, \mu m, l_n = 1.85 \, \mu m, d_h = 0.75 \, \mu m, l_h = 0.75 \, \mu m \); mushroom spine

\(d_n = 0.5 \, \mu m, l_n = 0.5 \, \mu m, d_h = 1.0 \, \mu m, l_h = 0.75 \, \mu m \) (see Fig. 5 and 6: panels A, B, and C). Presynaptic \(\alpha \)-function stimuli were directed upon the spine head. The resultant postsynaptic responses were recorded at the base of the spine neck and in the soma.

For all further simulation experiments (see Figs. 7-12), we used the second assumption to model spine shape variations (i.e., the volume-constant condition). We favored the use of this model based upon literature which demonstrates localized cytoskeletal rearrangement within dendritic spines during synaptic plasticity events (Calabrese et al. 2006; Carlisle and Kennedy 2005; Chen et al. 2007; Chetkovich et al. 2002; Halpain 2006; Matsuzaki et al. 2004). In addition, we found that preliminary quantitative data demonstrated that spines modeled following the second assumption produced the greatest differences in the transduced synaptic potential across spine geometrical variations. We therefore used these spine shapes in the neuronal input-output experiments. To compare the effect of dendritic spine geometry on simulated EPSP and IPSP waveforms, we utilized four quantitative indices: (1) peak amplitude of the synaptic potential, (2) latency from stim-to-peak, (3) width of the waveform at half peak amplitude, which is a useful measure of the sharpness of the waveform, and (4) area under the waveform curve, which provides a measure of the overall impact of a synaptic potential (Rall 1967).

Simplified neuron morphology. To investigate how dendritic spines affect the input-output function of neurons, we constructed a simplified neuron using cylindrical compartments as building blocks, as performed previously (Wilson 1984). Although
neurons in the dorsal horn have dendritic branches with secondary projections (see Fig. 1B), we simplified this complexity with assumptions described by Rall (1967) which have been supported in other relevant computational models (Pongracz 1985). Briefly, the computational rationale for the simplification of complex neuronal structure used in our study is based on an insightful concept: geometric non-uniformity within the “real” neuron can be represented by separate compartments within the model, each containing appropriate simulation parameters (Rall et al. 1967). Therefore, if biophysical and geometric variables are the same for the soma and dendritic branch, then differences in the quantitative indices of the synaptic potentials should be attributable to changes in spine morphology. Previous studies have demonstrated that information gathered from these simple neuronal models can be used to complement and interpret experimental data, providing insight into the mechanisms underlying the synaptic transmission process (Segev and Rall 1988; 1998). The basic framework of our neuronal model contained a soma (spherical shape defined as: diameter (d) = 30 µm; length (l) = 30 µm) and single dendritic branch (d = 2 µm, l = varied). This model appears as a “ball-and-stick” (see Figs. 7-12) (Pongracz 1985). We then attached one or more dendritic spines, varying in shape, onto the dendritic branch at pre-defined distances from the soma. Depending on the simulation experiment, we placed recording electrodes at the soma and the base of the spine neck to measure the effects of dendritic spine transformation of postsynaptic potentials. We simulated input without the addition of stochastic noise because the degree of synaptic convergence or divergence between the presynaptic neuron and the postsynaptic neuron is unknown. Dendritic spines were subjected to either a single stimulus or a stimulus train.
To examine the cumulative effects of spine density and spine distribution on the output of a postsynaptic neuron (see Fig. 12) the dendritic branch of the simple neuron was divided into 9 compartments, each of the same length and diameter (d = 2 µm, l = 50 µm). The compartments closest and farthest from the soma contained no spines. This follows previous quantitative morphological studies on dorsal horn neurons that show no or few spines close to the soma, increased spine density in medial portions of the branch, and decreased spine density at distal regions (Garcia-Lopez et al. 2006; Ruiz-Marcos and Valverde 1969; Valverde and Ruiz-Marcos 1969). The spine density/distribution on the dendritic branch of the simplified neuron in the intact model used a total of 6 spines distributed at equally spaced intervals across a 350 µm length of the dendrite. For the SCI neuronal model, 9 spines were distributed along the same length of dendrite. The first 2 dendritic length compartments contained twice the spine density compared to the intact neuron to correspond with the relative spine distribution obtained from previous anatomical data (Tan et al. 2008). All dendritic spines modeled here used the parameters of the thin spines shown in Fig 5A and 6A. To execute the simulation, we stimulated all spines simultaneously and recorded the resultant activity from the soma. To test the effects of spine development into the mushroom-shaped structures on the input-output function of the neuron, we replaced 5 out of 9 spines in the SCI model with the mushroom-shaped spines shown in Fig 5C and 6C. We chose this proportion because previous data (Tan et al. 2008) suggests that there is an approximately 50% post-injury increase in the density of mushroom spines compared to pre-injury conditions and these spines are distributed closer to the soma. For repetitive stimulation, all spines were
stimulated with a train of stimuli separated by 14 msec intervals (71.4 Hz) (see results, Fig. 12E).
Results

Modeling has demonstrated that the unique structure and molecular composition of dendritic spines contribute to their ability to act as discrete isolated computational units (Pongracz 1985; Rall et al. 1967), filter electrical noise (Tsay and Yuste 2004; 2002), and aid in linear summation (Araya et al. 2006; Lev-Tov et al. 1983; Yuste and Urban 2004). Computational studies have also been used extensively to complement recent experimental data (Matsuzaki 2007; Matsuzaki et al. 2004; Segev and Rall 1998). Although in vivo studies have partially revealed the effects of dendritic spine changes on synaptic transmission, these studies were done on neurons outside the DH, e.g. in the hippocampus (Gazzaley et al. 2002; Halpain 2006). Because these cortical neurons have a pyramidal structure with an invariant orientation, and project through specific anatomical lamina in a predictable trajectory, multiple electrodes can be used to stimulate and record at different locations on the same neuron. This is not the case for multireceptive dorsal horn neurons which are found at widely varying locations, typically in dorsal horn lamina IV and V (Fig 1A). These neurons do not project dendrites with predictable trajectories (Fig 1B). Thus, to perform our studies, we used the NEURON software package (see Methods and Materials) designed for building models of individual neurons and networks.

Synaptic input mechanisms

To simplify modeling this biological process, we used an α-function. For synapses impinging directly on the dendrite, this α-function produced a skewed curve (measured at the stimulation site)(Fig. 2A, B). These curves represent the electrical
potential caused by the release of neurotransmitter, binding of postsynaptic receptors, and subsequent membrane depolarization or hyperpolarization. Changing the τ_{input} altered the shape of the synaptic potential recorded in the dendrite. An incremental increase in the τ_{input} from 0.05 to 7 msec resulted in a broadening of the depolarization (Fig. 2A) and hyperpolarization waveform (Fig. 2B). For inhibitory α-synapses, peak amplitude reached a plateau at τ_{input} above 3 msec to \sim3.2 mV because of the small driving force between the reversal potential of the inhibitory conductance and resting membrane potential. For excitatory inputs, peak amplitude increased from 24.2 to 44.2 mV as the τ_{input} increased from 0.05 to 3 msec. Prolonging the τ_{input} over 3 msec has a relatively small effect on the synaptic potential amplitude. Other quantitative indices increased in an approximately linear fashion (Fig. 2D-F, H-J). The latency for stim-to-peak and the duration at half maximal amplitude increased proportionally for both excitatory and inhibitory input. The area under the curve also increased, illustrating the increased impact of the synaptic potential upon the postsynaptic neuron.

Dendritic spine volume and shape modify signal transduction and synaptic potentials within the dendritic branch

We modeled spine geometries that fell within previously reported values for other types of neurons and our observations in the DH (Tan et al. 2008). To examine the effects of spine shape on signal transduction onto the parent dendritic branch, we used a two-compartment model. We divided the spine into two compartments a head and a neck structure, assigning each compartment distinct parameters. The spine head contained
voltage-gated ion channels with Hodgkin-Huxley (H-H) kinetics attached to a spine neck with passive membrane properties (Hodgkin and Huxley 1952). Each compartment was computed as a cylinder with a specific length and diameter. EPSPs and IPSPs were recorded from the base of spine neck in response to a single presynaptic stimulus onto the spine head (given as an α-function: see Fig. 2A, B). We had considered two assumptions in spine shape development: (1) Dendritic spines can mature by the addition of cellular material synthesized within the spine itself or transported from a location within the neuron but outside the spine (i.e., material transported from the soma) and inserted into the spine and, (2) the filamentous-actin cytoskeleton of each dendritic spine is rearranged locally and discretely without the addition of new cellular material (Calabrese et al. 2006; Carlisle and Kennedy 2005; Park et al. 2006; Wiens et al. 2005).

We first modeled the concept that spines may exist as a thin (Fig 3A), intermediate (Fig 3B) or mushroom shaped structure (Fig 3C). These spines have necks with similar volume, while the head compartment dimension varied as it is known to do under activity-dependent conditions (Carlisle and Kennedy 2005; Chen et al. 2007; Collin et al. 1997; Desmond and Levy 1988). When excitatory inputs were placed upon thin (Fig 3A) and intermediate spines (Fig 3B), the resultant EPSP was attenuated, compared to inputs placed directly on the dendrite (see Fig 1A, B). The amplitude for the thin spine was smaller than for intermediate and mushroom spines (Fig. 3G). Spine modulation of peak amplitude was input duration-dependent, since increasing the time to maximum conductance from 0.05 to 7 msec initially increased and finally decreased EPSP peak amplitude for all spine shapes. This is shown clearly in Figure 3G. In mushroom shaped spines, the postsynaptic potential had a sharp up-slope waveform with the fastest rise
times (Fig. 3H). The mushroom spine also had the narrowest synaptic potential demonstrated by the shortest duration at half maximal amplitude of all spine shapes (Fig. 3I). As the time constant increased from 0.05 to 7 msec, the EPSP area for all spine shapes increased (Fig. 3J). The synaptic potential waveform transduced through the intermediate spine shape (Fig 3G-J) had quantitative indices that generally fell between thin and mushroom spines.

The effects of spine shape on IPSPs (Fig 4) were not as pronounced as for EPSPs (see Methods and Materials). The difference in amplitude between thin spines (Fig 4A) and mushroom shaped spines (Fig 4C) was 0.19 mV and the difference between intermediate spines (Fig 4B) and mushroom shaped spines was 0.06 mV (Fig 4G). The time for stim-to-peak was similar across spines for each incremental increase in τ_{input}.

Upon stimulation, the intermediate spine shape produced an IPSP waveform with characteristics close to those of thin spines. The mushroom spine had an 5% to 11% increase (for τ_{input} of 7 msec and 0.05 msec, respectively) in synaptic potential area compared to thin spines, demonstrating that the overall impact of an IPSP increases with increasing spine head size same as the EPSP. In contrast, mushroom spines had a 2% to 7% decrease (for τ_{input} of 7 msec and 0.05 msec, respectively) in synaptic potential width compared to thin spines, illustrating a narrowing of the IPSP waveform with increasing spine head size.

We also constructed spine shapes based on the second assumption that spine geometrical parameters change from intrinsic, local cytoskeletal rearrangement. This may occur through molecular mechanisms which regulate filamentous-actin such as Rac- and Rho-GTPase activity (Bonhoeffer and Yuste 2002; Nakayama et al. 2000; Tashiro et
al. 2000; Tashiro and Yuste 2004). Here spines were constructed such that their total volume remained constant, while the volumetric ratio of the spine head and neck varied (Fig. 5A-C). As these ratios shifted toward the larger spine head, the synaptic potential increased in amplitude (Fig. 5G); the EPSP waveform sharpened (Fig. 5I), and the EPSP area increased (Fig. 5J). This resulted in the mushroom spine (Fig 5C, F) producing the greatest amplitude and narrowest EPSP waveform upon receiving presynaptic input. In contrast, thin spines had the lowest amplitude, the broadest waveform shape, the longest latency from stim-to-peak amplitude, and the smallest EPSP area (Fig 5D, G-J). Quantitative indices changed similarly for inhibitory inputs (Fig 6). IPSP amplitude and area increased with increasing head size. In addition, the IPSP width decreased with increasing head size. Together, these results demonstrate that a change in spine shape from a thin to a mushroom-shaped structure potentiates the signal transmitted upon the dendritic branch while narrowing the waveform, which could contribute to maintaining the discretization of an electrical signal. All following simulation experiments used the second assumption (i.e., volume-constant condition) to model spine geometry.

Effect of dendritic spine location

To examine the effects of spine location upon the dendritic branch, a thin or mushroom spine was placed at 10 µm intervals between 10 and 100 µm from the soma (Fig 7A). In order to exclude the possibility of activating an action potential, the soma contained only passive membrane properties. An AMPA-like excitatory presynaptic input ($\tau_{\text{input}} = 0.2$ msec, $g_{\text{max}} = 50$ nS) was placed upon the spine and the resultant EPSP passively propagated along the branch was recorded in the soma (Fig 7D, E). As
expected, increasing the distance of the spine from the soma decreased the amplitude and
broadened the EPSP transmitted through both spine shapes. The EPSP produced through
the mushroom spine (Fig 7E) had a narrower width compared to the thin spine (Fig 7D),
demonstrating a sharper waveform. As the distance from the soma increased from 10 to
100 μm, the peak amplitude of the EPSP decreased at a greater rate for the mushroom
spine than for the thin spine: up to a 60% and 57% decrease for the thin and mushroom
spine, respectively (Fig 7F). In addition, the EPSP width increased at a greater rate for
potentials transduced through the mushroom spine than through the thin spine as the
distance from the soma increased: up to an 8% and 11% increase for the thin and
mushroom spine, respectively. These results demonstrate that spatial location affects the
EPSP transduced through mushroom spines more than thin spines.

Mushroom spines facilitate input summation

Presynaptic inputs may arrive upon a single dendritic spine at different inter-
stimulus latencies. The shape of the synaptic potential influences the temporal and
spatial range at which potentials interact and summate. To investigate how inputs
transduced through thin or mushroom spines influence input integration and somatic
spiking, we constructed a simple neuronal model (Fig 8A) (see Materials and Methods).
We placed a thin (Fig 8B) or mushroom spine (Fig 8F) on the dendrite 100 μm from the
soma. We recorded evoked EPSPs from the base of the spine neck and soma. Because
the amplitude of the response evoked by a given stimulus is different for thin and
mushroom spines, we varied g_{max} to find somatic threshold: for thin spines $g_{\text{max}} = 3.33$ nS
and mushroom spines $g_{\text{max}} = 2.98$ nS. These inputs upon the thin spine (Fig 8C) and the
mushroom spine (Fig 8G) produce subthreshold responses in the soma. Using these values, two excitatory inputs were given at different intervals. With an inter-stimulus interval of 9.69 msec EPSPs produced through both thin (Fig 8D) and mushroom spines (Fig 8H) summated sufficiently to activate an action potential in the soma. Increasing the latency between the two stimuli by 0.14 msec, to 9.83 msec, resulted in the failure of EPSPs to summate in the soma for the thin spine (Fig 8E). In contrast, the inputs arriving through mushroom spines were still capable of summation and activated a spike in the soma (Fig. 8I). These data suggest that mature mushroom spines have characteristics that modify EPSPs, with properties that allow them to summate synaptic depolarizations more efficiently than thin spine shapes.

Spine shape limits effective inter-spine distance

The electrotonic distance between adjacent spines determines the extent of interaction between their propagated EPSPs. Because thin spines produce wider EPSPs than mushroom spines with τ_{input} longer than 3 msec (Fig 5I), presynaptic inputs arriving through thin spines would be expected to interact with each other to a greater extent than similar inputs transduced through mushroom spines. To examine this phenomenon in our model, we placed two thin or mushroom spines with dimensions shown in the previous figure on the dendritic branch (Fig 9A) and calibrated the model such that the maximum conductance for a single spine was kept constant ($\tau_{\text{input}} = 3$ msec, $g_{\text{max}} = 0.28$ nS) and produced a subthreshold EPSPs at the soma. The distal spine was located at a constant distance from the soma, while the location of the proximal spine varied such that the two spines had an inter-spine distance which varied from 5 to 5.24 μm. This inter-spine
distance corresponds with a approximate spine density of 2.5 spines/5 µm dendritic branch, which is within the lower range of spine densities observed *in vivo* in the hippocampus (Garcia-Lopez et al. 2006). Within pre-defined parameters (see Methods and Materials), when either the two thin (Fig 9B) or two mushroom spines (Fig 9C) were placed 5 µm away from each other, the presynaptic inputs summated sufficiently to activate an action potential in the soma. To determine the spatial inter-spine range at which two transduced synaptic potentials could interact for thin or mushroom spines, we progressively increased the interspine distance. Even with similar presynaptic input strength, the results show that thin spines had a larger inter-spine range than mushroom spines. Inputs transduced through two thin spines summated when the spines were separated from each other up to 5.23 µm. Increasing the inter-spine distance from 5.00 µm to 5.23 µm decreased the somatic action potential amplitude peak by 8.6 mV and increased the latency by 3.1 msec (Fig 9B). At an interspine distance of 5.24 µm, the two inputs transmitted through the thin spines failed to summate effectively to activate a somatic action potential. Mushroom spines required a shorter inter-spine distance than thin spines for sufficient EPSP summation to produce an action potential. For an increase of inter-spine distance from 5.00 µm to 5.05 µm there was a 3.9 mV decrease in peak amplitude of the action potential, and a slowing of latency to peak by 1.4 msec. Although the amplitude of individual EPSPs through each mushroom spine was greater, inputs failed to summate at an interspine distance of greater than 5.05 µm. Subthreshold inputs on a pair of thin spines at an interspine distance of 5.05 or greater summated and produced a somatic action potential (data not shown).
Mature mushroom shaped spines confer neurons with improved frequency-following ability

Hyperexcitable DH neurons associated with neuropathic pain fire evoked and spontaneous action potentials at high frequencies, and these signals must be propagated effectively through higher order neurons associated with the pain-signaling pathway (Hains et al. 2003). Although the presence of inhibitory inputs and the kinetic properties of voltage-gated ion channels may modulate hyperexcitability, dendritic spines may also act as regulators of high frequency excitatory activity. To examine the effects of spine shape on the frequency-following ability of the neuron, we used a similar simple neuronal model with two spines attached to the dendritic branch (Fig 10A). The excitatory input on these spines was similar for both shapes with the maximum conductance of 1.878 nS set to peak with $\tau_{\text{input}} = 0.2$ msec. An excitatory conditioning stimulus was initiated on the proximal spine followed by a train of 10 stimuli at increasing frequencies upon the distal spine. At 16.4 Hz, 10 somatic action potentials were produced in response to 10 test stimuli (100% success) in a dendrite with either thin or mushroom spines (Fig 10B, F). At 16.7 Hz, 8 somatic action potentials were produced in response to 10 test stimuli (80% success) in a dendrite with thin spines (Fig 10C). A train of stimuli at 16.7 Hz upon mushroom spines produced 10 out of 10 somatic action potentials (100% success rate) (Fig. 10E, H). Not until a much higher stimulus frequency of 50 Hz (Fig 10G) did the success rate fall to 80% in a dendrite with mushroom spines. To reduce the success rate to 70%, the train of stimuli upon thin spines only needed to increase to 16.9 Hz (Fig. 10D), whereas for mushroom spines, the success rate fell to 70% when the stimulus
frequency increased to 52.6 Hz (Fig. 10H). For comparison, at 52.6 Hz, a dendrite with thin spines did not produce any successful somatic action potentials (Fig. 10I). These results demonstrate that a shift in the shape of the spine from one with a small head (thin spine) to a mushroom shaped spine with a larger head structure confers a neuron with the ability to fire at higher frequency in response to repetitive stimulation. Thin spines can thus act as electrical low band pass filters. As thin spines develop into mushroom spines, these structures would lose the ability to block high frequency signals.

Mushroom spine shape reduces the effectiveness of inhibitory input

A loss of inhibitory inputs (i.e. decreased GABAergic innervation in the spinal cord after injury) (Drew et al. 2004; Hulsebosch et al. 2000) or a loss of the ability to transmit hyperpolarizing inputs could contribute to and maintain the increased excitability associated with central sensitization. The loss of inhibitory inputs can contribute to neuronal hyperexcitability after SCI. Inhibitory inputs onto spines located in proximity to the soma can block excitatory signals propagating from more distal locations along a dendrite (Nicoll et al. 1996). To test the effect of spine shape on the ability of inhibitory input to block transmission of excitatory potentials traveling toward the soma, an inhibitory GABA synapse was placed upon the proximal thin or mushroom spine (Fig 11A). Following a single inhibitory stimulus, the distal spine received a train of 5 suprathreshold excitatory stimuli at 37 Hz. Without activation of the inhibitory input, all 5 excitatory inputs produced somatic action potentials. With an inhibitory synaptic potential transduced through the thin spine, 3 of 5 excitatory inputs failed to generate somatic action potentials (Fig 11B). In contrast, inhibition through a mushroom spine
blocked 2 out of 5 propagating excitatory potentials. This demonstrates that a change from a thin to a mushroom spine at proximal locations can significantly reduce the effectiveness of inhibitory inputs, which suggests a disinhibition mechanism underlying neuronal hyperexcitability associated with neuropathic pain.

Increasing the number of spines and altering spatial distribution can contribute to hyperexcitable neuronal output

Synaptic efficacy can increase in association with learning and memory or injury (Ji et al. 2003; Sandkuhler and Liu 1998; Stanton 1996) and is associated with the maturation of spine structure as well as increased dendritic spine density. The latter suggests that synaptic strength may increase through an increase in the number of inputs connected to the neuron. Previous data demonstrates that SCI induces an increase in DH neuron spine density compared with DH neuron in intact spinal cords (an increase from 3.1 to 4 spines/10 µm dendrite), and redistributes spines closer to the soma (increase in spine density located 50 µm from the soma, 3 to 4.3 spines/10 µm dendrite) (Tan et al. 2008). Compared to intact animals (Fig 1C), SCI resulted in increased spine density 1 month after injury (Fig 1D). To test the effects of these dendritic spine density/distribution changes, we modeled a simple neuron with spines distributed across a dendrite following a general distribution for spiny dorsal horn neurons in the spinal cord and cortical neurons (Garcia-Lopez et al. 2006; Ruiz-Marcos and Valverde 1969; Tan et al. 2008; Valverde and Ruiz-Marcos 1969) (see Methods and Materials). This model is shown in Fig 12A (upper) and represents a dorsal horn neuron in a naïve spinal cord.
Spines were evenly distributed over the dendritic branch, and all spines were constructed with thin-shaped morphology. Alternatively, evidence from the literature shows that the number and distribution of spines changes after SCI (Kim et al. 2006). To test the effects of these post-SCI spine changes, we also constructed the simplified neuron model shown in Fig 12A (lower). The relative spine density and distribution for this model were obtained from previous morphological observations (Tan et al. 2008). To test both models, all spines were stimulated simultaneously. The threshold of simultaneous AMPA-like excitatory stimulation on all thin spines in the SCI neuron model (Fig. 12B: solid line) produced a single somatic action potential ($g_{\text{max}} = 3.483$ pS, $\tau_{\text{input}} = 0.2$ msec), which was less than for the intact neuron ($g_{\text{max}} = 5.510$ pS, $\tau_{\text{input}} = 0.2$ msec). The latency and amplitude of action potential peak evoked by 5.510 pS were 7.6 msec and 24.3 mV for intact neurons, and 2.2 msec and 38.2 mV for SCI neurons. Since there is also a switch in spine shape after SCI, we assumed the presence of mushroom spines that arise from the development of pre-existing immature spines (Harris et al. 2003; Nishida and Okabe 2007; Yuste and Bonhoeffer 2001). To test the effect of changing thin spines into mushroom shaped spines, as is known to occur in vivo after SCI, 5 of the 9 thin spines in the SCI neuron model were replaced with 5 spines with mushroom morphology (Fig. 12C upper and lower). All spines in both models were simultaneously stimulated with a spike train of frequencies ranging from 38.5 to 90.9 Hz. The response-to-stimulus ratio (m/n) was plotted as a function of the frequency (Fig. 12D). The results show that the SCI neuron model containing mushroom spines continued to produce more action potentials at increasingly higher frequency. More importantly, there is a significant shift in the n:m ratio over a range of frequencies (~70-75 Hz), which corresponds to the range of elevated
spike frequency observed in hyperexcitable WDR neurons in vivo post-SCI (Tan et al 2008). As shown in Figure 12E, when all spines were stimulated with a 71.4 Hz spike train, the intact neuron model containing thin spines-only eventually failed to produce more than 4 action potentials; whereas the SCI neuron model continued to propagate action potentials at this high frequency. Taken together, the data demonstrate that the number and distribution of spines receiving excitatory input can contribute, along with dendritic spine shape, toward the production of neuronal hyperexcitability.
After injury to the spinal cord, spontaneous or evoked high frequency firing in dorsal horn neurons is associated with neuropathic pain. Several factors are known to contribute to this injury-induced hyperexcitability: the loss of inhibitory inputs (Baba et al. 2003; Hains et al. 2002; Hulsebosch et al. 2000; Moore et al. 2002), inflammation (Hains and Waxman 2006; Hains et al. 2001; Ikeda et al. 2000; Woolf 1994), and changes in neuronal ion channel expression (Hains et al. 2003; Lampert et al. 2006; Waxman and Hains 2006). An additional contributor to neuropathic pain is the induction of spinal cord synaptic plasticity through precesses that have been likened to mechanisms of learning and memory in the cortex (Ji et al. 2003; Sandkuhler and Liu 1998). Following injury, changes in postsynaptic dendritic spines may contribute to long-term maintenance of aberrant and strengthened synaptic connections. The unique geometric structure of spines affects the transduction of synaptic potentials and can alter the input-output function of neurons (Collin et al. 1997; Miller et al. 1985; Rall 1955; Rall et al. 1992; Rall et al. 1967; Rusakov et al. 1996; Segev and Rall 1988). The results we present here show that alteration in the morphology of dendritic spines after SCI can contribute to DH neuron hyperexcitability and provides novel insights into mechanisms involved in neuropathic pain.

The primary question computational modeling can address is whether an underlying mechanism can account for the behavior of the system (Pongracz 1985). In this study, we incorporated morphological data on spine shape, size and distribution, accrued in an investigation of DH neurons in spinal cord-injured rats (Tan et al. 2008) into a computational model based in NEURON. Results derived from the models we
developed here should be viewed as qualitative rather than quantitative because of the
limited experimental data available on dendritic spines on dorsal horn neurons. Our
results, however, do provide a general idea of the biophysical events which arise after
injury-induced dendritic spine changes. To examine the central question of whether
changes in dendritic spine structure can contribute to DH neuron hyperexcitability
associated with neuropathic pain we first began by simulating excitatory and inhibitory
presynaptic inputs with previously described parameters (Destexhe et al. 1994; Pongracz
1985; Rall et al. 1967; Rusakov and Kullmann 1998). Though most dendritic spines
receive excitatory glutamatergic synapses, some may have inhibitory properties
(Calabrese et al. 2006). Because of this we modeled presynaptic inputs with kinetics
similar to excitatory AMPA synapses (Fig. 2A: solid line) and inhibitory GABA synapses
(Fig. 2B: dashed line) (Destexhe et al. 1994; Lopez-Aguado et al. 2002; Rusakov et al.
1996), and as a comparison we also tested other synaptic parameters upon dendritic spine
models.

The biophysical correlates of dendritic spine shapes and the influence on synaptic
transmission and electrical transduction have been well-studied (Segev and Rall 1988;
1998). The formation or maturation of spines from thin-shaped to mature, mushroom
spines represents a shift toward more efficient and stronger synapses (Bourne and Harris
2007). The present results demonstrate that as the spine head size increases, the
amplitude of the synaptic potential increases while the width of the waveform narrows.
This phenomenon occurred for both EPSPs and IPSPs and for spines modeled upon either
of the two assumptions we used for their construction.
Our data show that spatially separated synaptic potentials are less likely to attenuate each other when transduced through mushroom spines, providing an isolation of presynaptic inputs, a property required for computations involving linear summation (Araya et al. 2006; Lev-Tov et al. 1983; Yuste and Urban 2004). This confers the dendrite with the ability to follow inputs arriving at higher frequency compared to thinner spines. An elaboration from thin to mushroom spines thus can increase high frequency fidelity. As a consequence, however, mushroom spines contribute to hyperexcitability through signal amplification; increased fidelity of mushroom spines would reduce the ability of the neuron to filter high frequency noise and increase the transmission of inputs from downstream hyperexcitable sources. Conversely, this suggests that thin spines act as low pass filters for electrical inputs upon a neuron. In our model, a switch from thin to mushroom spines increased frequency following ability more than two-fold; a similar increase to firing rates is observed after SCI in vivo (Hains et al. 2005; Tan et al. 2008).

The loss or reduction of inhibitory inputs on neurons in the dorsal horn contributes to hyperexcitability after SCI (Baba et al. 2003; Hains et al. 2002; Hulsebosch et al. 2000; Saruhashi et al. 1994; Tanabe et al. 2006). Anatomical evidence shows that inhibitory inputs arrive primarily at locations close to soma, which would allow these inputs to gate excessive activity (Nicoll et al. 1996). Our results show that inhibitory inputs arriving through thin spines are more effective than inputs arriving via mushroom spines in blocking propagating excitatory potentials. In addition to an increase in IPSPs amplitude and area, the IPSP transduced through thin spines have a broader waveform, which can more readily interfere with propagating excitatory potentials. Therefore, along with excitatory potentiation through a change in spine shape, a hyperexcitable input-
output response can result from an attenuation of inhibitory gating as a result of the development of mushroom-shaped spines following SCI.

Changes in the density/distribution of dendritic spines have been shown previously in a number of experimental injury and disease models (Halpain et al. 2005; Kim et al. 2006; Stoltenburg-Didinger and Spohr 1983). Anatomical data on dorsal horn neurons suggest that following SCI there is an increase in dendritic spine density and distribution proximal to the soma in multireceptive DH neurons (Tan et al. 2008). The results presented here demonstrate that SCI-induced changes in spine density and distribution can increase the probability of excessive somatic spiking behavior. This occurs due in part to the larger and shorter postsynaptic depolarizations produced by inputs transmitted through mushroom spines compared with thin spines, and especially when such spines are located closer to the soma (Fig. 7). The shorter depolarizing potentials of mushroom spines also suggested a narrowing of the absolute and relative refractory period (by reducing the number of ion channels entering the inactivated state), which would increase the availability of ion channels available for the next stimulation. Therefore a conversion of a percentage of thin spines into mushroom spines should allow the neuron to fire spikes at higher frequency. Interestingly, the SCI neuron model (containing mushroom spines) was able to spike consistently at >70Hz, a frequency that fell within the range of frequencies observed in vivo for hyperexcitable neurons after contusion SCI (Tan et al. 2008). Our results demonstrate that dendritic spine changes can underlie changes in neuronal behavior that are observed in DH neurons and associated with pain after SCI.
In summary, these results implicate spatial and morphological remodeling of dendritic spines as a contributor to hyperexcitability of DH neurons associated with neuropathic pain after SCI. Our results suggest that by preventing or reversing injury-induced dendritic spine morphology, it may be possible to attenuate neuropathic pain.
Figure Legends

Fig 1. Coronal sections of spinal cord tissue from the lumbar enlargement were Golgi-stained and examined for dendritic spines. (A) A sample neuron located in dorsal horn lamina 5 (black arrow). (B) Magnified view of neuron shown in panel A (see inset). (C) A dendritic segment from an intact animal. (D) After SCI, there is an increase in spine density. (E) High power image of two sample thin-shaped spines. (F) Mushroom spines appear with enlarged, bulb-like head structures.

Fig 2. Presynaptic input was modeled using an α-function. Synaptic conductances were placed upon a 2 μm diameter dendritic branch (cylinder shape) of infinite length. Recording of synaptic potentials were performed at the same location of the stimulation. (A) Graph representing an excitatory synaptic response with time to maximum conductance (τ_{input}) from 0.05 to 7 msec. An AMPA-like synapse is represented by the thick red line. (B) Graph representing an inhibitory synaptic response with τ_{input}. An GABA-like synapse is represented by the thick blue line. Peak amplitude (C, G), time-to-peak (D, H), width at 50% of peak (E, I), and area under curve (F, J) are analyzed from the EPSP (A) and IPSP (B) curves produced by the α-function synaptic conductance with $\tau_{input} = 0.05, 0.2, 0.5, 1, 3, 5,$ and 7 msec.

Fig 3. Dendritic spine shapes were modeled based upon the assumption that shape maturation occurs through the addition of cellular material into the spine head. A two compartment rationale was used to model spines with a neck and a head structure. The spine neck contained passive membrane properties. The spine head (gray region)
contained Hodgkin-Huxley (1967) active membrane properties. Head size increased sequentially from a diameter of (A) 0.5 μm (1x) for small spines, (B) 1.0 μm (2x) for medium spines, and (C) 1.5 μm (3x) for large spines. Spines received excitatory synaptic conductance inputs upon their head structure. Stimulation = black arrow. The resulting waveforms were graphed for (D) small spines, (E) medium spines, and (F) large spines. Graphs showing quantitative indices, such as peak amplitude (G), time-to-peak (H), width at 50% of peak (I), and area under curve (J), used to describe the EPSP for small, medium, and large spines, respectively.

Fig 4. Dendritic spine shapes were modeled similar to previous figure. Head size increased sequentially from a diameter of (A) 0.5 μm for small spines, (B) 1.0 μm for medium spines, and (C) 1.5 μm for large spines. Spines received inhibitory synaptic conductance inputs upon their head structure. Stimulation = black arrow. The resulting waveforms were graphed for (D) small spines, (E) medium spines, and (F) large spines. Graphs showing quantitative indices, such as peak amplitude (G), time-to-peak (H), width at 50% of peak (I), and area under curve (J), used to describe the IPSP for small, medium, and large spines, respectively.

Fig 5. Dendritic spine shapes were modeled based upon the assumption that shape maturation occurs through the reorganization of the spine cytoskeleton. The volume of the spine remained constant, while the volumetric ratio of the spine neck and head changed to model a (A) thin spine, (B) intermediate spine, and (C) mushroom spine. Spines received excitatory synaptic conductance inputs upon their head structure.
Stimulation = black arrow. The resulting waveforms were graphed for (D) thin spines, (E) intermediate spines, and (F) mushroom spines. Graphs showing quantitative indices, such as peak amplitude (G), time-to-peak (H), width at 50% of peak (I), and area under curve (J), used to describe the EPSP for thin, intermediate, and mushroom spines, respectively.

Fig 6. Dendritic spine shapes were modeled based similar to previous figure. The volume of the spine remained constant, while the volumetric ratio of the spine neck and head changed to model a (A) thin spine, (B) intermediate spine, and (C) mushroom spine. Spines received inhibitory synaptic conductance inputs upon their head structure. Stimulation = black arrow. The resulting waveforms were graphed for (D) thin spines, (E) intermediate spines, and (F) mushroom spines. Graphs showing quantitative indices, such as peak amplitude (G), time-to-peak (H), width at 50% of peak (I), and area under curve (J), used to describe the IPSP for thin, intermediate, and mushroom spines, respectively.

Fig 7. Spine location affects the EPSP transduced through thin and mushroom shaped spines. (A) Schematic of a simple neuron with either a thin or mushroom spine (grey oval) placed at variable distance (x) from the soma upon the dendritic branch. Recordings were performed at the soma. (B) Thin or (C) mushroom spines with the same volume were modeled to transduce the excitatory synaptic conductance placed upon the spine head. Initial input magnitude and duration remained constant. The resulting waveforms for (D) thin and (E) mushroom spines show that as distance from the soma
increases, the amplitude decreases and the width of the EPSP increases. Graphs showing quantitative indicies, such as peak amplitude (G), time-to-peak (H), width at 50% of peak (I), and area under curve (J), used to describe the EPSP for the thin and mushroom spine, respectively.

Fig 8. Input integration occurs more efficiently through mushroom spines than thin spines. (A) Schematic showing the modeled neuron with either a (B) thin or (F) mushroom spine attached to the dendritic branch. Recording of the EPSP were performed at the soma and the base of the spine neck. Subthreshold excitatory stimulus upon the spine head produced depolarizing synaptic potentials for both (C) thin and (G) mushroom spines. Two stimuli (#1 and #2) temporally separated by 9.69 msec summated sufficiently to activate a somatic action potential for (D) thin and (H) mushroom spines. (E) Increasing the inter-stimulus interval to 9.83 msec resulted in the failure of summation for synaptic potentials transduced through thin spines. (I) Inputs transmitted through mushroom spines resulted in summation and activation of a somatic action potential.

Fig 9. Spine shape limits the effective inter-spine distance. (A) A simple neuronal model was constructed with two thin or mushroom spines attached to the dendritic branch. The interspine distance varied while two subthreshold stimuli were simultaneously activated upon the spine. The resulting depolarization was recorded from the soma. When separated by 5 µm, the (B) two thin and (C) two mushroom spines produced EPSPs that
summated and activated a somatic action potential. Summation failed for thin spines when the interspine distance exceeded 5.23 µm, and failed for mushroom spines when the interspine distance exceeded 5.05 µm.

Fig 10. Mushroom spine morphologies have better frequency-following ability than thin shaped spines. (A) The simple neuron is similar to that shown in the previous figure. The distance of the proximal spine is 100 µm with the interspine distance of 5 µm. Following a conditioning AMPA-like excitatory stimulus on the proximal spine, the distal spine was subjected to an suprathreshold, AMPA-like excitatory stimulus train of varying frequencies. Thin (B) and mushroom (F) spines successfully propagated all stimuli equal to or slower than 16.4 Hz. (D) Thin spines successfully propagated 8 out of 10 stimuli at 16.7 Hz. (E) This rate of propagation progressively declined with 70% success at 16.9 Hz. (E) At 16.7 Hz, mushroom spines (red line) propagated all inputs compared to thin spines (black line). (G) Mushroom spines propagated 8 out of 10 stimuli at 50.0 Hz, nearly three times the frequency of thin spines. (H) At 52.6 Hz, the mushroom spines frequency-following abilities declined to 70% success. (I) Thin spines (black line) failed to propagate any inputs at this rate compared to mushroom spines (red line).

Fig 11. Mushroom spines attenuate inhibitory input blockade of propagating excitatory potentials. (A) Schematic of neuronal model with a thin or mushroom proximal spine, and a mushroom-shaped distal spine. The proximal spine was subjected to a GABA-like inhibitory stimulus followed by a train of 5 AMPA-like excitatory stimuli. This
frequency of the stimulus train was kept constant. (B) When the proximal spine was thin
shaped, the inhibitory input (gray arrow) blocked 3 out of 5 excitatory inputs. (C) The
inhibitory input transmitted through the mushroom shaped spine blocked fewer, 2 out of
5 excitatory inputs.

Fig 12. Increased spine density and spine distribution after SCI can contribute to
hyperexcitable neuronal output. (A) A simple neuronal model was constructed based on
anatomical data of deep spiny dorsal horn neurons. The data suggest that spine density
increases and spine distribution shifts toward proximal dendritic location after SCI. As
shown in panel A (top), the model for an intact neuron contains spines evenly distributed
over a 350 µm length (bottom). After SCI, the number of dendritic spines increases and
their density/distribution locates toward more proximal locations. (B) The threshold of
simultaneous AMPA-like excitatory stimulation on all thin spines for neuron model after
SCI (solid line) to produce a single somatic action potential \(g_{\text{max}} = 3.483 \, \text{pS}, \tau_{\text{input}} = 0.2 \)
msec) was less than that for the intact neuron \(g_{\text{max}} = 5.510 \, \text{pS}, \tau_{\text{input}} = 0.2 \, \text{msec} \). (C)
Next, we hypothesized that 5 thin spines were converted to mushroom spines in the SCI
neuronal model. (D) The response-to-stimulus ratio \(m/n \) is plotted as a function of the
frequency. The SCI neuron model with 5 mushroom spines produces more action
potentials at higher frequency. (E) The representative action potentials were simulated at
71.4 Hz.
Supplemental Figure Legend

Presynaptic input was modeled using a step depolarization or an α-function. (A) Similar to the model shown in Figure 2, synaptic conductances were placed upon a 2 μm diameter dendritic branch (cylinder shape) of infinite length. Recording of synaptic potentials were performed at the same location as the stimulation. Graph representing a step depolarization (black) and an excitatory synaptic response with time-to-maximum-conductance (τ_{input}) of 0.05 (red), 0.2 (blue) and 3 msec (green). (B-F) Dendritic spine shapes were modeled similar to Figure 3 or Figure 5. Dendritic spines received excitatory synaptic conductance inputs upon their head structure. Membrane potentials were measured at base of neck structure. The resulting waveforms were graphed for (B) small spines with a 0.5 μm head diameter and (C) large spines with a 1.5 μm head diameter (see models in Figure 3), and (D) thin spine and (E) mushroom spines (see models in Figure 5). (F) The resultant waveforms produced by a step depolarization in each model (black line in B-E) were fitted by a monoexponential function: $y = \exp(-x/\tau_{\text{spine}})$, where y is the potential recorded at the base of the spine neck in response to delivery of a step depolarization at the spine head; x is the latency, and τ_{spine} is the spine time constant.
References

Bourne J, and Harris KM. Do thin spines learn to be mushroom spines that remember? Current opinion in neurobiology 2007.

