Combinatorial responses controlled by synaptic inhibition in the cerebellum granular layer

Jonathan Mapelli*, Daniela Gandolfi*, Egidio D’Angelo
* The authors equally contributed to this paper.

Dept. of Physiology, University of Pavia and CNISM, Via Forlanini 6, I-27100 Pavia, Italy

Correspondence should be addressed to dangelo@unipv.it

Key-words. cerebellum, granular layer, VSD imaging, combinatorial operations

ABSTRACT

The granular layer of cerebellum has been long hypothesized to perform combinatorial operations on incoming signals. Although this assumption is at the basis of main computational theories of cerebellum (Marr, 1969), it has never been assessed experimentally. Here, by applying high-resolution VSD imaging techniques, we show that simultaneous activation of two partially overlapping mossy fiber bundles (either with single pulses or high-frequency bursts) can cause combined excitation and combined inhibition, which are compatible with the concepts of coincidence detection and spatial pattern separation predicted by theory. Combined excitation appeared as an area in which the combination of two inputs is greater than the arithmetic sum of the individual inputs and was enhanced by GABA-A receptor blockers. Combined inhibition was manifest as an area where two inputs combined resulted in a reduction to less than half of the activity evoked from either one of the two inputs alone and was prevented by GABA-A receptor blockers. The combinatorial responses occupied small granular layer regions (about 30 μm diameter), with combined inhibition being interspersed among extended areas of combined excitation. Moreover, the combinatorial effects lasted for tens of milliseconds and combined inhibition occurred only after termination of the stimuli. These combinatorial operations, if engaged by natural input patterns in vivo, may be important to influence incoming impulses organizing spatio-temporal spike sequences to be relayed to Purkinje cells.

INTRODUCTION

In addition to single neuron properties, specific network connectivity is expected to play a critical role for circuit computation (McNaughton et al., 1989, Churchland and Sejnowski, 1992; Buzsáki, 2006). In the hippocampal dentate gyrus, which pre-processes perforant-path signals to be relayed to CA3 neurons, operations like pattern completion and separation have been reported (Leutgeb et al., 2007; Fyhn et al., 2007; Galvan et al., 2008; Bakker et al., 2008). In the cerebellum granular layer, incoming neural signals are pre-processed before being relayed to the Purkinje cells (Eccles et al., 1967). It was suggested that a combinatorial rearrangement of connections would reroute multiple inputs through partially overlapping channels, thus has inspiring the idea that the convergence of inputs and lateral inhibition allow combinatorial operations like coincidence detection and spatial pattern separation (Marr, 1969; Albus, 1971; Marr, 1971; Fujita, 1982). Despite their critical importance and recurrent use in cerebellar computational theories (e.g. see
Torioka, 1980; Gibson et al., 1991; Tyrrell and Willshaw, 1992), these properties have not yet undergone experimental assessment.

In the cerebellum granular layer, mossy fibers activate granule cells and Golgi cells generating a feed-forward (mossy fiber → Golgi cell → granule cell) and a feed-back (mossy fiber → granule cell → Golgi cell → granule cell) inhibitory loop (Eccles et al., 1967). Mossy fiber convergence onto granule cells and the lateral organization of Golgi cell inhibition (Mapelli and D’Angelo, 2007; D’Angelo, 2008; D’Angelo et al., 1995; Jörntell and Ekerot, 2006) provide a substrate for combinatorial operations (Buzsáki, 2006). An important issue concerns circuit dynamics, since phasic inhibition occurs with a delay both in the feed-forward and the feed-back loops (Mapelli and D’Angelo, 2007; Kanichay and Silver, 2008) and Golgi cells are endowed with complex time-dependent properties including spike frequency adaptation, rebounds, and silent pauses (Solinas et al., 2007a, b). Thus, one should expect that combinatorial operations have specific spatio-temporal dynamics related to the inhibitory loops.

In this work, voltage-sensitive dye (VSD) imaging in acute cerebellar slices allowed us to investigate the effect of mossy fiber double-boundle stimulation at high spatio-temporal resolution. Specific areas of the cerebellum granular layer, with dimensions compatible with anatomically identified functional units (Wu et al., 1999; Sultan, 2001), performed either combined excitation or combined inhibition under control of synaptic inhibition. These combinatorial effects appear as the biological counterpart of the theoretical concepts of coincidence detection and spatial pattern separation predicted by theory and may be important to process the mossy fiber input and generate appropriate spike patterns to be relayed to Purkinje cells (Brunel et al., 2004; Steuber et al., 2007; de Solages et al., 2008; D’Angelo and De Zeeuw, 2009).

METHODS

Neuronal circuit analysis has recently been fostered by techniques revealing the spatio-temporal organization of activity inside and across neuronal ensembles (Buzsáki, 2004; Nicolelis et al., 2003; Brecht et al., 2004). VSD imaging allows to record electrical activity over extended neuronal circuits with high stability and spatio-temporal resolution (Cohen and Yarom, 1998; Tominaga et al., 2000; Contreras and Llinas, 2001; Derdikman et al., 2003; Berger et al., 2007; Ferezou et al., 2006; Zhou et al., 2007; Grinvald and Hildesheim, 2004). In this work, VSD imaging has been performed in acute cerebellar slices. It should be noted that, while VSD and intrinsic fluorescence techniques have been applied to investigate molecular layer and Purkinje cell responses (Yae et al., 1992; Elias et al., 1993; Staub et al., 1994; Cohen and Yarom, 1998; Ebner et al., 2005; Chen et al., 2005; Rokni et al., 2007), the spatio-temporal dynamics of granular layer activation were never considered in detail before.

Experimental techniques

Acute cerebellar slices were obtained from 18 to 25 day-old Wistar rats as previously reported (D’Angelo et al., 1995; D’Angelo et al., 1999). Briefly, rats were anesthetized with halotane (SIGMA; 0.5 ml in 2 dm³ for 1-2 min) before being killed by decapitation. The cerebellum was gently removed, the vermis was isolated, fixed on a plastic support with cyano-acrilic glue, and immersed into a cold (2-3°C) cutting solution. Slices (220 μm thick) were cut in the sagittal plane. The cutting solution contained (Dugué et al., 2005; in mM): KGluconate 130, KCl 15, EGTA 0.2, Hepes 20, Glucose 10, pH 7.4 with NaOH. Slices were incubated for about 1 hour before recordings at 31°C in oxygenated Krebs solution containing (mM): NaCl 120, KCl 2, MgSO4 1.2, NaHCO3 26, KH2PO4 1.2, CaCl2 2, glucose 11 (pH 7.4 when equilibrated with 95 %O2-5 %CO2). When needed, the extracellular solution was added with the GABAa receptor blocker, 10 μM bicuculline (SIGMA), the NMDA and AMPA receptor blockers, 50 μM D-APV (Tocris Cookson) and 10 μM NBQX (Tocris Cookson). The dye (Di-4-ANEPPS, Molecular Probes) was dissolved and stocked in Krebs with 50% ethanol (SIGMA) and 5% Cremophor EL (a Castor oil derivative, SIGMA). Slices
for optical recordings were incubated for 30 minutes in oxygenated Krebs solution added with 3% Di-4-ANEPPS stock solution mixed with 50% fetal Bovine Serum (Molecular Probes).

Slices were gently positioned in the recording chamber and were immobilized with a nylon mesh attached to a platinum Ω-wire to improve tissue adhesion and mechanical stability. Perfusion of standard extracellular solution (2-3 ml/min) maintained at 32°C with a feed-back temperature controller (Thermostat HC2, Multi Channel Systems, Reutlingen, Germany) was performed during the recording session. In most experiments, the chamber embedded a Multi-Electrode Array for simultaneous recording and stimulation (MEA 60 MultiChannel Systems, see Mapelli and D’Angelo, 2007 for further details). In some experiments, VSD was combined with whole-cell recordings (WCR; for details see Nieus et al., 2006). The MEA and VSD signals showed a clear congruence (cf. Fig. 1) demonstrating the effectiveness of VSD in detecting membrane potential changes. Moreover, granule cell excitation in WCR correlated with the VSD signal (cf. Fig. 2). MEA and WCRs performed on granule cells did not reveal any significant difference between stained and unstained slices in terms of electrophysiological parameters (data not shown; see also Tominaga et al., 2000; Staub et al., 1994).

The mossy fibers were stimulated with square voltage pulses (±4-8V; 200μs) delivered either individually or in trains (100 Hz or 500 Hz). Voltage pulses were usually applied through couples of MEA electrodes (STG 1008, Multi channel systems). The advantage of this arrangement was that the 60 MEA electrodes allowed to selecting multiple stimulation sites in the same experiment. During coupled VSD and patch-clamp recordings, stimulation was performed by using a bipolar tungsten electrode connected to a pulse generator through a stimulus isolation unit.

VSD recordings and VSD signals

The recording chamber was installed on an upright epifluorescence microscope (BX51WI, Olympus, Europa Gmbh, Hamburg, Germany), equipped with a 10X (UM Plan FL 0.3 NA) or 60X (LUM Plan FL 0.9 NA) objective (see Tominaga et al., 2000). The light generated by a halogen lamp (150W, MHF-G150LR, MORITEX Corp., Tokio, Japan) controlled by an electronic shutter (model0, Copal, Co., Tokio, Japan) was passed through an excitation filter (λ=530±10 nm), projected onto a dichroic mirror (λ=565 nm) and reflected toward the objective lens to illuminate the specimen. Fluorescence generated by the tissue was transmitted through an absorption filter (λ>590 nm) to the CCD camera (MICAM01, Scimedia, Brainvision, Tokio, Japan). The whole imaging system was connected through an I/O interface (MICAM01, Brainvision) to a PC controlling illumination, stimulation and data acquisition. Given the MICAM01 chip resolution (64 x 96 pixels, each with 30 x 30 μm² surface), the 10X objective and the 0.35X C-mount adapter, the final magnification was 3.5X yielding an imaging area of 579 x 850 μm² and a pixel size of ~ 9 x 9 μm². Full-frame image acquisition was performed at 1 kHz. Data were acquired and displayed by Brainvision software and signals were analyzed using routines written in MATLAB (Mathworks, Natick, USA) and IGOR (Wavemetrics, Lake Oswego, OR).

At the beginning of recordings, a calibration procedure was adopted to ensure homogeneity across experiments. The dynamic range of the CCD camera was calibrated by measuring background fluorescence and setting the average light intensity in the absence of stimulation to 60% of the saturation level. When VSD acquisition was started, the optical baseline was sampled for 55 ms before triggering electrical stimulation. The baseline was used to measure the initial fluorescence intensity (F₀) by averaging eight consecutive frames. The relative fluorescence change (ΔF) was then calculated for each time frame and data analysis was performed on ΔF/F₀ values. The stimulation intensity was chosen so that the maximum granular layer response measured 0.5-1% ΔF/F₀. VSD signal analysis was performed on the initial 70 minutes of the experiments, during which F₀ remained almost stable indicating little photo-bleaching (Fig.1B).

The signal-to-noise ratio was improved by averaging 16 consecutive acquisitions at the stimulus repetition frequency of 0.2 Hz. Given maximal ΔF/F₀ ≈ 1% and noise SEM ≈ ±0.1% (n=12 slices), the S/N ratio was about 10 times ensuring a reliable measurement of peak response
amplitude. The VSD fluorescence depends on the relative surface and density of the electrogenic
elements of the granular layer. The granule cell-Golgi cell ratio is 500:1 for number of cells (Eccles
et al., 1967; Harvey and Napper, 1991) and 3:50 for cell surface (D’Angelo et al., 1999;
Dieudonné’, 1998). This yields a 30 times larger electrogenic surface for granule cells, which
therefore had to determine most of the signal.

Following stimulation, $\Delta F/F_0$ reached its maximum amplitude in 3-5 ms corresponding to
the early component of the local field potential (N2a wave) and to the 1st granule cell spike (Fig. 2
and cf. Mapelli and D’Angelo 2007). The VSD was therefore able to reveal the occurrence of spikes
in the appropriate time window. After about 5 ms, circuit inhibition depresses granule cell
responses. Thus, the analysis of the effects of excitation and inhibition could be performed in 5-ms
periods (i.e. by averaging 5 consecutive acquisition frames) beginning with the stimulus. This
temporal averaging procedure provided a further S/N improvement without introducing significant
error in terms of granule cell firing control (see Fig. 5-8 and Supplemental material).

The correlation between VSD signals and neuron membrane potential changes was analyzed
by performing simultaneous WCR from granule cells (as in Mapelli and D’Angelo, 2007). To this
aim, the VSD signals were collected from 16 binned pixels arranged in a 4x4 array and a granule
cell was recorded from the core of the same area (Fig.2A-B). This comparison showed a direct
nearly-linear relationship between intracellular membrane potential and VSD signal. It should be
noted that, since the VSD signal was (i) collected from numerous granule cells, (ii) averaged over
several acquisitions and (iii) sampled at 1 frame /ms, it could not reveal the precise shape of the
action potential (e.g. the fast raise and subsequent AHP). The VSD signal was modulated by the
contribution of the excitatory glutamate NMDA and AMPA receptors and by the inhibitory GABA_A
receptor (see Fig. 3 for details), revealing its sensitivity to subthreshold integration of synaptic
inputs.

Data analysis: threshold setting and noise evaluation

An automatic spot selection procedure was implemented in order to remove subjectivity and
to efficiently extend analysis over all spots and all experiments. The granular layer response to
single ($R_{S1}, R_{S2}$) and double stimuli ($R_{S1&S2}$) was compared with a threshold set at 35% of the
maximum normalized response ($T_{35}$) to discriminate signals from noise. A second threshold was set
at 70% of the maximum normalized response ($T_{70}$) to identify strongly responding regions (see Fig.
2). Combined excitation was identified as the case in which

$$
\begin{align*}
R_{S1} < T_{35} \\
R_{S2} < T_{35} \\
R_{S1} & \& 2 > T_{70}
\end{align*}
$$

Cases in which just $R_{S1}$ or $R_{S2}$ was below threshold was not considered, since those could be non-
responding regions rather than contributing to the combined response. Combined inhibition was
identified as the case in which

$$
\begin{align*}
R_{S1} > T_{70} \\
R_{S2} > T_{70} \\
R_{S1} & \& 2 < T_{35}
\end{align*}
$$

For comparison, the case of single threshold crossing at $T_{70}$ was also considered.

Since recordings are affected by noise, a lower limit for signal detection was determined by
assuming that VSD maps lacked any internal structure. To simulate this condition, data matrices
were generated from a uniform random distribution (MATLAB, Mathworks) to form random maps
(64x96 pixels, equivalent to MICAM01 chip size). Random numbers were scaled to match the
fluorescence fluctuation recorded experimentally. Then, random maps were processed using $T_{35}$ and
T₇₀ as for single and double-threshold analysis of real data (see above), thereby calculating the percentage of activated area that would be detected with a casual pattern. The amount of combined excitation and combined inhibition calculated in this way was marginal compared to that of the experimental data and was devoid of any specific time-courses (Fig 8 dashed lines), indicating that noise did not considerably affect the detection of combinatorial operations.

The extension of active areas was calculated by measuring the number of pixels crossing the T₇₀ threshold of the maximum normalized response. The area variation following various treatments was measured as the relative difference between experimental conditions.

RESULTS

General properties of VSD signals

In this work we have used VSD imaging to assess the impact of double-bundle stimulation on cerebellar granular layer responses. The VSD signal generated by mossy fiber stimulation rapidly invaded the granular layer (Fig. 1A). The VSD signal was made of spots of activity grouped into clusters of irregular, often elongated shape occupying wide sectors of the granular layer. The spot diameter (32.5±4.62 μm; n=47 spots, 8 slices) was estimated by setting a 70% threshold to delimit the spot contour. By using this measure to generate artificial spots at appropriate distances, mathematical simulations allowed to reconstructing the spot/cluster structure (Supplemental Material), suggesting that spots were indeed elementary functional units of the granular layer and that relevant combinatorial effects had to be searched at the spot level.

The origin of the VSD signal was assessed by a comparison with extracellular field potentials, which were simultaneously recorded with a multi-electrode array (MEA) placed under the slice (n=6; Fig. 1A; cf. Mapelli and D’Angelo, 2007). The MEA had electrodes separated by 100 μm, which could not reveal the spot-based structure of the granular layer response. Nonetheless, after appropriate filtering, the VSD became similar to MEA maps (n=6 experiments), demonstrating that VSD and MEA were likely to be generated by the same signal sources. The VSD response to mossy fiber stimulation remained stable for more than 1 hour, with a modest (<5%) decay possibly caused by photo-bleaching (Fig. 1B).

In order to assess the activity state of neurons generating the VSD signal, whole-cell recordings were performed from granule cells in the core of responding areas (Fig. 2A), both in control condition (n=4) and with 10 μM bicuculline (n=5). The granule cells showed EPSPs and EPSP-spike complexes in variable proportions depending on the stimulation intensity (cf. D’Angelo et al., 1995). At low intensity, the VSD signal taken from a ROI surrounding the patch electrode had a shape and size reflecting that of the EPSP. At higher intensity, EPSP-spike complexes dominated the granule cell responses and the VSD response increased accordingly. However the VSD response remained slower and proportionately smaller than the average intracellular electrical response. This was probably due to a series of factors, including the (i) limited sampling frequency of the system (typically 1 KHz), (ii) the predominance of granule cells making EPSPs over those making spikes, (iii) the time scattering of spikes in different cells and (iv) inhomogeneity between core and periphery of the ROI. Despite this limitation, the intensity of VSD responses in an excited area was directly proportional to the average change in intracellular membrane potential (Fig. 2B), indicating that single granule cell activity is correlated with the ensemble population signal (see Grinvald and Hildesheim, 2004; for similar observation in the neocortex). It was thus possible to identify a threshold at 70% of maximum VSD signal amplitude ideally separating subthreshold responses from spikes. This separation has to be interpreted in statistical terms, so that crossing the 70% threshold means considerably raising the probability of transiting from non-spiking to spiking regime in granule cell responses.

**** Fig. 1, Fig. 2 ****

Delayed inhibition in granular layer responses
It has recently been proposed that inhibition in granule cells could be delayed with respect to mossy fiber excitation generating the so-called time-window effect (D’Angelo and De Zeeuw, 2009). Since this could have an impact on combinatorial responses generated by double-bundle stimulation, the granular layer response was assessed at different times by modifying the efficiency of the principal mechanisms regulating granule cells activity, namely the number of active mossy fibers and the strength of the excitatory and inhibitory loops (Fig. 3).

The active area was analyzed in two neighboring time periods (0-4 ms and 5-9 ms), which are critical for the emergence of the window effect (Mapelli et al., 2007; Kanichay and Silver, 2008). While recruiting additional mossy fibers by increasing stimulation (D’Angelo et al., 1995; Sola et al., 2004) sorted a similar effect in these time windows (65.1±26.5% at 0-4 ms vs. 71±23.8% at 5-9 ms; p=0.87, n=4 slices, paired t-test), differential regulation was observed by altering the excitatory/inhibitory balance. Following application of the GABA-A receptor blockers 10 μM bicuculline (n=10) or 10 μM gabazine (n=4), which reduce the strength of Golgi cell – granule cell connections (Mapelli et al., 2009; Fig. 3B), the extension of granular layer activity increased more in the second than in the first time-period (18.5±5.8% at 0-4 ms vs. 187.8±25.2% at 5-9 ms; p<10^-6 n=14 slices, paired t-test). After the first 4 ms, inhibition regulates the effectiveness of excitation mostly by controlling NMDA channel unblock and regenerative activation of the NMDA current (D’Angelo et al., 1995; Mapelli et al., 2007). Accordingly, following application of the NMDA receptor antagonist 50 μM APV (n=4) (Fig. 3D), the extension of granular layer activity decreased more in the second than in the first time-period (-18.7±8.7% at 0-4 ms vs. -48.3±5.1% at 5-9 ms; p=0.01, n=4 slices, paired t-test).

The time course of changes induced by the different treatments was measured in representative areas corresponding to visually identified spots. By simply raising the stimulus intensity, the granular layer response changes observed at peak were maintained for at least 50 ms (53.3±14.6 % vs. 46.7±9.9 %, n=4, p<0.64, paired t-test; Fig 3A). However, application of 10 μM bicuculline or 10 μM gabazine (n=4) caused a much smaller signal increase at peak than after 50 ms (32.2±5.1% vs. 123.9±33.4 %; n=14 experiments; p<0.01, paired t-test; Fig 3A). Consistently, application of 50 μM APV caused a much smaller signal decrease at peak than after 50 ms (-28.1±6.9% vs. -57±11.1 %; n=4, p<0.01, paired t-test; Fig 3C).

Therefore, the action of inhibition arose with a delay of about 5 ms and persisted for at least 50 ms. The excitatory/inhibitory balance in this delayed period of the response was regulated by GABA-A (inhibitory) and NMDA (excitatory) receptors. Any responses were finally suppressed by 10 μM NBQX (Fig 3C), indicating that AMPA receptors provided the necessary depolarization triggering the response. These observations indicate that the general mechanism of regulation of the granular layer response (Armano et al., 2000; Mapelli and D’Angelo, 2007; for review see D’Angelo and De Zeeuw, 2009) can be observed using VSD imaging.

**Fig. 3**

**Double bundle stimulation reveals combinatorial operations in the granular layer**

The structural organization of the cerebellum granular layer suggests that it should be able to perform combinatorial operations on incoming mossy fiber inputs. On the one hand, *combined excitation* generated by convergent inputs could enhance activation in specific granule cell subsets. On the other hand, the Golgi cells converging through lateral connections onto some granule cell subsets could generate *combined inhibition*. These effects have been predicted to generate, as computational counterpart, *coincidence detection* and *spatial pattern separation* (Marr, 1969; Albus, 1971; Fujita, 1982).

Fig 4A shows a typical double-bundle experiment. As a whole, the overlapping area was more excited when the two bundles were activated together rather than independently (the increase was 42.7±12.4%; n=12 slices; p<0.05, paired t-test) (Fig. 4A). This was not unexpected given the effect of mossy fiber recruitment reported in Fig. 3 (see also D’Angelo et al. 1995; Sola et al., 2004).
However, fine-grain analysis evidenced a more complex pattern on the spot scale (Fig. 4B). Whereas in some areas the response was enhanced by double-bundle stimulation (combined excitation), in others the opposite occurred so that the response was strongly reduced (combined inhibition) (Fig. 4B).

The analysis performed on visually selected spots showed that, in case of combined excitation, the time-course of the combined response rapidly increased during the first 5 milliseconds and maintained a sustained level for the subsequent 20 ms (Fig. 4C, left). This was likely to reflect rapid EPSP temporal summation and spike generation in granule cells, which are known to respond within 2-4 ms from the stimulus (D’Angelo, 2008, Jörntell and Ekerot, 2006; D’Angelo et al., 1999). In case of combined inhibition (Fig. 4C, right), the combined response also peaked in about 5 ms but then rapidly declined below the level of individual responses.

The average response in several spots showed a similar time-course as in individual spots, indicating that the two patterns were indeed typical and reproducible (Fig 5A). The analysis of combinatorial operations was extended by investigating their time course during repetitive stimulation (Fig. 5B-C), which represents the common mode of mossy fiber discharge (van Kan et al., 1993, 1994; Kase et al 1980; Jörntell and Ekerot, 2006; Chadderton at el., 2004; Rancz et al., 2007; Prsa et al., 2009). In response to bursts composed by 5 impulses at either 100 Hz or 500 Hz, granular layer activation became more intense and reliable (this is clearly visible in the insets to Fig. 5 and in the movies reported in Supplemental Material). The differential behavior of spots performing combined excitation or combined inhibition was also observed in these cases. In particular, combined excitation was manifest as a persistent enhancement of the combined response during and after stimulation, while combined inhibition was characterized by an initial growth followed by a marked decline of the combined response just after the end of the stimulus train (cf. Fig. 5B-C).

The ability of neurons to making spikes implies sharp nonlinear transitions in the intensity of responses. With combined excitation the combined response to single stimuli was significantly larger than the sum of the individual responses (by 47.6±8.9%; n=25 ROI, n=5 slices, p<0.001 paired t-test), while with combined inhibition the combined response was smaller than the sum of the individual responses (by -85.4±1.6%; n=25 ROI, n=5 slices, p<0.001 paired t-test) and usually even of individual responses themselves. Similarly significant statistics were observed for responses to train stimulation, as shown in Fig. 5 (inset histograms). Thus, combined excitation and combined inhibition are compatible with the concepts of coincidence detection and spatial pattern separation predicted by theory (Marr, 1969; Albus, 1971; Fujita, 1982).

**** Fig. 4, Fig. 5 ****

Stability, time course and extension of combinatorial responses

A quantification of the extension of combinatorial operations was obtained by measuring the granular layer activity changes across a double (T35 - T70) threshold (cf. Fig 2B and Methods). This generated an ideal separation between high- and low-probability spiking areas and allowed to detecting the combinatorial operations automatically without the intervention of subjective spot selection and to efficiently extending analysis over all detectable spots in all the available experiments. Clustered groups of pixels showed characteristic spatio-temporal evolution of the combinatorial operations (Fig. 6A-B). During the 20-25 ms following the stimulus, the extension and intensity of responses evolved following slightly different time courses in the individual clusters (Fig. 6A-B). Combined inhibition often showed oscillations that could correspond to reverberation of inhibition through local circuit loops (see Discussion). Similar results were obtained using single stimuli as well as bursts at 100 Hz and 500 Hz (data not shown).

Combined excitation and combined inhibition occupied, as a proportion of the commonly activated area, 45.2±8.7% and 2.04±0.54% with single stimuli (n=10 slices), 49.35±10.34% and 3.44±1.4% with 500 Hz bursts (n=5 slices), and 51.96±11.8% and 3.65±1.35% with 100 Hz bursts.
(n=10 slices). It should be noted that, by adopting a single $T_{70}$ threshold criterion, \textit{combined excitation} increased marginally while \textit{combined inhibition} increased up to around 15% of the commonly activated area, suggesting that this latter process was especially under-estimated in our analysis. Nonetheless, in general, regions performing \textit{combined inhibition} were less extended than those performing \textit{combined excitation} (cf. Fig. 4 and see Fig. 7).

**** Fig. 6 ****

\textbf{Regulation of spatio-temporal dynamics by repetitive stimulation and synaptic inhibition}

The maps reported in Fig. 7 show the distribution of areas performing \textit{combined excitation} and \textit{combined inhibition}. With all stimulus patterns, \textit{combined inhibition} was scattered in several spots over the activated area in common to the two stimuli. The average time course of combinatorial operations averaged over all the spots in the same category is shown in Fig. 8. With all stimulus patterns, \textit{combined excitation} arose rapidly and progressively declined after the stimuli. Conversely, \textit{combined inhibition} was almost absent during stimulation but arose soon thereafter.

The delayed occurrence of \textit{combined inhibition} suggested that it was dynamically regulated by synaptic inhibitory loops, which in the granular layer can provide both delayed activation and lateral inhibition (D’Angelo and DeZeeuw, 2009; D’Angelo et al., 2009). To test this hypothesis, double-bundle stimulation experiments were continued with the application of 10 $\mu$M bicuculline to block GABAergic transmission from Golgi to granule cells. After application of bicuculline, \textit{combined inhibition} was almost entirely abolished, while \textit{combined excitation} increased (Fig. 7, Fig. 8). With single stimuli, the change induced by bicuculline in \textit{combined inhibition} was maximal at 10-20 ms (-95.1±4.9%; n=12, p<0.001, paired $t$-test). Significant differences were also induced by bicuculline using repetitive stimulation, with maximum significant changes in combined inhibition occurring 20-40 ms after the end of 500 Hz bursts (-100%, n=5, p<0.0001, paired $t$-test) and 50-80 ms after the end of 100 Hz bursts (-65.5±11.4%, n=11, p<0.01, paired $t$-test). In the same time periods, there were also significant changes in coincidence detection but in the opposite direction (single stimuli, 55.87 ±5.9%; n=12, p<0.01; 500 Hz bursts, 104.3±7.9, n=5, p<0.01; 500 Hz bursts, 56.3±10.4, n=11, p<0.02.; paired $t$-tests). This result supports the important role of synaptic inhibition to modulate combinatorial operations in the granular layer.

**** Fig. 7, 8 ****
DISCUSSION

The central observation in this paper is that the cerebellum granular layer can perform two combinatorial operations, combined excitation and combined inhibition, controlled by the relative intensity of synaptic inhibition. The combinatorial effects lasted for tens of milliseconds and, combined inhibition occurred in specific granule cell subsets only after stimulation was terminated. Combined excitation and combined inhibition provide the first demonstration that combinatorial operations compatible with those predicted by theory, coincidence detection and spatial pattern separation (Marr, 1969; Albus, 1971), could actually take place in the cerebellum granular layer.

The key role of local circuit inhibition for determining granular layer combinatorial operations was supported by several observations. First, in combined inhibition elicited by single mossy fiber pulses, the 4-5 ms delay coincides with the time required to enable mossy fiber → Golgi cell → granule cell feed-forward inhibition (Kanichay and Silver, 2008; Barmack and Yakhnitsa, 2008; for review see D’Angelo, 2008). The oscillatory responses observed in certain areas is reminiscent of similar effects generated by recurrent activity in the granule cell → Golgi cell → granule cell feedback inhibitory loop (e.g see Maex and DeSchutter, 1998). Secondly, inhibition revealed a differential control over the two operations, in that combined excitation was enhanced while combined inhibition was abolished by blocking GABA-A receptors. The multiform inhibition-dependent dynamics shown by network responses are in keeping with predictions generated by large-scale models of the granular layer (Medina and Mauk, 2000; Solinas and D’Angelo, unpublished observations).

The spatial properties of ensemble granular layer activity revealed details on a scale one order of magnitude smaller than previously reported using extracellular field recordings (Morissette and Bower, 1996; Shambes et al., 1978; Mapelli and D’Angelo, 2007). The combinatorial operations were manifest in small cell aggregates (called spots) with an apparent diameter around 30 μm. The size of the spots is in matching with “granular layer units” determined by branching of mossy fibers, which form clusters of rosettes in the sagittal plane (Sultan, 2001; Sultan and Heck, 2003, Eccles et al., 1967). The occurrence of combinatorial operations in multiple scattered areas suggests specific local circuit topologies. In areas showing combined excitation, mossy fiber convergence onto granule cells needs to be predominant (D’Angelo et al., 1995; Jörntell and Ekerot, 2006) over convergence onto Golgi cells, so that Golgi cells can only proportionately reduce granule cell activation. Conversely, in areas showing combined inhibition, mossy fibers convergence onto Golgi cells needs to be predominant over convergence onto granule cells, so that Golgi cells can generate effective and strong inhibition during double-bundle stimulation. It is likely that these effects require lateral inhibition (for a general discussion see Buzsáki, 2006), which has indeed been reported in the cerebellum granular layer (Mapelli and D’Angelo, 2007).

The kinetics of combinatorial operations also suggest the involvement of specific cellular and circuit properties. During high-frequency bursts, the granular layer response increased without being blocked by inhibition. This effect indicates that Golgi cell activity does not usually prevail over mossy fiber excitation during the burst, in line with the observation of protracted granule cell firing in response to sensory stimuli (Chadderton et al., 2004; Jörntell and Eckerot, 2006; Rancz et al, 2007). The marked adaptation characterizing Golgi cell discharge (Solinas et al., 2007a, b) and the presynaptic inhibition of GABA release through mGlu and GABA-B receptors (Mitchell and Silver, 2003; Mapelli et al., 2009) could decrease the efficiency of granule cell inhibition during the burst. Secondly, after the termination of the stimulus, the presence of delayed responses implies that granule cell excitation is protracted and that inhibition can strongly interfere with this late response. This effect is likely to reflect the interplay of the NMDA receptor-mediated conductance, which generates an after-depolarization lasting for as long as hundred milliseconds (see Fig. 2A; D’Angelo et al., 1995), and the GABA receptor-mediated conductance, which can also last for a similar time (see Fig. 2A; Eccles et al., 1967; Maffei et al., 2002) due to spillover-mediated activation of α6 receptors (Rossi and Haman, 2003). Actually, the NMDA current is weakly regenerative and its
Depolarizing effect can be effectively turned-off by raising the granule cell input conductance through GABA-A receptor opening (Mapelli and D’Angelo, 2007).

Combined excitation and combined inhibition may be regulated by several factors determining the excitatory/inhibitory balance of granule cells in vivo. The intensity and distribution of the mossy fiber inputs, the partially independent control of granule and Golgi cells from different receptive fields (Jörntell And Ekerot, 2002) and the block of Golgi cell activity by stellate cells (but perhaps also by Purkinje cells and Lugaro cells: Barmack and Yakhnitsa, 2008; for review see D’Angelo, 2008) leave ample space for the spatio-temporal organization of combinatorial operators. Moreover, synaptic plasticity in granular layer circuit synapses may generate new configurations by controlling the local excitatory/inhibitory balance (Hansel et al., 2001; Mapelli and D’Angelo 2007; D’Angelo and DeZeeuw, 2009). Finally, it should be noted that the effectiveness of inhibition, and therefore of combined inhibition, may be larger in the intact tissue than in the present experiments, since connections made by laterally oriented Golgi cell axons are severed at the slice border. It follows that the major role of the Golgi cells may indeed be that of generating surround inhibition implementing spatial pattern separation rather than performing gain control over mossy fiber inputs (cf. Prsa et al., 2009).

Combined excitation and combined inhibition are likely to represent the counterpart of coincidence detection and spatial pattern separation defined in the Motor Learning Theory (Marr, 1969, 1971; Albus, 1971; Torioka, 1980; Gibson et al., 1991; Tyrrell and Willshaw, 1992) and may therefore bear several implications for cerebellar circuit functioning. Coincidence detection and spatial pattern separation may contribute to generate the output spike patterns to be relayed to Purkinje cells (D’Angelo and DeZeeuw, 2009; Pouille et al., 2001). Inasmuch the properties observed in vitro are exploited by natural patterns in vivo (e.g see vanKan 1993, 1994; Prsa et al., 2009), spatial pattern separation may be particularly relevant to processing sequences of burst rather than individual bursts, preventing certain granular cell groups from being reactivated by a second input occurring within some tens of milliseconds. Thus, the long-sought spatio-temporal filtering predicted by theory (Fujita, 1982) may work as a device regulating cycles of circuit reactivation in centre-surround geometry. This in turn would promote selection of Purkinje cells (Brunel et al., 2004; Steuber et al., 2007; de Solages et al., 2008) during presentation of complex spatio-temporal mossy fiber patterns. It should also be noted that the present circuit mechanism may implement logical operations (including XOR; Churchland and Sejnowski, 1992), an aspect deserving further experimental and theoretical analysis.

Acknowledgments. We wish to thank Dr. S. Fusi and Dr. L. Sacconi for critical comments on an early version of the manuscript and G. Ferrari for technical support. This work was supported by CNISM-NEUROIMAGE and EU SENSOPAC FP6-IST028056. D.G. is pericipient of a PRIN fellowship of MIUR.
REFERENCES


Figure legends

Fig.1
The relationship between VSD and MEA signals.
A. Left. Top, parasagittal slice of the cerebellar vermis placed on a multi-electrode array (MEA): mf, mossy fiber; gl, granular layer; PC, Purkinje cells, ml, molecular layer. The white rectangle delimits the area detected by the camera, which is shown in the other panels. Bottom, MEA electrical map (see Mapelli and D’Angelo, 2007). Right. Top, optical maps of evoked granular layer activity obtained with Voltage-Sensitive Dye (VSD) imaging. Bottom, same VSD recording after spatial filtering to match the MEA result. In these and the following maps, black dots indicate the pair of stimulating electrodes, dashed white lines represent the PC and continuous white line indicates MF. B. Time course of VSD amplitude (ΔF/F₀) in a region of interest (ROI). Data are mean ± SEM (n=10). Note stability of the VSD signals over time.

Fig.2
The relationship between VSD signals and granule cell activity.
A. Image of a stained cerebellar slice obtained by collecting background epifluorescence showing a portion of the granular layer during a whole-cell recording. Note that the patch pipette appears as a shadow since it is not filled with dye molecules. EPSPs and EPSP-spike complexes were obtained at low and high stimulation intensity, respectively. The circle indicates the ROI surrounding the recorded granule cell, from which the VSD signal has been measured. Average electrical signals (black traces) are compared to average fluorescence changes (blue and red traces). B. Correlation between average fluorescence change and average membrane depolarization. Note that fluorescence values are normalized to maximum responses (cf. Petersen and Sakmann, 2001). The dotted line corresponds to threshold set at 70% and fitting is performed with an exponential function (y=A₀(1-exp(-x/τ)); A₀=1.06, τ=20.2). Red circles indicate cases in which granule cells responded with spikes in at least half of the stimulation sweeps. Data points are taken from 4 different cells (see methods).

Fig.3
The impact of GABA and NMDA receptors on granular layer responses.
A. The VSD signal was enhanced by increasing the stimulation intensity and by the GABA-A receptor blocker, 10 μM bicuculline. Note that the GABA receptors were most effective in the late component of the response. B. VSD maps of granular activity obtained in response to mossy fiber stimulation at two different intensities (3 Volts and 7 Volts) and after application of 10 μM bicuculline. The maps are shown during the first 0-4 ms, when only excitation is present, and at 5-9 ms, when feed-forward inhibition is activated. Note that, while the response enhancement caused by increased stimulation is already evident at 0-4 ms and persists thereafter, that caused by bicuculline is delayed and appears at 5-9 ms. C. The VSD signal was reduced by the NMDA receptor blocker, 50 μM APV while the AMPA receptor blocker, 10 μM NBQX, completely suppressed the response. D. VSD maps of granular activity obtained in response to mossy fiber stimulation and after the application of 50 μM APV. The maps are shown at the peak of the response, and at 5-9 ms after the stimulus, when the effect of the block NMDA receptors is most evident. Note that the reduction of granular layer activity is most evident in the late phase of the response.
Fig. 4

**Combined excitation and combined inhibition upon double bundle stimulation.**

A. VSD maps were obtained by stimulating independently (Stim1, Stim2) or simultaneously (Stim1&2) two separate portions of the Mf bundle with different couples of MEA electrodes (black dots). The response is shown in two time windows (0-4 ms and 5-9 ms after the stimuli). Visual inspection of these large scale maps evidences spatial summation as the major effect of double bundle stimulation. B. A detailed view (taken inside the white box drawn in A) reveals a more complex organization of the response. White circles indicate a region in which the conjoint response is enhanced compared to single responses at 0-4 ms. Black circles indicate a region in which the conjoint response is cancelled at 5-9 ms. C. The time courses of VSD signal relative to the patterns shown in B. Grey dots correspond to responses to single bundle stimulation, black dots correspond to responses to double bundle stimulation. Note that the two ROIs identified in B show quite different responses dubbed **combined excitation** (corresponding to B, left) and **combined inhibition** (corresponding to B, right). Clearly, combined excitation showed immediate and persistent enhancement in the double response, while combined inhibition showed a delayed reduction in the combined response.

Fig. 5

**Combinatorial responses elicited by repetitive stimulation**

Average time course of VSD signals taken from regions of interests (ROI: 27x27 μm²) showing similar patterns of activation (either combined excitation or combined inhibition) in response to the stimulation of mossy fibers (A) with a single pulse (n=5), (B) with a 500 Hz burst (n=5) and (C) with a 100 Hz burst (n=5). Left, average time course of VSD signals showing combined excitation. Right, average time course of VSD signal showing combined inhibition. The plots show single bundle stimulation (grey dots) and double bundle stimulation (black dots), and dashed lines indicate the stimulus times. Note that, with all patterns, the double bundle response is enhanced in ROIs performing combined excitation but is reduced in ROIs performing combined inhibition. The insets show the VSD signals generated by a 500 Hz and a 100 Hz bursts compared to single pulse stimulation (scale bars 0.2% ΔF/Fo, 50 ms). The histograms show % peak change, demonstrating supralinear increase during combined excitation and reduction during combined inhibition (p<0.01 between A+B and A&B in all the experimental conditions, paired t-test).

Fig. 6

**Local stability and evolution of combinatorial responses**

A. Upper panels show pixels performing combined excitation at different time frames and the graph shows the time courses of several such pixels. Data collected from different experiments are indicated by gray lines and the ensemble behavior is indicated with a thick black line (n=9). Combined excitation shows an early activation, reaches its maximum in few ms (5-10) and then slowly decreases. B. Upper panels show pixels performing combined inhibition at different time frames and the graphs show the time courses of several such pixels. Data collected from different experiments are indicated by gray lines and the ensemble behaviors are indicated with thick black lines (n=9). In the majority of cases, combined inhibition shows a delayed activation, reaches its maximum beyond 10 ms, and slowly decreases (left; n=5). In some cases combined inhibition shows rebound phases at 20-25 ms, probably due to some feed-back loops (right; n=4). Traces in the two panels have been sorted according to increasingly delayed activation.

Fig. 7
The spatial organization of combinatorial responses: dependence on synaptic inhibition.

Left. Pixels performing combined inhibition (white) are scattered among pixels performing combined excitation (black) in response to the stimulation of mossy fibers (A) with a single pulse, (B) with a 100 Hz burst and (C) with a 500 Hz burst. The data were taken when combined inhibition was maximal (10 ms from the stimulus in A, 20 ms from the end of the burst in B, 50 ms from the end of the burst in C). Right. Application of 10 μM bicuculline abolished combined inhibition.

Fig.8

The kinetics of combinatorial responses: dependence on synaptic inhibition.

Time course of areas (expressed as % of commonly activated pixels) performing combined excitation and combined inhibition in control (filled circles) and in the presence of 10 μM Bicuculline (open circles). Left. Average time course of combined excitation. Right. Average time course of combined inhibition. Responses to the stimulation of mossy fibers (A) with a single pulse (n=12), (B) with a 500 Hz burst (n=5) and (C) with a 500 Hz burst (n=11). Note that, in all cases, combined excitation grows rapidly and then slowly decays after the end of the stimuli. Conversely, combined inhibition increases only after the end of the stimuli. Moreover, combined excitation is enhanced by 10 μM bicuculline application while combined inhibition is abolished. In all panels dashed horizontal lines indicate the average amount of combined excitation and combined inhibition calculated on random matrices (see Methods).
**A**

- Spike and EPSP waveforms with annotations: 20 mV, 30 m, 10 ms.
- Image with a scale bar of 30 μm.

**B**

- Graph showing the relationship between Norm ΔF/Fo and Average Dep (mV) with data points and a trend line for n=4.
A

Low stimulation

High stimulation

Bicuculline

0

%DF/F0

0.8%

0-4ms 5-9ms

B

Low stimulation

High stimulation

Bicuculline

C

Control

APV

NBQX

0.2%DF/F0

20ms

D

Control

APV

0-4ms 5-9 ms

0.8%

0%DF/F0

200µm
Combined excitation  Combined inhibition

A

Single stimulus

B

500Hz burst

C

100Hz burst

% area

* ** ***

Stim 1
Stim 2
Stim 1&2
Stim 1+2

Norm ΔF/F0

time (ms)

0 1 02 0 3 04 0 5 0

0 1 02 03 04 0 5 0

0 1 02 0 4 0 6 0 8 0 1 0 0

0 20 40 60 80 100

Norm ΔF/F0

time (ms)

0 1 02 0 3 04 0 5 0

0 1 02 03 04 0 5 0

0 20 40 60 80 100

% area
A 
Combined excitation

B 
Combined inhibition

% activated area vs. Time (ms)
A. Combined excitation

Combined inhibition

Single stimulus

Control

Bicuculline

B. 500 Hz

C. 100 Hz