Laminar and orientation-dependent characteristics of spatial nonlinearities: implications for the computational architecture of visual cortex

Department of Neurology and Neuroscience
Weill Cornell Medical College
1300 York Avenue
New York, NY 10065

Corresponding author:

Jonathan D. Victor
Tel: 212 746 2343
Fax: 212 746 8050
Email: jdvicto@med.cornell.edu

Running head: Responses to two-dimensional Hermite functions
Abstract

A full understanding of the computations performed in primary visual cortex is an important yet elusive goal. Receptive field models consisting of cascades of linear filters and static nonlinearities may be adequate to account for responses to simple stimuli such as gratings and random checkerboards, but their predictions of responses to complex stimuli such as natural scenes are only approximately correct. It is unclear whether these discrepancies are limited to quantitative inaccuracies that reflect well-recognized mechanisms such as response normalization, gain controls, and cross-orientation suppression or, alternatively, imply additional qualitative features of the underlying computations. To address this question, we examined responses of V1 and V2 neurons in the monkey, and area 17 neurons in the cat, to two-dimensional Hermite functions (TDH’s). TDH’s are intermediate in complexity between traditional analytic stimuli and natural scenes, and have mathematical properties that facilitate their use to test candidate models. By exploiting these properties, along with the laminar organization of V1, we identify qualitative aspects of neural computations beyond those anticipated from the above model framework. Specifically, we find that V1 neurons receive signals from orientation-selective mechanisms that are highly nonlinear: they are sensitive to phase correlations, not just spatial frequency content. That is, the behavior of V1 neurons departs from that of linear-nonlinear cascades with standard modulatory mechanisms in a qualitative manner: even relatively simple stimuli evoke responses that imply complex spatial nonlinearities. The presence of these findings in the input layers suggests that these nonlinearities act in a feedback fashion.
Keywords

two-dimensional Hermite functions, tetrode, orientation, visual cortex
Understanding the behavior of neurons in primary visual cortex (V1) is important both as a first step in understanding central visual processing, and also because of V1’s status as a model system for understanding cortical computation in general. Ideally, one might hope to encapsulate this understanding in a predictively accurate yet concise mathematical model of individual neural responses to arbitrary visual stimuli. While progress towards this goal has been made, attainment is elusive (Olshausen and Field, 2004).

There is general agreement on a starting framework – a “new standard model” (Rust et al., 2005). This model takes the classical model of an oriented linear filter followed by a simple nonlinearity as a building block, combines these “LN” cascades in parallel, and adds modulatory mechanisms: gain controls, including normalizations (Albrecht and Geisler, 1991; Geisler and Albrecht, 1992; Heeger, 1992, 1993) and cross-orientation interactions (Bonds, 1989; Carandini et al., 1998; Allison et al., 2001; Freeman et al., 2002; Durand et al., 2007). However, models of this structure provide an incomplete account (e.g., 50% of the variance is explained, (David and Gallant, 2005)) of the responses of V1 neurons to complex, natural stimuli (see also (Felsen et al., 2005; Touryan et al., 2005) and, for a review, (Carandini et al., 2005)).

It is not clear whether the shortcomings of current models merely reflect quantitative errors that would be corrected by improving the parametric account of known modulatory mechanisms, or alternatively, whether important qualitative aspects of the computations...
carried out by V1 remain to be identified. This is an important question, at the heart of understanding the design principles of cortical visual processing. Addressing it directly, however, is difficult: one would need to model the modulatory influences at a sufficient level of detail so that one could specify how each would respond to arbitrary images. To do this would require measurement of a multitude of parameters for each modulatory mechanism (e.g., its spatial-frequency tuning, orientation tuning, localization, and dynamics) on a cell-by-cell basis, all within the confines of the practical limits of single-unit recording.

Recognizing the importance of the problem but the impracticality of this direct approach, we developed an alternative experimental strategy that focuses on the identification of qualitative behaviors that distinguish classes of models, rather than detailed parametric modeling. This is an analog of a familiar idea: responses to sinusoidal stimuli allow one to detect the presence of nonlinear behavior, without having to model the linear behavior. Here, rather than attempt to measure modulatory influences, we use a stimulus class that effectively neutralizes them. This allows us to ask whether a cascade model accounts for what remains. If it does not, then we can conclude that a computational element is missing from the modulated-cascade picture, and begin to characterize the missing component.

As described below, we find that something is missing, and this missing component indicates that V1 extracts orientation not just by spatial frequency content, but also by phase correlations, i.e., spatial correlations of order three and above. (The term “phase correlation” is synonymous with spatial correlations of order three and above. This is because third- and higher-order spatial correlations correspond to correlations across
Victor et al, Responses to Two-Dimensional Hermite Functions

multiple Fourier components, while second-order correlations reflect the power of individual Fourier components, independent of their relative phase). Moreover, we find that these orientation signals are available to modulate the behavior of neurons at the V1 input, suggesting the presence of nonlinear feedback from orientation-tuned neurons.

Background: Two-dimensional Hermite functions

To implement the above strategy, we used a set of visual stimuli based on two-dimensional Hermite (TDH) functions (Victor et al., 2006), shown in Figure 1. As we outline here, the mathematical properties of TDH functions (Victor and Knight, 2002) allow us to ask questions about the structure of neural computations. This is because they determine the *qualitative* aspects of how stimuli based on these functions interact with the filters and gain controls that are the elements of many computational models.

An important property of TDH functions is that they can be grouped into overlapping orthonormal basis sets, Cartesian and polar, that are precisely equated for power and spatial frequency content. Each basis set can thus be used to map receptive fields under conditions that eliminate the confounding influences of gain controls sensitive to total power, such as a global contrast normalization. Thus, even in the presence of such global modulatory influences, receptive field maps determined with Cartesian and polar basis sets should be identical.

TDH functions have a second property that is more subtle, and crucial to bypassing the effects of modulatory phenomena that are *not* global, i.e., those sensitive to power within a restricted range of frequencies, orientations, or locations. This second property reflects a fundamental difference between TDH functions and Gabor functions (to which
some TDH functions bear a superficial resemblance). The Fourier transform of a Gabor
function is a pair of Gaussian blobs in spatial frequency space, indicating that a Gabor
filter is sensitive to a narrow range of spatial frequencies. In contrast, the Fourier
transform of a TDH function (either Cartesian or polar) is the TDH function itself,
indicating that it contains a broad range of spatial frequencies. Consequently, one
anticipates that Gabor filters – and, by inference, mechanisms driven by local spatial
frequency content in general – will be relatively unable to distinguish between Cartesian
and polar TDH stimuli. This is admittedly an informal argument, but as shown below
(Figure 6, Figure 7, Figure 8), it is borne out by a range of numerical simulations.

In addition to their analytic utility, we mention another motivation for the use of TDH
functions as visual stimuli. Since they have intermediate complexity – more complex
than gratings and spots, but less complex than natural scenes – they may tap into neural
mechanisms that are recruited by natural scenes but not by the “simple” stimuli typically
used to build models, such as gratings and unstructured noise.
Materials and Methods

Our methods for animal preparation, visual stimulation, and recording have been previously described in detail (Mechler et al., 2002; Aronov, 2003; Victor et al., 2006); we summarize them here. All animal procedures were performed in accordance with NIH and local IACUC standards.

Physiologic preparation

Recordings were made under propofol and sufentanil anesthesia, under neuromuscular blockade. After atropine premedication (0.04 mg IM), initial anesthesia was induced with ketamine 10-20 mg/kg IM (cats) or telazol 2-4 mg/kg IM (macaques) followed by isoflurane masking for placement of an endotracheal tube, femoral vein and artery catheters, and a urethral catheter. During recording, anesthesia was maintained with propofol and sufentanil (mixture containing 10 mg/ml of propofol and 0.25 to 0.50 μg/ml sufentanil, initially at 2 mg/kg/hr propofol then titrated) and neuromuscular blockade was provided by vecuronium 0.25 mg/kg IV bolus, 0.25 mg/kg/hr IV. Heart rate and rhythm, arterial blood pressure, body temperature, end-expiratory pCO₂, arterial oxygen saturation, urine output, and EEG were monitored during the course of the experiment. Animal maintenance included intravenous fluids (lactated Ringer solution with 5% glucose, 2-3 cc/kg/hr), administration of supplemental O₂ every six hours, antibiotics (procaine penicillin G 75,000 U/kg IM during surgery, gentamicin 5 mg/kg IM daily if evidence of infection), application of 0.5% bupivacaine to wounds, and ocular instillation of atropine 1% and flurbiprofen 2.5% (and, for cats, Neosynephrine eye drops 10% to retract the nictitating membranes), dexamethasone (1 mg/kg IM daily) and
periodic cleaning of the contact lenses. With these measures, the preparation remained physiologically stable for two or three days (cats) and four or five days (macaques).

Recording

A craniotomy was placed near P3, L1 (cats) or P15, L14 (macaques). For six macaques, an array of three tetrodes (Thomas recording, Giessen, Germany), each coated with DiI (Molecular Probes, Eugene, OR) to aid subsequent localization of their tracks, was inserted through a small durotomy. The tetrodes were in a “T” configuration: two tetrodes approximately 600μm apart, placed just behind and parallel to the presumptive V1/V2 border, and a third tetrode 1000 to 3000μm anteriorly, targeting V1 or V2. (For the two macaques and three cats reported in (Victor et al., 2006), only one tetrode was used, targeting V1 or area 17.)

Each tetrode was advanced until spiking activity from one or more units was encountered. The region of the receptive field(s) were hand-mapped and then centered on the display of a Sony GDM-F500 19” monitor (displaying a 1024 x 768 raster at 100 Hz, 35 cd/m²), typically at a distance of 114 cm. Real-time spike sorting software (Datawave Technologies) was then engaged to provide TTL pulses corresponding to the spikes of tentatively-identified single units, and to allow rapid, qualitative characterization of ocular dominance and grating responses via hand-controlled and computer-generated stimuli.

Single unit isolation

A single PC controlled the visual stimulus, logged discriminated event pulses corresponding to the single units tentatively identified by online cluster-cutting, and
provided timing pulses for a Datawave spike sorting system that recorded spike event waveforms (32 samples at 0.04 ms resolution) for off-line analysis. Offline spike sorting was performed with an in-house Matlab implementation (Reich, 2000) of the methods of Fee (1996) and Sahani (1998). All the data below are derived from these offline spike sorts.

Usually, each tetrode yielded 2 to 4 simultaneously-recorded neurons whose spikes were well-isolated (signal-to-noise > 2:1 and usually > 3:1, distinctive shape via on-line spike sorting), and whose spike shapes across the tetrode were reliably discriminated. With the above T-shaped recording geometry and the tetrode separations used, no single unit was detected by more than one of the tetrodes. Neurons recorded by different tetrodes usually had overlapping receptive fields (in V1 and/or V2) and often had similar orientation preferences.

Among the multiple spikes simultaneously recorded, one well-isolated spike on one tetrode was selected as the “target” neuron. We used the responses from these additional non-target units for the experiments described below, provided that their orientation tuning agreed with that of the target unit within 11.25 deg, and their receptive fields were largely overlapping.

Quantitative characterization of tuning to gratings

As described below, tuning properties were determined for a target neuron, and two-dimensional Hermite stimuli were positioned and proportioned accordingly for the subsequent experiments. At approximately one-third of recording sites, we repeated the quantitative characterizations below for a second neuron with a different orientation.
preference on the same tetrode, or a neuron on a second tetrode with a displaced receptive field, so it too could also serve as a “target” neuron.

Beginning with parameters determined by the initial rapid characterization, computer-controlled stimulation paradigms were used to characterize the target neuron quantitatively with sine gratings. Orientation tuning was determined by the mean response (F_0) and the fundamental modulated response (F_1) to drifting gratings at orientations spaced in steps of 22.5 deg (or, for narrowly-tuned units, 11.25 deg), presented at a contrast $c = \frac{L_{\text{max}} - L_{\text{min}}}{L_{\text{max}} + L_{\text{min}}}$ of 0.5 or 1.0, with spatial and temporal frequency determined by the initial assessment. Following this, we sequentially determined spatial frequency tuning, temporal tuning, and the contrast response function, with each successive run replacing a parameter from the qualitative characterization by one determined quantitatively. F_1 / F_0 ratios quoted below were determined from the response to a grating stimulus whose parameters were optimized in this fashion.

The position of the classical receptive field (RF) of the target neuron was then determined from the PSTH of the response to slowly moving bars. The size of the classical RF was determined from responses to a drifting grating (all parameters optimized) presented in discs of increasing diameter and annuli with a large outer diameter and decreasing inner diameters. The effective diameter D of the RF of the target neuron (used below to determine the size of the TDH patterns) was taken to be the smallest inner diameter of an annulus that did not produce a response that was significantly (2 s.e.m.) different from the spontaneous activity. The set of annuli was chosen so that D was determined to within $\frac{1}{2}$ deg or, for smaller receptive fields, $\frac{1}{4}$ deg or less. For further details on determining RF size and position, see (Victor et al., 2006)).
Two-dimensional Hermite functions: Stimuli

Following characterization and alignment of one or more target neurons, we recorded responses to patches whose spatial contrast was determined by a two-dimensional Hermite function (TDH) (see Figure 1). TDH functions consist of a Gaussian envelope, \(\exp \left(-\frac{x^2 + y^2}{4\sigma^2} \right) \), multiplied by a polynomial in the coordinates \((x, y)\).

We used two families of TDH functions, Cartesian and polar. For the Cartesian functions, the multiplying polynomial is of the form \(X(x)Y(y) \), so the resulting TDH has zero-crossings and lobes parallel and perpendicular to the \(x \)-axis. For the polar functions, the multiplying polynomial is of the form \(R(r)\cos(\mu\theta) \) or \(R(r)\sin(\mu\theta) \), so the resulting TDH has zero-crossings and lobes that are circular or radial. Each set (Cartesian and polar) of TDH functions forms a hierarchy of successively more complex patterns. At the \(n \)th rank \((n = 0, 1, 2, \ldots)\), there are \(n + 1 \) functions, each characterized by a polynomial of degree \(n \).

The zeroth rank TDH is an ordinary Gaussian; we used TDH’s of rank \(n \leq 7 \).

We set the spatial scale parameter \(\sigma \) of the Gaussian envelope at \(\sigma = D/10 \), where \(D \) was the diameter of the classical RF (cRF) of the target neuron as determined by responses to disks and annuli containing the optimal drifting grating. In these experiments, \(\sigma \) had the following ranges, in deg: cat area 17, 0.2 to 0.7 (mean 0.39); macaque V1, 0.08 to 0.5 (mean 0.20); macaque V2, 0.1 to 0.6 (mean 0.25).

By choosing \(\sigma \) in this fashion, stimuli had one, two, or three oscillations within a region of space that covered the cRF, and was well-matched to sample (in the Nyquist sense) the typical receptive fields of cortical simple cells (Ringach, 2002), which have two or three lobes. The contrast profiles of the lowest-rank stimuli lay within the cRF, but
the contrast profiles of the higher-rank stimuli (by design) extended beyond the cRF.

Each of the TDH patterns has the same total power \(\int \int |f(x,y)|^2 \, dx \, dy \). Contrast was scaled by a common factor for all stimuli so that the maximum contrast across all TDH stimuli was 1. See (Victor et al., 2006) for further details on the rationale for this choice and the properties of the Hermite functions.

The above procedures served to standardize the position and size of the TDH stimuli. There is an unavoidable measurement error in the determination of cRF position, size, and orientation of the target neuron. In addition, the other simultaneously recorded neurons often had somewhat different RF parameters. However, we note that the analysis procedure and our conclusions do not depend on an exact alignment or sizing, and this theoretical robustness is confirmed by the numerical simulations below (Figure 6, Figure 7, and Figure 8).

We carried out two kinds of experiments. In the first experiment (as in (Victor et al., 2006)), we measured responses to Cartesian and polar stimuli, as shown in the top portion of Figure 1, with the x-axis aligned to the preferred orientation. This experiment was carried out in all 148 units. Stimuli were presented both with the polarity as shown in Figure 1, and with inverted contrast polarity. Ranks 0 to 7 (as shown in Figure 1) constituted 144 stimuli (36 Cartesian stimuli, 36 polar stimuli, and their contrast-inverses). With the addition of four “blank” stimuli (mean luminance), in which the contrast was held at zero, and removal of rank-0 and rank-1 duplicates between Cartesian and polar stimuli, this amounted to 142 stimuli. Each stimulus was presented for 250 ms, followed by 250 ms of mean luminance, in randomized order (to minimize the effects of gradual changes in responsiveness or residual eye movements), for 8 to 16 blocks.
In the second experiment, we presented the TDH stimuli as described above, and also after rotating them by 45 deg (lower portion of Figure 1). This experiment was carried out in 59 units (12 cat, 47 macaque). For the two macaques and three cats reported in (Victor et al., 2006), aligned and oblique stimuli were presented in sequential blocks (12 cat units, 9 macaque units). For the remaining six macaques (38 units), stimuli were presented in interleaved blocks. Randomization and timing were the same as in the first experiment.

Note that when the Cartesian TDH stimuli are presented in the standard orientation, their elongated regions and zero crossings are parallel or perpendicular to the preferred orientation. However, when they are presented after a 45 deg rotation, their contours are all oblique to the preferred orientation. Rotation of the polar TDH stimuli has a very different kind of effect: some polar TDH stimuli are rotationally invariant, and for many others, rotation turns one polar TDH stimulus into another one.

Two-dimensional Hermite functions: Analysis

Responses to two-dimensional Hermite functions are analyzed as detailed in (Victor et al., 2006), and summarized here. The analysis has two stages: first, characterization of a neuron’s responses to a single TDH family (Cartesian or polar), and second, comparison of these characterizations across the two families.

To characterize the response to a single TDH family, we model the response as the sum of three components: a maintained discharge R_m, a linear component, whose spatial sensitivity is described by $L(x,y)$, and a full-wave-rectifying component, whose
spatial sensitivity is described by $E(x, y)$. That is, the response to an arbitrary stimulus S is modeled as

$$R(S) = R_m + \int S(x, y)L(x, y)dxdy + \left| \int S(x, y)E(x, y)dxdy \right|. \quad (1)$$

We emphasize at the outset that we are not advancing eq. (1) as a reasonable model for cortical computations in general, but simply as a way to summarize and compare responses to different kinds of TDH stimuli, so that we can draw inferences from this characterization. There are two reasons that eq. (1) is useful for this purpose. First, for the stimuli used here, the characterization is effectively complete – it fully specifies the responses to one TDH basis set and accounts for all of the explainable variance (see comment following eq. (2)), and it explicitly predicts the responses to another TDH basis set. This follows from the fact that the Cartesian and polar TDH basis sets have exactly the same span, and each is presented in two contrast polarities. Second, as we will see below, the characterization afforded by eq. (1) is only minimally affected by normalization mechanisms, gain controls, and orientation-specific interactions that are appended to cascade models (Bonds, 1989; Albrecht and Geisler, 1991; Geisler and Albrecht, 1992; Heeger, 1992, 1993; Carandini et al., 1998; Allison et al., 2001; Freeman et al., 2002; Durand et al., 2007). This is not true for general basis sets, but it is true for the TDH stimuli because of their special spectral characteristics.

As previously discussed (Victor et al., 2006), eq. (1) formalizes a model that is related to a standard linear-nonlinear cascade. This formulation allows for separate linear (L) and nonlinear pathways (E) with arbitrary spatial filters, but requires a specific form (full wave rectification) for the nonlinearity. We mention that using a model-fitting procedure that relaxes the latter constraint (the maximally-informative-dimension
procedure (Sharpee et al., 2004)) leads to very similar findings (Sharpee and Victor, 2008), indicating that the assumption about the form of the nonlinearity is not responsible for the findings we describe below. However, as shown in the Supplementary Materials of (Sharpee and Victor, 2008), the present approach has the advantage that it is more robust.

Because the TDH functions within each family (Cartesian and polar) constitute an orthonormal basis, we can use a reverse correlation approach (Ringach et al., 1997) to estimate the quantities L and E of eq. (1). The procedure is as follows: for each TDH stimulus $f_k(x,y)$ (here, k is a generic index across all basis functions within one family), we first determine a scalar response measure $R(f_k)$, by averaging the spike rate in the first 250 ms following stimulus onset. (In (Victor et al., 2006), we showed that other choices of the response measure, such as the ON-transient, the OFF-response, the OFF-transient, or the first principal component, led to similar results, and also that the time course of the response to Cartesian and polar TDH functions was similar.) Next, to separate the contributions of L and E, responses to each stimulus $f_k(x,y)$ and its contrast-inverse $-f_k(x,y)$ are combined by addition and subtraction:

$$L_k = (R(f_k) - R(-f_k))/2$$
$$|E_k| = (R(f_k) + R(-f_k))/2 - R_m.$$ \hspace{1cm} (2)

The quantities L_k and E_k represent the projections of L and E onto $f_k(x,y)$. This simple transformation from responses to filter coefficients implies that the model of eq. (1), constructed from one basis set accounts for all of the explainable variance of the responses to that basis set. The reason is that each pair of filter coefficients L_k and E_k is derived from sums and differences of average responses to a separate pair of stimuli,
$f_k(x,y)$ and its contrast-inverse $-f_k(x,y)$. Thus, the average responses to each of those stimuli can be reconstructed from sums and differences of L_k and E_k (and the mean rate R_m). See also (Victor et al., 2006) for a discussion of this point.

The filters L and E (e.g., Figure 2) can be reconstructed by summing these projections:

$$L(x,y) = \sum_k L_k f_k(x,y)$$

$$E(x,y) = \sum_k E_k f_k(x,y).$$

Note that eq. (2) does not determine the sign of the projection E_k; either $E_k = +|E_k|$ or $E_k = -|E_k|$ will result in a profile that leads to the same responses to f_k and $-f_k$. For illustration of the profile E, we choose this sign to maximize the similarity of E to L. For quantitative analysis, we choose measures that are independent of this sign. See (Victor et al., 2006) for further details. We use L_{cart} and E_{cart} to denote the profiles estimated from the responses to the Cartesian stimuli, and L_{polar} and E_{polar} to denote the profiles estimated from the responses to the polar stimuli. We display these estimated profiles as maps. Figure 2 shows examples for real neurons; Figure 6 shows examples for model neurons.

In interpreting these maps, it is important to recognize that they represent projections of the receptive fields into the spaces spanned by the 36 basis functions. In a manner exactly analogous to the estimation of receptive field profiles from random checkerboard or grating stimuli, the projection of a RF onto a finite basis set is expected to differ from the true RF, even for a strictly linear system – because the basis set is finite. For example, RF’s estimated from random checkerboards have sharp edges at the
pixel boundaries, and RF’s estimated from responses to a limited number of gratings have substantial ringing (Ringach, 2002). Analogously, RF’s estimated from a finite TDH basis are also distorted – they tend to be somewhat larger than the true RF’s, and have modest ringing (see for example the numerical simulations, Figure 6). For these reasons, we base our conclusions not on visual inspection of the RF’s, but on quantitative comparisons between the Cartesian and polar RF estimates. Since the Cartesian and polar TDH functions span precisely the same subspace, the distorting effects of subspace projection cannot contribute to differences between the estimated RF’s.

Two-dimensional Hermite functions: Indices

The second stage of the analysis consisted of comparing RF profiles estimated from each family of stimuli (Cartesian and polar). If a neuron’s responses were accurately described by linear-static nonlinear cascade – or, if the deviations from such a cascade do not materially affect the characterization provided by eq. (1) – then either basis set should identify the same set of filters. That is, we would expect \(L_{\text{cart}} = L_{\text{polar}} \) and \(E_{\text{cart}} = E_{\text{polar}} \).

This prediction can fail in two ways: Cartesian and polar filters may differ in two ways: shape or size (magnitude). To quantify these differences, we therefore use two indices (as in (Victor et al., 2006)). For shape, we use an index similar to a spatial correlation function:

\[
I_{\text{shape}} = \frac{\int L_{\text{cart}}(x,y)L_{\text{polar}}(x,y)dx dy}{\|L_{\text{cart}}\|L_{\text{polar}}}. \tag{4}
\]
For size (i.e., the overall preference for Cartesian vs. polar stimuli), we use an index that compares response magnitudes:

$$I_{c-p} = \frac{\left(|L_{\text{cart}}|^2 + |E_{\text{cart}}|^2 \right) - \left(|L_{\text{polar}}|^2 + |E_{\text{polar}}|^2 \right)}{|L_{\text{cart}}|^2 + |E_{\text{cart}}|^2 + |L_{\text{polar}}|^2 + |E_{\text{polar}}|^2}.$$

In the above equations,

$$|L_{\text{cart}}|^2 = \int |L_{\text{cart}}(x,y)|^2 \, dx \, dy,$$

and similarly for L_{polar}, E_{cart}, and E_{polar}.

I_{shape} ranges between -1 and 1; 1 indicates that Cartesian and polar filters have the same shape, 0 indicates that they are uncorrelated, and -1 indicates that they are equal and opposite. The size index I_{c-p} is 0 if Cartesian and polar stimuli lead to responses of the same size, 1 for a neuron that responds only to Cartesian stimuli, and -1 for a neuron that responds only to polar stimuli. For a linear-nonlinear cascade neuron, $I_{\text{shape}} = 1$ and $I_{c-p} = 0$; departures from these values indicate departures from the cascade model predictions that $L_{\text{cart}} = L_{\text{polar}}$ and $E_{\text{cart}} = E_{\text{polar}}$.

For the second experiment (in which stimuli are presented aligned to the preferred orientation and also oblique to it), we calculate the above indices for both stimulus orientations, and distinguish them by superscripts, i.e., $I_{\text{shape}}^{\text{aligned}}$, $I_{\text{shape}}^{\text{oblique}}$, I_{c-p}^{aligned}, and I_{c-p}^{oblique}. We also determine the effect of stimulus orientation (aligned Cartesian vs. oblique Cartesian) on filter shape:

$$I_{\text{shape}}^{\text{aligned vs. oblique}} = \frac{\int L_{\text{aligned}}(x,y)L_{\text{oblique}}(x,y) \, dx \, dy}{\int L_{\text{aligned}}^2 \, dx \, dy}.$$

- 19 -
with

$$I_{\text{shape _ vs _ oblique}}^{\text{aligned}} = 1 \text{ if } L_{\text{cart}}^{\text{aligned}} \text{ and } L_{\text{cart}}^{\text{oblique}} \text{ have the same shape. (We only consider Cartesian responses for this measure, since changing orientation leaves many of the polar stimuli invariant or merely permutes them.)}$$

Raw estimates of the indices I_{shape} and I_{c-p} were determined by substituting the profile estimates of eq. (3) into the above eqs. (4) to (7). For I_{shape}, the null hypothesis is that there is no shape change; accordingly, p-values are quoted with respect to deviations from 1. For I_{c-p}, the null hypothesis is that the sizes of the quantities compared in their numerators are equal; accordingly, p-values are quoted with respect to deviations from 0.

To compensate for the tendency of measurement error (response variability) to move these indices away from their null-hypothesis values, the raw (“plugin”) estimates were debiased via the jackknife (Efron, 1982), with each replicate run considered a single observation. The jackknife procedure also yielded the quoted p-values and confidence limits. The above statistical calculations for I_{shape} were carried out following a Fisher transformation to normalize the their distribution (Victor et al., 2006; Sharpee and Victor, 2008). Correlations quoted are Pearson’s r, and significance values are two-tailed. All calculations were performed in Matlab (MathWorks, Natick, Mass).

We emphasize that our motivation for the use of eq. (1), and the indices derived from it, is to draw inferences about cortical computations, based on neural responses to TDH stimuli. While we use the model to generate null hypotheses concerning the values of the indices, we do not intend to suggest that it is a model of cortical neuronal responses: it is evidently missing important elements such as response normalizations (Albrecht and Geisler, 1991; Geisler and Albrecht, 1992; Heeger, 1992, 1993) and cross-
orientation interactions (Bonds, 1989; Carandini et al., 1998; Allison et al., 2001; Freeman et al., 2002; Durand et al., 2007). However, as shown below, the presence of these mechanisms does not detract from our ability to draw inferences concerning these indices, since they induce only minimal dependence of the fitted filters in eq. (1) on the choice of basis set. The fundamental reason for this relates to mathematical properties of the TDH functions – each contains a wide and overlapping range of orientations and spatial frequencies, and thus, even gain controls and interactions tuned to particular spatial frequencies or orientations are surprisingly insensitive to the Cartesian vs. polar distinction.

Visual stimulus generation

Control signals for the CRT display were provided by a separate PC-hosted system optimized for OpenGL (NVidia GeForce3 chipset) programmed in Delphi. (For the two macaques and three cats reported in (Victor et al., 2006), bar and grating stimuli were generated by a PC-hosted VSG2/5 (8 Mb)). For presentation, TDH stimuli were discretized as limited by the display resolution. This typically meant at least 64 x 64 display pixels across the stimulus, with each display pixel subtending approximately 1 min. At the edge of each patch, stimulus contrast was reduced to less than 1/256 of its peak value. Intensity linearization was separately performed for each display controller via VSG software or in-house software of comparable function.
Histology

After all recordings, lesions were made by current passage (typically 3μA x 5 sec, electrode negative), at three locations along each tetrode track, bracketing the recording sites. The animal was sacrificed and perfused with 4% paraformaldehyde solution in phosphate-buffered saline. Fluorescence microscopy of histologically unstained 40-µm cryostatic sections was used to capture the DiI trace of the track. Light microscopy of the same sections after Nissl staining (Hevner and Wong-Riley, 1990) was used to define laminar organization and locate the lesions.

Numerical simulations

We carried out numerical simulations to determine the effect of gain controls and orientation-specific interactions on the characterization provided by eqs. (2) and (3).

Each simulation was carried out for 50 model neurons. Model neurons (see Figure 6) had a Gabor spatial sensitivity profile \(G(x, y) \), whose parameters (Gaussian envelope, sinusoidal carrier) were determined by independent draws from the following distributions: envelope center position along each axis was drawn from a Gaussian with standard deviation \(\sigma \); envelope 1/e radius was drawn from a log-normal with geometric mean of \(\sigma \) and standard deviation covering a factor of 1.25; envelope aspect ratio was drawn from a log-normal with geometric mean 1.5 and standard deviation covering a factor of 1.25; envelope orientation was drawn from a Gaussian with standard deviation \(\pi/16 \) (11.25 deg) around the horizontal; carrier spatial frequency was drawn from a log normal with geometric mean 0.3 cycles per 1/e radius and standard deviation covering a factor of 1.5; carrier orientation was drawn from a Gaussian with standard deviation...
\[\pi/16 \text{ around the envelope orientation; carrier spatial phase was drawn from a uniform distribution in } [0,2\pi]. \text{ This resulted in receptive fields that typically had 1, 2 or 3 lobes (rarely 4), comparable to what is seen in V1 (Ringach, 2002), with an orientation and center-position scatter similar to the receptive fields inferred for the recorded neurons (see Figure 6). All Gaussian envelopes integrated to unity.} \]

To model the generation of a normalization signal, we created a similar collection of 120 Gabor profiles \(G_{i}^{\text{aux}}(x,y) \) \((i = 1,...,120) \). In the basic model, the parameter distributions matched those used for the model neuron, except that envelope orientation of neurons in the auxiliary pool was random. As described in Results, we also created populations in which the distribution of locations and orientation of the auxiliary neurons were modified, to simulate different kinds of normalizations and cross-orientation interactions.

To determine the response of the model neuron with receptive field profile \(G(x,y) \) to a TDH stimulus \(S \), we first convolved \(S \) with \(G \) and then applied a nonlinearity \(N \). This yielded a “raw” response for the model neuron to the stimulus \(S \), prior to any interactions between the model neuron and the pool of auxiliary neurons:

\[g(S) = N \left(\int S(x,y)G(x,y)dxdy \right). \]

(8)

Similarly, convolution of each auxiliary profile \(G_{i}^{\text{aux}}(x,y) \) with \(S \) yielded its “raw” response,

\[g_{i}^{\text{aux}}(S) = N \left(\int S(x,y)G_{i}^{\text{aux}}(x,y)dxdy \right). \]

(9)
was a half-wave rectifier \(N(u) = \max(u, 0) \) in most simulations; we also used a more nearly full-wave asymmetric rectifier \(N(u) = (u + \max(u, 0))/2 \) and an exponential nonlinearity, \(N(u) = e^u \).

Next, the raw responses of a randomly chosen pool of \(n_{aux} \) auxiliary neurons were combined to create a signal \(z(S) \) to provide normalization or cross-orientation interactions:

\[
z(S) = \frac{1}{n_{aux}} \sum_{i \in \text{pool}} N_{aux} \left(g_{aux}^i(S) \right),
\]

Following (Heeger, 1993), \(N_{aux} \) was a half-squarer \(N_{aux}(u) = (\max(u/u_0, 0))^2 \), but we also used full squaring, half-wave rectification, and full-wave rectification. Here, \(u_0 \) is the root-mean-squared raw response sizes across all TDH stimuli; this choice means that the quantities acted on by \(N_{aux} \) are on the order of 1. Pool sizes ranging from \(n_{aux} = 1 \) to \(n_{aux} = 120 \) were considered.

Finally, the modeled response \(R(S) \) to stimulus \(S \) was determining by allowing the pooled signal \(z(S) \) to interact with the raw response \(g(S) \) in a divisive fashion (Heeger, 1993):

\[
R(S) = \frac{g(S)}{1 + cz(S)}.
\]

The constant \(c \) was chosen by first identifying a value \(c_0 \) for which the interaction in eq. (11) typically attenuated the responses by a factor of 2, and then using \(c = c_0/2 \), \(c = c_0 \), \(c = 2c_0 \), and \(c = 3c_0 \), to provide a range of normalization and interaction strengths, up to a
fourfold attenuation \((c = 3c_0)\). Along with the divisive interaction specified by eq. (11), we also simulated models with a subtractive interaction,

\[
R(S) = \max(g(S) - cz(S), 0).
\] \hspace{1cm} (12)

Note that the overall architecture of the model is feedforward (Albrecht and Geisler, 1991) rather than feedback (Heeger, 1993), and we do not consider response dynamics (cf. (Heeger, 1993)). We do this simply to focus on the effects of various spatial configurations for the interactions, not to imply that feedback is absent. Thus, in contrast to the feedforward model of (Albrecht and Geisler, 1991), the auxiliary pool contains oriented units. We elaborate on these issues in the Discussion.

For each instance of the model (spatial configuration of the auxiliary pool, nonlinearity shape \(N\), pool size \(n_{aux}\), interaction strength \(c\), and divisive vs. subtractive interaction), simulated responses \(R(S)\) were calculated for each TDH stimulus \(S = f_k\) and its negative, \(S = -f_k\). From these responses \((R(f_k)\) and \(R(-f_k)\), and with \(R_m = 0\), corresponding to the absence of a maintained discharge), eqs. (2) to (5) were used to determine \(L\) - and \(E\) - filters, and the various indices. Note that these simulations did not include response variability. Thus, jackknife debiasing to compensate for response variability was applied only to the neural data, and not to the simulations, so that the comparison between simulations and neural data would be a fair one.
Results

We present results from a total of 149 single units in 11 preparations (70 V1 units in 8 macaques, 45 V2 units in 3 of these animals, 34 area 17 units in 3 cats). All recordings were within 5 deg of the area centralis (cats) or fovea (macaques). This population consists of all spike-sorted units that had stable firing rates over the experimental period and had responses to TDH stimuli that could be reliably distinguished from the background, and includes 5 units that did not respond reliably to gratings (so their tuning functions and F_1/F_0 ratios could not be determined).

Approximately 20% of isolated neurons could not be driven by TDH stimuli; they are excluded from this analysis. A portion of these results (51 units: all 34 cat units and 17 of the V1 macaque units) have been previously reported (Sharpee et al., 2006; Victor and Mechler, 2006; Victor et al., 2006).

As described above, the overall goal of this study was to identify and characterize nonlinear mechanisms in V1 that qualitatively differ from the behaviors expected from a linear-nonlinear cascade with modulatory influences. Our strategy to do this was to map receptive fields with two stimulus sets – the Cartesian and polar TDH functions. Since these functions are matched in contrast and spatial frequency content and constitute separate basis sets with identical spans, neurons that conform to the cascade model will yield identical RF maps. As reported previously, (Sharpee et al., 2006; Victor and Mechler, 2006; Victor et al., 2006), this expectation does not hold: RF maps constructed from the two basis sets often differ dramatically in shape and sensitivity.

In Experiment 1, we extend this analysis to a much larger dataset, to determine the laminar location of neurons that manifest these nonlinearities.
Then, we consider the effects of response normalizations and cross-orientation interactions. Since such mechanisms can be sensitive to power within a particular range of spatial frequencies and orientations, they might (in principle) lead to different RF maps with the two stimulus sets. However, as our simulations show, these mechanisms cannot account for the large changes in apparent RF maps seen in Experiment 1.

Experiment 2 determines what kinds of visual feature lead to the differences in apparent RF maps obtained from Cartesian and polar stimuli. We focus on two kinds of differences between the Cartesian and polar TDH stimuli. One distinction is that they differ as classes. That is, apparent differences in RF shape might be due to mechanisms sensitive to features generic to one class but not the other – such as curved contours, which are present in most of the polar TDH’s but none of the Cartesian TDH’s; or orthogonal contours, which are present in many of the Cartesian TDH’s but none of the polar ones. Another kind of difference relates to characteristics specific to individual TDH stimuli – for example, the presence of an elongated contour at a specific orientation. Operationally, we can distinguish between these possibilities by comparing responses to Cartesian stimuli at two different orientations. We find that this manipulation alters the apparent receptive field profile, thus implying that the crucial feature is the orientation of individual contours, not the Cartesian vs. polar distinction per se.
Experiment 1: Prevalence and location of neurons sensitive to phase correlations

This experiment was carried out on all 149 single units. We first present example responses, and then a population summary.

Example responses

Figure 2 shows example responses from a cluster of three macaque V1 neurons that were histologically localized to Layer 4b/4c. Unit 5106s was a non-directional complex cell ($F_1/F_0 = 0.16$). For Cartesian stimuli (Figure 2A left), responses were almost entirely confined to the “Gabor-like” stimuli consisting of uninterrupted contrast bands aligned to its orientation preference (the stimuli along the right side of the array of Cartesian responses). In most cases, responses were similar when contrast was inverted (top and bottom histograms for each response block), but for some stimuli (e.g., the last stimulus in third row), they were strikingly different: an ON response for one polarity, and an OFF response for the inverted polarity. Correspondingly, the RF maps inferred from these responses (see Methods) consisted of Gabor-like profiles (Figure 2A middle, left two patches), with somewhat more power in the rectified pathway (E_{cart}) than the linear pathway (L_{cart}). The observation that the response is primarily but not exclusively carried by the rectified pathway is consistent with a cell that is mostly complex (ON-OFF), but not exclusively so (see (Victor et al., 2006) for further discussion of this). For polar TDH responses, (Figure 2A right), responses also showed a mixture of symmetrical and asymmetrical responses to stimuli and their contrast-inverses. However, the responses to the polar stimuli, overall, were only about half as large as the responses to...
Cartesian ones. Consequently, the sensitivity profiles \(L_{\text{polar}} \) and \(E_{\text{polar}} \) (Figure 2A middle, right two patches) had a lower amplitude than \(L_{\text{cart}} \) and \(E_{\text{cart}} \). This difference is quantified by the index \(I_{\text{c-p}} \) (eq. (5)), which in this cell is \(0.50 \pm 0.06 \). It is significantly positive \((p<0.01)\), corresponding to the evident overall preference for Cartesian stimuli. However, the shapes of the inferred profiles are nearly identical: the shape index \(I_{\text{shape}} \) (eq. (4)) is \(0.96 \pm 0.03 \). In sum, when studied with either family of TDH stimuli, this cell’s responses are well-described by a Gabor-like filter followed by partial rectification. But crucially, the responses to Cartesian stimuli are substantially larger than responses to polar stimuli.

The neuron in Figure 2B, unit 5106t, recorded simultaneously with the neuron of Figure 2A, had a different behavior: the shapes of the receptive field profiles inferred from the two stimulus sets were nearly identical \((I_{\text{shape}} : 0.96 \pm 0.02)\), and the overall size of the response to Cartesian and polar stimuli were equal \((I_{\text{c-p}} : 0.03 \pm 0.05)\). This unit shared the same orientation preference as the unit of Figure 2A, but was directionally biased and more simple-like \((F_1/F_0 = 1.0)\). In keeping with its higher \(F_1/F_0 \) ratio, most of the cell’s TDH responses were strongly dependent on stimulus contrast polarity. Also in keeping with simple-like behavior, the overall size of the \(L \)- and \(E \)-filters were similar, corresponding to half-wave rectification (see eq. (1) and (Victor et al., 2006)).

The neuron in Figure 2C, unit 5107s, was recorded 100 microns further below the cortical surface. This cell was oriented and non-directional, and had an intermediate \(F_1/F_0 \) ratio of 0.5. It responded to a greater number of TDH stimuli than the previous units, and the responses were nearly identical for the two contrast polarities. Consequently, its sensitivity profiles (Figure 2C middle) were dominated by the nonlinear

- 29 -
(E) pathway, and did not resemble Gabor patches as closely as the units of Figure 2A, and Figure 2B. Moreover, the shapes of the sensitivity profiles L_{cart} and L_{polar} differed: the shape index I_{shape} deviated substantially from unity ($0.55 \pm 0.22, p<0.05$). Inspection of L_{cart} and L_{polar} show that the main change in receptive field shape is that the antagonistic regions were more evident in L_{polar} than in L_{cart}. For this neuron, the overall sensitivity to Cartesian and polar stimuli were equal ($I_{c-p}: 0.08 \pm 0.08$).

In sum, we have examined the responses of three nearby Layer 4 neurons to the matched TDH basis sets. One neuron (Figure 2B) had responses that fully conformed to the expectations of a linear-static nonlinear cascade, consisting of a Gabor-like spatial filter followed by partial rectification. The other two units did not: the unit of Figure 2A responded preferentially to Cartesian stimuli $I_{c-p} > 0$, and the unit of Figure 2C had a sensitivity profile whose shape changed ($I_{\text{shape}} = 0.5$), depending on whether Cartesian or polar stimuli were used to assay it. (Additional examples of individual-unit responses, including many units outside of Layer 4, are presented below (Figure 9, Figure 10, and Figure 11) and also in (Victor et al., 2006; Sharpee and Victor, 2008).)

Population summary

To motivate our approach to population analysis, we consider the findings in Figure 2 in more detail. Intuitively, one might expect that deviations from the predictions of a linear-nonlinear cascade are not so surprising, since the cascade model omits mechanisms such as cross-orientation suppression (Bonds, 1989; Carandini et al., 1998; Allison et al.,
These and similar mechanisms might be expected to alter the responses to one basis set or the other. For example, the greater sensitivity of the unit in Figure 2A to Cartesian vs. polar stimuli could arise from suppression of responses to stimuli that contain Fourier components that deviate from its preferred orientation; only the Cartesian basis set has stimuli that contain just the preferred orientation – the right-hand side of the Cartesian stimulus pyramid. For the polar stimuli, any stimulus with a Fourier component at the preferred orientation also contains a Fourier component at a non-preferred orientation, thus suppressing its response. The net result would be that the apparent sensitivity to Cartesian stimuli would be larger, since only the Cartesian set has stimuli that contain just the preferred orientation. However, this intuition is not supported by quantitative analysis (see Figure 6, Figure 7, and Figure 8 below). As we will see below, despite the presence of visually apparent oriented features in some of the TDH stimuli, all TDH stimuli are, in fact, broadband in orientation and spatial frequency. Because of this, mechanisms that are selective for the orientation of Fourier components are surprisingly unselective for one basis set vs. the other.

This property of the TDH stimuli has the practical consequence that the two indices, \(I_{shape} \), which quantifies apparent changes in RF shape, and \(I_{c-p} \), which quantifies sensitivity differences, remain useful for the analysis of responses to Cartesian and polar TDH responses, even in the presence of normalizations and cross-orientation interactions. Below we describe the behavior of these indices in our dataset, and then consider their behavior in a range of models. While we only present indices based on the ON-response, the findings we describe were substantially unchanged for indices \(I_{shape} \) and \(I_{c-p} \) based on
other choices of a response measure, such as the size of the transient response (first 100 ms), the size of the OFF-response, or the size of the first principal component (as shown in (Victor et al., 2006) for a subset of these data).

Change in the shape of the sensitivity profile

The index I_{shape} (eq. (4)) captures how the effective shape of the sensitivity profile of a single neuron depends on the basis set. To characterize this dependence across the population, we report the fraction of neurons that exhibited a dependence (i.e., neurons with $I_{\text{shape}} < 1$ at some significance level), and the typical extent of this dependence, as quantified by the mean, median, and standard deviation of I_{shape} across all neurons.

Because of its relevance to circuitry, we focus on the difference between Layer 4 neurons and neurons in other layers.

Most units (41/70) in macaque V1 (Figure 3, left column) showed a significant shape change between Cartesian and polar basis sets: for 11 units, $I_{\text{shape}} < 1$ at $0.01 < p < 0.05$; for 30 units, $I_{\text{shape}} < 1$ at $p < 0.01$. This behavior was present in all layers, but it was more prevalent in the upper and lower layers (27/37 units) than in Layer 4 (14/33 units; Layer 4 vs. non-Layer 4 was significantly different at $p < 0.02$, two-tailed chi-squared). There was no significant difference between supragranular layers (14/20 units) and infragranular layers (13/17 units). The extent of the dependence also was larger in non-Layer 4 units (mean±standard deviation 0.48 ± 0.39, median 0.58) than in Layer 4 units (mean±standard deviation 0.77 ± 0.28, median 0.88; non-Layer 4 units, difference significant at $p < 0.01$, two-tailed Wilcoxon test). There was no difference between
supragranular units (mean±standard deviation 0.53±0.36, median 0.59) and infragranular units (mean±standard deviation 0.43±0.43, median 0.46).

In cat area 17 (Figure 3, middle column), the size and prevalence of shape changes was comparable to macaque V1. There were insufficient data (only three Layer 4 units) to carry out a meaningful laminar analysis.

In macaque V2 (Figure 3, right column), nearly all units showed a shape change between Cartesian and polar stimuli (42/45 units: \(I_{\text{shape}} < 1 \) in 10 units at \(0.01 \leq p < 0.05 \), in 32 units at \(p < 0.01 \)), and the shape change was pronounced (\(I_{\text{shape}} \) was often close to 0: mean±standard deviation 0.14±0.38, median 0.16). By both measures (prevalence and effect size), RF shape changes in V2 were significantly greater than in V1 (\(p < 0.01 \)). This held whether the comparison was based on all V1 laminae or only its extragranular layers. However, in contrast to V1, we found no evidence for a laminar dependence of RF shape change in V2.

Cartesian vs. polar preference

Figure 4 shows a parallel analysis of the index \(I_{c-p} \), which compares the overall size of the response to the two families of TDH stimuli, with \(I_{c-p} > 0 \) indicating a Cartesian preference and \(I_{c-p} < 0 \) indicating a polar preference (eq. (5)). Because these two stimulus sets are matched for spatial frequency content, a linear-static nonlinear cascade would have responses characterized by \(I_{c-p} = 0 \).

Across the entire dataset, 64/149 (43%) units had a significant deviation from \(I_{c-p} = 0 \) (18 units at \(0.01 \leq p < 0.05 \), 46 units at \(p < 0.01 \)), while 85 units (57%) were
consistent with \(I_{c-p} = 0 \). Overall preference for Cartesian and polar stimuli were similar
in prevalence (36 units: \(I_{c-p} > 0 \) at \(p < 0.05 \); 28 units, \(I_{c-p} < 0 \) at \(p < 0.05 \)) and magnitude
(\(I_{c-p} \) mean±standard deviation 0.07±0.36, median 0.00). A similar proportion of cells
with a preference (\(p < 0.05 \)) for one basis set or the other was found in macaque V1 (20
units with \(I_{c-p} > 0 \), 12 units with \(I_{c-p} < 0 \), 38 units consistent with \(I_{c-p} = 0 \)), cat area 17 (6
units with \(I_{c-p} > 0 \), 7 units with \(I_{c-p} < 0 \), 21 units consistent with \(I_{c-p} = 0 \)), and macaque
V2 (10 units with \(I_{c-p} > 0 \), 9 units with \(I_{c-p} < 0 \), 26 units consistent with \(I_{c-p} = 0 \)).
Subdivision of the macaque V1 dataset revealed no laminar differences (Layer 4: 10 units
with \(I_{c-p} > 0 \), 3 units with \(I_{c-p} < 0 \), 20 units consistent with \(I_{c-p} = 0 \); non-Layer 4: 10
units with \(I_{c-p} > 0 \), 9 units with \(I_{c-p} < 0 \), 18 units consistent with \(I_{c-p} = 0 \)). There was no
correlation between \(I_{c-p} \) and \(I_{shape} \).

Correlation with simple vs. complex behavior

The distinction between simple and complex behavior is one of the fundamental
emergent properties of striate cortex. Its genesis appears closely related to the balance
between thalamic and intrinsic cortical inputs -- though the extent to which this
distinction is a categorical one governed by hierarchical anatomy (Hubel and Wiesel,
1962; Hubel and Wiesel, 1968; Skottun et al., 1991), vs. a continuum of behaviors
governed by intrinsic cortical circuitry (Chance et al., 1999; Priebe et al., 2004; Tao et al.,
2004), remains the subject of debate (Abbott and Chance, 2002). While recognizing that
there is no consensus on how this distinction is best quantified (Kagan et al., 2002), we
use the F_i/F_0 ratio, because it is readily quantified and captures the general tendency towards linear spatial summation (F_i/F_0 large) and ON-OFF behavior (F_i/F_0 near 0).

In macaque V1, we found (Figure 5, upper left) that the simple vs. complex distinction correlated with the dependence of sensitivity profile shape on basis set (I_{shape}). This correlation was statistically significant in a categorical analysis, in which complex cells are operationally defined by $F_i/F_0 < 1$ (shape change in 35/50 complex cells and 6/15 simple cells, $p < 0.05$, chi-squared), and in a continuum analysis (correlation between I_{shape} and F_i/F_0 across all cells was $r = 0.34$, $p < 0.01$, $n = 65$). This correlation did not account for the finding that shape changes in V1 were more prominent outside of the input layer (Figure 3). That is, the laminar differences persisted when the analysis was restricted to the 50 complex cells in macaque V1 (8/19 complex cells in Layer 4 with $I_{\text{shape}} < 1$, 22/31 complex cells not in Layer 4, $p < 0.01$ by chi-squared). For the 15 simple cells, the trend was in the same direction (3/10 simple cells in Layer 4 with $I_{\text{shape}} < 1$, 4/5 simple cells not in Layer 4, $p \sim 0.1$ by chi-squared).

A correlation between I_{shape} and the simple-vs-complex distinction was found in cat area 17 ($r = 0.25$, $p = 0.15$, $n = 34$) and macaque V2 ($r = 0.29$, $p = 0.07$, $n = 40$). The size of the correlation was similar to that seen in macaque V1, but did not reach statistical significance, likely because of the fewer number of units available for analysis.

In contrast to the behavior of I_{shape}, there was no correlation between the Cartesian vs. polar preference (I_{c-p}) and F_i/F_0 ratio (Figure 5, second row: all $|r| < 0.15$ and $p > 0.3$), or between the number of units for which $I_{c-p} \neq 0$, and the simple-vs-complex
categorical distinction ($p > 0.3$ for macaque V1, cat area 17, and macaque V2).

Numerical simulations: gain controls and orientation-specific interactions

Here we show that normalizations driven by overall contrast (Geisler and Albrecht, 1992; Heeger, 1992, 1993) or interactions tuned to particular orientations (Bonds, 1989; Carandini et al., 1998; Allison et al., 2001; Freeman et al., 2002; Durand et al., 2007) have only a minimal impact on our analysis, and are unlikely to account for our findings. Our strategy is to carry out numerical simulations on several families of models that incorporate these mechanisms, to calculate receptive field maps from their responses just as for the recorded neurons, and to compare the behavior of the resulting indices I_{shape} and I_{c-p} with the above findings.

We created a basic model neuron with a Gabor-shaped sensitivity profile, followed by half-wave rectification (Methods, eq. (8)). We allowed the response of the model neuron to be influenced by a signal derived from the combined output of a population of similar auxiliary Gabor neurons (eqs. (10) and (11)). We then applied the same receptive-field analysis procedures to the model neuron’s responses to TDH functions as we applied to the recorded neurons. By varying the spatial parameters of the population of neurons that contributed to the modulatory signal, we determined the effect of multiple kinds of response normalizations and orientation-specific interactions.

The large profiles above each 2×2 map set in Figure 6 are the receptive field sensitivity profiles $G(x, y)$ of a sample of simulated Gabor neurons in the absence of any normalization (see Methods for details). The 2×2 map sets below each large profile are the sensitivity profiles that are obtained by our analysis procedure, eqs. (2) and (3), in the presence of a normalization circuit. Here, the normalization pool consisted of $N_{\text{aux}} = 120$
randomly oriented neurons, and the divisive normalization constant was $c_0 = 36$ (eq. (11)). As can be seen from the Figure, the inferred shapes of the Cartesian and polar linear filters, L_{cart} and L_{polar}, are very nearly identical to each other. Additionally, although the shapes of the filters E_{cart} and E_{polar} are somewhat different (as anticipated from the sign ambiguity discussed above in connection with eqs. (2) and (3)), the overall sensitivity to Cartesian and polar stimuli for each neuron is also very nearly identical.

We also note that while the shapes of the inferred filters (L_{cart} and L_{polar}) are nearly identical to each other, they both differ somewhat from the shapes of the Gabor sensitivity profiles $G(x,y)$ (the large profiles above each 2×2 map set). This is expected, even in the absence of normalizations, because L_{cart} and L_{polar} estimate the projection of the neuron’s sensitivity profile into the space spanned by the TDH functions. Just like the experimental estimates of L_{cart} and L_{polar} (e.g., Figure 2, Figure 9, Figure 10, and Figure 11), they tend to have more lobes than expected from cortical RFs. However, since Cartesian and polar basis sets span the same space, this projection does not interfere with testing the prediction that $L_{cart} = L_{polar}$ -- which holds to a very good approximation for this gain control model.

Figure 7 quantifies and extends this basic finding: that typical contrast normalization and cross-orientation interactions have very little effect on the sensitivity profile estimates that emerge from TDH stimulation. Each row shows the distribution of values of the index I_{shape} and the size index I_{c-p}, for the standard modulatory strength $c = c_0$ and a higher strength $c = 3c_0$. The several rows correspond to six different kinds of normalizations and cross-orientation interactions, defined in terms of the spatial
configuration of the auxiliary neurons that generate the modulatory signal. Row A corresponds to the model used in Figure 6. Row B is a similar isotropic model, but the gain control population is spread over twice the distance. Row C models oriented suppression from the orthogonal orientation within the RF (cross-orientation suppression). Row D models iso-orientation suppression from the end-zones (end-stopping). Row E models iso-oriented suppression from an annulus surrounding the RF (iso-orientation surround suppression). Row F is suppression in orientation sidebands from an annulus surrounding the RF. The second column of the Figure displays the magnitude of the resulting modulatory effect, set at its standard value of $c = c_0$: responses to many TDH stimuli are typically attenuated by a factor of 2. The next two columns show that despite this large effect on responses to individual stimuli, the effect on receptive field maps is minimal: the resulting distribution of I_{shape} is very close to 1 and the distribution of I_{c-p} is close to zero. The final two columns show that when the strength of the modulatory interaction is tripled ($c = 3c_0$), this finding persists: I_{shape} remains close to 1 and I_{c-p} remains close to zero. This is in marked contrast to the behavior of the physiological recordings (Figure 3 and Figure 4).

Figure 8 shows that the above observations are robust with respect to the number of neurons in the auxiliary pool. As shown, even when there is only $N_{\text{aux}} = 1$ neuron in the auxiliary pool, the basic finding of Figure 7 persists: the effective RF shape identified by Cartesian or polar stimuli is virtually unchanged, and the sensitivity to Cartesian and polar stimuli is very nearly identical. Even in this extreme case, the behavior of these model neurons – that I_{shape} is nearly always greater than 0.9 -- departs substantially from what was seen in the recorded neurons (Figure 3).
The findings summarized in Figure 7 and Figure 8 were also seen with many other variations of the model (see Methods for details), including (i) removal of the jitter of the distribution of orientations, (ii) other kinds of nonlinearities for the individual neurons (asymmetric rectification and exponential), (iii) other kinds of nonlinearities that pooled the auxiliary neurons’ signals (squaring, half-wave, and full-wave rectification, see comments following eq. (10)), and (iv) subtractive (eq. (12)), rather than divisive (eq.(11)), normalization. None of these models account for the apparent RF shape changes seen in the recorded neurons: nearly all model neurons had $I_{\text{shape}} > 0.9$, but many of the recorded neurons had $I_{\text{shape}} < 0.50$ (Figure 3).

Although none of the model configurations led to substantial differences in apparent RF shape, some led to modest differences in sensitivity to Cartesian and polar stimulus sets (as quantified by the size index I_{c-p}). For example, models that featured suppression from the orientation orthogonal to the preferred orientation (Figure 7 and Figure 8, row C) resulted in $I_{c-p} > 0$ (greater sensitivity to Cartesian stimuli), qualitatively similar to the behavior seen for the unit of Figure 2A. Conversely, models that featured suppression from orientations similar to the preferred orientation (Figure 7 and Figure 8, rows D, E, and F) resulted in $I_{c-p} < 0$ (greater sensitivity to polar stimuli). Qualitatively similar behavior was also seen in recorded neurons (e.g., Figure 11A below). These behaviors make intuitive sense. A neuron with cross-orientation suppression will tend to respond optimally to stimuli that contain elongated regions only in the preferred direction, and such stimuli are only present in the Cartesian basis set (row C). Conversely, a neuron with iso-orientation suppression will respond least well to these stimuli, and therefore have a preference for the polar basis set (rows D, E, and F).
However, none of the models account for the behavior of the recorded neurons. All modeled neurons had $|I_{c,p}| < 0.5$, while many of the recorded neurons (Figure 4) were well outside this range.

Experiment 2: Orientation dependence of receptive field nonlinearities

Above, we showed that most neurons in V1 and V2 manifest a spatial nonlinearity that alters their effective spatial sensitivity profile, depending on whether the sensitivity profile was determined with Cartesian or polar basis functions. This dependence on Cartesian vs. polar context reflects an underlying nonlinearity in the neural computations, and we now focus on characterizing it. The numerical simulations above (Figure 6, Figure 7 and Figure 8) ruled out some possibilities; we next consider others.

We aim to determine the role played by orientation. One possibility is that orientation plays no role – i.e., that the observed dependence on context is independent of stimulus orientation, and relates instead to differences between Cartesian and polar stimuli as *classes*. For example, only the polar stimuli have circular contours or rotational symmetry. The second possibility is that the orientation at which a stimulus is presented plays the critical role, not its Cartesian vs. polar character.

To make this distinction, we compare responses to TDH functions *aligned* with the orientation preference (Figure 1, top) and responses to TDH functions rotated 45 deg so that their contours are *oblique* (Figure 1, bottom). This manipulation does not influence attributes that are intrinsic to the Cartesian patterns, but markedly influences the
orientations that they contain. We find that contour orientation, not the Cartesian vs. polar distinction *per se*, is the crucial factor. Since we have shown above that orientation signals derived from spatial frequency content (extracted via pools of randomly-positioned Gabor functions) cannot drive the substantial difference in the receptive fields identified by Cartesian and polar stimuli, we conclude that orientation must be extracted by a qualitatively different mechanism, such as nonlinearities that are sensitive to specific phase correlations (i.e. spatial correlations of order three and above).

These experiments were carried out in 59 of the units studied in Experiment 1 (29 macaque V1 units, 12 cat area 17 units, 18 macaque V2 units). As with Experiment 1, we first present some example responses and then a population summary.

Example responses

Figure 9 shows a unit recorded in Layer 4b of macaque V1. In keeping with its simple-like ($F_i/F_o = 1.5$) behavior, responses to most TDH stimuli were generally dependent on the stimulus polarity. For the TDH stimuli that were aligned to the preferred orientation (Panel A), responses were generally larger for the Cartesian stimuli than the polar ones. The opposite was true for TDH stimuli that were oblique to the preferred orientation (Panel B): responses to polar stimuli were large; responses to Cartesian stimuli were small or nonexistent. This observation is borne out by the index I_{e-p} (eq. (5)) of Cartesian vs. polar preference: for aligned stimuli, there was a significant preference for Cartesian stimuli ($I_{e-p}^{\text{aligned}} : 0.23\pm0.08, \ p < 0.05$), while for oblique stimuli the preference was strongly in the opposite direction ($I_{e-p}^{\text{oblique}} : -0.50\pm0.12, \ p < 0.01$). For
this unit, there was no significant change in receptive field shape; neither $I_{shape}^{aligned}$ nor $I_{shape}^{oblique}$ differed significantly from 1.

The unit of Figure 10, recorded in Layer 4 of macaque V2, showed a behavior that contrasts in several respects to the V1 unit in Figure 10. It had complex-like behavior ($F_1/F_0 < 0.1$), and very similar responses to TDH functions of either polarity. It had at most a modest preference for Cartesian TDH functions ($I_{c-p}^{aligned} : 0.36 \pm 0.80$, $I_{c-p}^{oblique} : 0.05 \pm 0.44$, neither significantly different from 0). However, this unit showed a substantial change in the shape of its sensitivity profile when the oblique Cartesian set was presented ($I_{c-p}^{aligned} : 0.12 \pm 0.43$, $I_{c-p}^{oblique} : 0.31 \pm 0.14$, both $p < 0.05$).

Sensitivity profiles are shown for three more units in Figure 11. The unit of Figure 11A is a V1 Layer 4 simple-like ($F_1/F_0 = 1.1$) unit. This unit had a mild preference for polar stimuli under aligned conditions ($I_{c-p}^{aligned} : -0.21 \pm 0.08$, $p < 0.05$; $I_{c-p}^{oblique} : -0.12 \pm 0.08$, $p > 0.05$), and no significant shape changes for either orientation. The two units of Figure 11B and Figure 11C were recorded simultaneously and shared the same orientation preference, but one (55031s, Figure 11B) was simple-like ($F_1/F_0 = 1.2$) and directionally biased; the other (55031t, Figure 11C) was complex-like ($F_1/F_0 = 0.5$) and not directionally biased. Their responses to TDH functions had similar characteristics. For both units, responses were primarily polarity-independent for aligned and oblique stimuli, as seen by the larger contribution of the even-order pathway (E-filters) compared to the linear pathway (L-filters). Neither unit had a substantial preference for Cartesian or polar stimuli in either orientation ($I_{c-p}^{aligned}$ and $I_{c-p}^{oblique}$ not significantly different from 0). For the unit of Figure 11B, there was a modest but statistically significant shape change for both
aligned and oblique stimuli ($I_{shape}^{aligned}$: 0.77±0.10, $I_{shape}^{oblique}$: 0.80±0.08, both $p < 0.05$). For the unit of Figure 11C, a similar degree of shape change was present for aligned and oblique stimuli, but this was only statistically significant for aligned stimuli ($I_{shape}^{aligned}$: 0.40±0.13, $p < 0.05$; $I_{shape}^{oblique}$: 0.83±0.15, $p>0.05$).

Population summary

The several examples above illustrate the substantial diversity we observe in the characteristics of neural responses to TDH functions. For many neurons, the apparent receptive field shape depends on whether it is assayed with Cartesian or polar functions. For another set of neurons, partially overlapping with the first set, there is an overall response preference for Cartesian or polar functions. These phenomena – both of which represent departures from the expected behavior of a linear-static nonlinear filter or an LN cascade modulated by gain controls such as divisive normalization or cross-orientation suppression -- may be present, independently, for TDH stimuli aligned to the preferred orientation, or oblique to it.

To focus on the question of interest – whether the nonlinearity that underlies the difference in apparent receptive field shape for Cartesian and polar stimuli is orientation-sensitive – we make three comparisons of estimated receptive field shape: Cartesian vs. polar estimates for aligned stimuli ($I_{shape}^{aligned}$), Cartesian vs. polar estimates for oblique stimuli ($I_{shape}^{oblique}$), and Cartesian estimates for aligned and oblique stimuli ($I_{shape}^{aligned\ vs\ oblique}$). (We don’t compare estimates from polar stimuli for the two rotations, since many “aligned” and “oblique” polar stimuli are identical).
Results are shown in Figure 12. The difference between the sensitivity profile measured with the two orientations of Cartesian stimuli ($I_{aligned\shape} \text{vs.} I_{oblique\shape}$) is more marked than the difference between Cartesian and polar stimuli ($I_{aligned\shape}$ or $I_{oblique\shape}$). This difference is highly significant in V1 and area 17 ($p<0.01$), and there is a trend in the same direction in V2. Since changing orientation of the elongated contours (but retaining their “Cartesian” character) has a larger effect than removing them altogether, the nonlinearity that drives the change in apparent receptive field shape is sensitive to the orientation of the Cartesian stimuli, rather than to the Cartesian vs. polar distinction per se.

We note that the range of shape changes is similar for aligned and oblique conditions, and on a neuron-by-neuron basis, the correlation between them is strong in macaque (V1: $r=0.79$, $p<0.001$, $n=29$; V2: $r=0.52$, $p<0.03$, $n=18$), with a similar trend in a smaller number of cat area 17 units ($r=0.28$, $p \approx 0.4$, $n=12$). Thus, if a neuron has a discrepancy between the sensitivity profiles for aligned Cartesian and polar TDH stimuli, then it will have a discrepancy of similar magnitude when studied with oblique stimuli – but the nature of the shape change typically differs.

We also did not find any difference between the overall sizes of the responses to aligned and oblique Cartesian stimuli. Such a difference might have been generated by a tuned cross-orientation suppression driven selectively by aligned or oblique Cartesian stimuli.

Finally, we mention that our finding (that orientation matters more than the Cartesian vs. polar distinction) are not in contradiction to previous findings (Gallant et al., 1996; Mahon and De Valois, 2001; Hegde and Van Essen, 2003) concerning preference of
visual neurons for Cartesian and polar gratings. Despite their superficial resemblance,
TDH stimuli differ from the Cartesian and polar gratings used in those studies in an
important way – the former are matched for various low-level characteristics, as is
required for our goal of testing models, not optimized for visual salience as in the earlier
studies.
Discussion

The goal of this study is to further the understanding of the computations performed in primary visual cortex. To this end, we identify qualitative behavior that major classes of models must have in response to specific stimuli, and test whether this kind of behavior is present in V1 and V2 of macaque monkeys and area 17 of the cat. As described in the Introduction, our approach utilizes single-unit responses to stimuli based on TDH functions. Because of the way that the mathematical properties of TDH functions interact with typical building blocks of computational models, we can bypass stages of processing sensitive to luminance and contrast, to examine nonlinear mechanisms of spatial integration arising in local cortical circuits.

In our initial study with TDH stimuli (Victor et al., 2006), we showed that they elicited behavior that was qualitatively inconsistent with simple cascade models – namely, the apparent shape of the linear filter in a linear-nonlinear cascade depended on which basis set is used for the characterization. Subsequently (Sharpee and Victor, 2008), we characterized this behavior as a contextual modulation, and showed that the effect of this modulation was to change the strength of inputs from oriented subunits. This raises two further questions: 1) which cells show this contextual modulation? 2) what stimulus features – and therefore, what kinds of mechanisms -- drive it? Here, we address these questions.

To determine which cells show this contextual modulation, we carried out a laminar analysis of the responses. This analysis showed that the contextual effect is present throughout V1, more prominently in the supragranular layers and infragranular layers.
than in Layer 4. Moreover, we found that the contextual effect is larger in V2 than in V1 (Figure 3 and Figure 4). The progression of increasing contextual effect from V1 input layer to V1 intrinsic circuitry to V2 suggests that it is intrinsic to the goal of processing, not a “side effect” of early visual processing that is to be removed at later stages.

As a first step in identifying the mechanisms that modulate receptive field structure in the various TDH contexts, we considered modulatory mechanisms that have already been identified. These include gain controls driven by local contrast and/or spatial frequency content (Ohzawa et al., 1985; Reid et al., 1992; Sceniak et al., 1999; Freeman et al., 2001; Albright and Stoner, 2002; Cavanaugh et al., 2002) and modulatory mechanisms sensitive to stimulus power in particular locations and/or at particular orientations (Bonds, 1989; Albrecht and Geisler, 1991; Geisler and Albrecht, 1992; Heeger, 1992, 1993; Carandini et al., 1998; Allison et al., 2001; Freeman et al., 2002; Durand et al., 2007).

To assess the possible roles of these mechanisms, we carried out several series of simulations, summarized in Figure 6 to Figure 8. We found virtually no influence of modulatory mechanisms on the apparent shape of cascade-model filters when assayed with Cartesian vs. polar TDH functions (i.e., I_{shape} remains near 1), and only a modest influence on the relative sensitivity to the two basis sets (i.e., I_{e-p} remains near 0). The simulations considered many scenarios for gain controls and spatial interactions, including influences from within and beyond the classical receptive field, isotropic and non-isotropic orientation distributions of the auxiliary neuron pool, and a range of cell numbers, interaction strengths, kinds of nonlinearities, and divisive vs. subtractive influences.
The universal failure of these mechanisms to account for our findings might at first appear surprising, but it is an anticipated consequence of the properties of the TDH functions. In contrast to Gabor functions, each TDH function contains a broad range of spatial frequencies and orientations. (Since each TDH function is its own Fourier transform, its spectrum can be read off from the stimulus itself.) Because TDH functions are broadband, Gabor-based filters are surprisingly unselective for the Cartesian vs. polar distinction – and this underlies the simulation results. A related consideration that helps to understand these simulation results is that cortical neurons are relatively broadly tuned to TDH stimuli (Figure 2, Figure 9, Figure 10). Thus, many TDH functions enter into the basis-function expansion of a RF profile (eq.(3)) – implying that the ensemble properties of the stimulus sets are more relevant to the contextual modulation than the idiosyncratic luminance distribution of individual functions.

There are many variations on the theme of gain controls and cross-orientation interactions (MacEvoy et al., 2009), and a fully realistic cortical model would necessarily include parallel combinations of cascade-like units (Rust et al., 2005), dynamics, network interactions such as feedback (Heeger, 1993; Chance et al., 1999), and spiking neurons (Tao et al., 2003; Tao et al., 2006). However, while such additions might provide greater realism and complexity, they do not alter the basic reason that the above simulations fail to account for our findings: the requisite spatial selectivity is lacking.

What kinds of computations could generate a “context” signal that accounts for our findings? To address this, we consider the results of Experiment 2 in the light of the above simulations. Experiment 2 showed that “context” is determined by the orientation of the stimuli, not the Cartesian vs. polar distinction per se. (Specifically, altering the
orientation of the Cartesian stimuli by 45 deg induces a greater change in the apparent RF shape than switching from Cartesian to polar stimuli (Figure 12)). So we can conclude that the context signal is, in fact, driven by orientation-sensitive mechanisms – but that these mechanisms are more selective than randomly-positioned arrays of Gabor filters.

The implications for the nature of cortical computations become evident by casting the discussion in somewhat more abstract terms. Randomly positioned Gabor functions are sensitive to local power and spatial frequency content – i.e., the second-order statistics of the stimuli – and in these respects, the various TDH ensembles are very nearly equated. To extract a consistent, orientation-dependent, contextual signal that discriminates among the two TDH stimulus sets, cortical mechanisms that extract the orientation of contours must therefore be sensitive to phase correlations, as proposed by Morrone and Burr, 1988.

While interactions of LN cascades with randomly-positioned Gabor-like filters cannot carry out these computations, there are simple, biologically reasonable alternatives that can: interactions of Gabor-like filters across spatial scales (Morrone and Burr, 1988). The critical requirement is that these filters must be aligned rather than randomly-positioned, so that responses to oriented features are reinforced (Morrone and Burr, 1988). For example, an edge detector could be constructed by aligning Gabor-like filters of similar orientations but different spatial scales so that their zero-crossings coincide.

Previous studies of neural computations in V1 based on natural scenes (David et al., 2004; Felsen et al., 2005; Touryan et al., 2005) have also inferred the presence of mechanisms sensitive to phase correlations. By identifying the contribution of these mechanisms from responses to a library of designed stimuli, the present study adds to
these results in two ways. First, because of the complexity of natural scenes, it is difficult to determine the essential qualities of stimuli that drive these nonlinear mechanisms; here we show that simple, local patterns suffice. Second, the above studies could not rule out the possibility that gain controls or modulatory mechanisms might be the source of the observed nonlinear phenomena. Here, again because of the relative simplicity and controlled nature of the stimulus set, we were able to do so.

Certain features of our findings suggest an important role for intracortical feedback. As previously shown, context acts to modify the strength of oriented subunits (Sharpee and Victor, 2008) within a receptive field. To this result, we add the current findings that the context signal itself is derived from orientation-sensitive mechanisms – and that contextual modulation is largest outside of Layer 4, but present in Layer 4 nevertheless. That is, Layer 4 neurons, whose subcortical inputs are presumably non-oriented, have RF’s whose oriented inputs depend on context – implying a functional recurrence.

Based on the greater size of the context effect outside of Layer 4 and overall patterns of local circuit connectivity (Kisvarday et al., 1986; Douglas et al., 1989; Martin, 2002; Thomson and Bannister, 2003), we speculate that this recurrence primarily results from recurrent connections within supra- and infra- granular layers, and feedback of these signals to Layer 4. We are unable, however, to determine the anatomical substrate of this recurrence directly by tracking the latency of the context effects across cortical layers. This is because context effects are equally present in the first 25-50 ms as they are in later portions of the response (Victor et al., 2006), and signal-to-noise considerations prevents a substantially finer resolution.
Conclusion

Our main motivation was to understand the computations carried out by V1 neurons. By analyzing neural responses to a specific set of designed stimuli, we identified a qualitative aspect of their behavior -- changes in receptive field shape, driven by pattern context, and showed that the modulatory mechanism constitutes a functional recurrence of oriented signals. We showed that this behavior is not found in cascade models augmented by gain controls, response normalization, or cross-orientation interactions. The common denominator is that the latter processes extract orientation information based on local spatial frequency content, while our results indicate that sensitivity to phase correlations is required. Thus, extraction of oriented features via phase correlation emerges as a qualitative aspect of V1 processing.

Natural scenes differ from traditional analytic stimuli in many ways -- in addition to having local high-order spatial correlations, they are spatially extensive, cluttered, and often meaningful. Any (or all) of these differences might underlie why current computational models give an incomplete account of neural responses to natural scenes. While studies with a restricted set of designed stimuli cannot replace analyses based on natural scenes, they do have an important advantage. As shown here, the use of designed stimuli allowed us to isolate one factor -- local spatial correlations -- and to show that it alone, suffices to require an expansion of our notion of what individual neurons do.
Acknowledgments

Grants

This work is supported by R01EY09314 (JV)

Disclosures

Portions of this material were presented at the Society for Neuroscience (2004, 2006).
References

Figure Legends

Figure 1

The Cartesian and polar families of two-dimensional Hermite (TDH) functions. For Experiment 1, only the “standard orientation” stimuli were used; for Experiment 2 (the “rotation” experiment), these were interleaved with the stimuli in the lower half of the Figure. Each family forms an orthonormal basis for two-dimensional patterns, and the stimuli of each rank are equated in size, spatial frequency content, and power. For further details, see (Victor et al., 2006).

Figure 2

Post-stimulus histograms (PSTHs) and inferred sensitivity profiles for three macaque V1 Layer 4 neurons. Stimuli consisted of TDH functions (left side, Cartesian stimuli; right side, polar stimuli), each presented for 250 ms and followed by 250 ms of mean illumination. In each pair of histograms, the upper histogram is the response to the stimulus shown in Figure 1, and the lower histogram is the response to the contrast-inverse of that stimulus. The four pseudocolor maps (sensitivity profiles) represent the spatial filters L_{cart}, E_{cart}, L_{polar}, and E_{polar} of eq. (1). PSTH scale bar: 150 impulses/sec (A), 150 impulses/sec (B), 100 impulses/sec (C). Range for pseudocolor maps of sensitivity profiles: ±14 impulses/sec (A), ±16 impulses/sec (B), ±12 impulses/sec (C). Maps of sensitivity profiles span 5.4 deg (A), 5.4 deg (B), 4.8 deg (C). Stimuli were each presented 16 times.
Figure 3

Population summary of the dependence of the effective receptive field shape on basis set. The index I_{shape} (eq. (4)) measures the similarity between the RF sensitivity profile measured with Cartesian TDH functions, vs. with polar TDH functions (see Methods). Values of I_{shape} significantly < 1 indicate departure from the expected behavior of a linear-nonlinear cascade. Portions of the histograms (stacked) shaded black represent units for which $I_{\text{shape}} < 1$ at $p < 0.01$; portions shaded gray are significant at $0.01 \leq p < 0.05$; unshaded portions correspond to $p > 0.05$. Boxplot notches indicate 95% confidence limits on median (located at the angle of the notch); boxplot size indicates interquartile range; “+” signs indicate outliers; numbers to the right of each plot indicate the number of units.

Figure 4

Population summary of the dependence of overall response size on basis set, as measured by the index I_{c-p} (eq. (5)). Values of I_{c-p} significantly > 0 indicate an overall preference for Cartesian stimuli; values significantly < 0 indicate an overall preference for polar stimuli. Other plotting conventions as in Figure 3.

Figure 5

Relationship of characteristics of TDH responses to the F_1/F_0 ratio. First row, dependence of sensitivity profile L on basis set (I_{shape}, eq. (4)). Second row, Cartesian vs. polar preference (I_{c-p}, eq. (5)).
Figure 6

Numerical simulation of the effect of a simple model of contrast normalization. In each set of profiles, the large profile is the receptive field sensitivity profile, i.e., a Gabor function $G(x,y)$. The 2×2 map set underneath are the L- and E- filters estimated from simulated responses in which the output of this filter is divisively normalized by an isotropic (un-oriented) local contrast signal, derived by combining the output of similar nearby Gabor filters. Note that the filters L_{cart} and L_{polar} estimated from responses to Cartesian and polar TDH stimuli are nearly identical. For further details, see Methods.

Figure 7

Numerical simulation of the effect of several kinds of normalizations and orientation-specific interactions on RF indices. Characteristics of the auxiliary neurons that provide the normalization or interaction signal are as follows: A: randomly-oriented, co-extensive with the target neuron RF (center s.d. identical to RF envelope parameter σ); B, randomly-oriented, more widely distributed than the target neuron RF (center s.d. 2σ); C, as in A, but orthogonal orientations (s.d. 11.25 deg) to the modeled neuron; D, as in A, but same orientation as the modeled neuron and positioned, on average $\pm\sigma$ away from its center (oriented end-zone inhibition) along the axis of RF orientation; E, as in A, but centers within a radius of σ excluded, and same orientation as modeled neuron (iso-orientation suppression from the non-classical RF); F, as in E, but orientations differ from the modeled neuron by ±30 deg (side-band suppression from the non-classical RF). The first column shows examples of specific neurons simulated, with the modeled neuron’s sensitivity profile in pseudocolor and typical auxiliary neurons diagrammed by the $1/e$
level curves of their envelopes. (For clarity, only 8 auxiliary receptive fields are

diagrammed; \(N_{aux} = 120 \) were used in each simulation.) The second column is a
scattergram of the raw responses of the model neurons to each TDH stimulus (\(g(S) \), eq.
(8)) and its response following normalization (\(R(S) \), eq. (11)), for Cartesian stimuli
(filled) and polar stimuli (empty) for \(c = c_0 \), indicating that the normalization had a large
effect on response size. The remaining two pairs of columns are histograms of the indices
\(I_{shape} \) and \(I_{c-p} \), for the standard normalization strength \(c = c_0 \) (columns 3 and 4) and
\(c = 3c_0 \) (columns 5 and 6). Note that the bin width used in this Figure (0.05) is half that of
the bin width used in Figure 3 and Figure 4, because the distributions of the indices
derived from simulations are tightly clustered.

Figure 8

Numerical simulation of the effect of the influence of \(N_{aux} \), the number of neurons in
the auxiliary pool. Pairs of columns shows histograms of the indices \(I_{shape} \) and \(I_{c-p} \) for
\(N_{aux} = 1 \), \(N_{aux} = 8 \), and \(N_{aux} = 30 \). Other simulation parameters are as in the first four
columns of Figure 7.

Figure 9

Post-stimulus histograms (PSTHs) and inferred sensitivity profiles for a macaque V1
Layer 4 neuron, obtained from TDH functions aligned (A) and oblique (B) to the
preferred orientation. PSTH scale bar: 75 impulses/sec, range for pseudocolor maps of
filters: ±5 impulses/sec. The long arm of the superimposed “L” indicates the x-axis of the
stimulus; the short arm indicates the y-axis. Maps of sensitivity profiles span 4.0 deg.
Other plotting conventions as in Figure 2.

Figure 10

Post-stimulus histograms (PSTHs) and inferred sensitivity profiles for a macaque V2
Layer 4 neuron, obtained from TDH functions aligned (A) and oblique (B) to the
preferred orientation. PSTH scale bar: 50 impulses/sec, range for pseudocolor maps of
filters: ±10 impulses/sec. Maps of sensitivity profiles span 4.8 deg. Other plotting
conventions as in Figure 9.

Figure 11

Inferred sensitivity profiles for three macaque V1 neurons (Panel A: layer 4; Panels B
and C: Layers 2/3) in response to aligned and oblique TDH functions. Range for
pseudocolor maps of filters: ±10 impulses/sec (A), ±24 impulses/sec (B), ±5 impulses/sec
(C). Maps of sensitivity profiles span 1.6 deg (A), 2.4 deg (B), and 2.4 deg (C). Other
plotting conventions as in Figure 9.

Figure 12

Comparison of changes in the sensitivity profile for Cartesian vs. polar stimuli of
a single orientation ($I_{\text{aligned}}^{\text{shape}}$ and $I_{\text{oblique}}^{\text{shape}}$, eq. (4), horizontal and oblique hatched symbols),
and Cartesian stimuli in two different orientations ($I_{\text{aligned _ vs _ oblique}}^{\text{shape}}$, eq. (7), open symbols).
Within each set of boxplots, significance levels (two-tailed paired t-tests) are indicated by ** for $p<0.01$ and * for $0.05<p<0.01$. Other boxplot conventions as in Figure 3.
Figure 1
Figure 2
Figure 4

- **macaque V1**
- **cat 17**
- **macaque V2**

Legend:
- All layers: +
- Upper: --
- Lower: ---
- Layer 4: -

Significance Levels:
- $p \geq 0.05$
- $0.01 \leq p < 0.05$
- $p < 0.01$
Figure 7
Figure 8
Figure 9

A
aligned
5201s

B
oblique

Cartesian polar
Figure 11
Figure 12

macaque V1

29

+

macaque V1+

cat 17

41

+

macaque V2

18

all

59

-1 0 1

*

**

**

*

**

**

aligned shape

oblique shape

aligned-vs-oblique shape