Mitochondrial Ca\(^{2+}\) activates a cation current in *Aplysia* bag cell neurons

by:

Charlene M. Hickey, Julia E. Geiger, Chris J. Groten, and Neil S. Magoski

Department of Physiology, Queen’s University, Kingston, ON, K7L 3N6, Canada

Running title: mitochondrial Ca\(^{2+}\) gates a cation current

Submitted to the *Journal of Neurophysiology* as a research article

Manuscript contains: pages (38), figures (10), references (96), tables (0).

Word count: total (8985), abstract (297; 300 limit), introduction (493), methods (1674), results (2816), discussion (1831), figure legends (1874).

Key words: FCCP, CPA, intracellular Ca\(^{2+}\), fura, mollusc

Correspondence: Dr. N.S. Magoski
Queen’s University
Department of Physiology
4\(^{th}\) Floor, Botterell Hall
18 Stuart Street, Kingston, ON, K7L 3N6, Canada
Tel: (613) 533-2700
Fax: (613) 533-6880
E-mail: magoski@queensu.ca

Acknowledgements

The authors thank Ms. SL Smith for technical assistance, Mrs. NM Magoski for evaluation of previous drafts of the manuscript, and Dr. CA Ward for advice as well the generous gift of xanthine and xanthine oxidase. CMH held an Ontario Graduate Scholarship and NSM holds a Canadian Institutes of Health Research New Investigator Award. Supported by a CIHR operating grant to NSM.
Abstract

Ion channels may be gated by Ca$^{2+}$ entering from the extracellular space or released from intracellular stores - typically the endoplasmic reticulum. The present study examines how Ca$^{2+}$ impacts ion channels in the bag cell neurons of *Aplysia californica*. These neuroendocrine cells trigger ovulation through an afterdischarge involving Ca$^{2+}$ influx from Ca$^{2+}$ channels and Ca$^{2+}$ release from both the mitochondria and endoplasmic reticulum. Liberating mitochondrial Ca$^{2+}$ with the protonophore, carbonyl cyanide-"p"-trifluoromethoxyphenyl-hydrazone (FCCP), depolarized bag cell neurons, while depleting endoplasmic reticulum Ca$^{2+}$ with the Ca$^{2+}$-ATPase inhibitor, cyclopiazonic acid, did not. In a concentration-dependent manner, FCCP elicited an inward current associated with an increase in conductance and a linear current/voltage relationship that reversed near -40 mV. The reversal potential was unaffected by changing intracellular Cl$^{-}$, but left-shifted when extracellular Ca$^{2+}$ was removed, and right-shifted when intracellular K$^{+}$ was increased. Strong buffering of intracellular Ca$^{2+}$ decreased the current, although the response was not altered by blocking Ca$^{2+}$-dependent proteases. Furthermore, fura imaging demonstrated that FCCP elevated intracellular Ca$^{2+}$ with a time course similar to the current itself. Inhibiting either the V-type H$^{+}$-ATPase or the ATP synthetase failed to produce a current, ruling out acidic Ca$^{2+}$ stores or disruption of ATP production as mechanisms for the FCCP response. Similarly, any involvement of reactive oxygen species potentially produced by mitochondrial depolarization was mitigated by the fact that dialysis with xanthine/xanthine oxidase did not evoke an inward current. However, both the FCCP-induced current and Ca$^{2+}$ elevation were diminished by disabling the mitochondrial permeability transition pore with the alkylating agent, N-ethylmaleimide. The data suggest that mitochondrial Ca$^{2+}$ gates a voltage-independent, non-selective cation current, with the potential to drive the afterdischarge and contribute to reproduction. Employing Ca$^{2+}$ from mitochondria, rather than the more common endoplasmic reticulum, represents a diversification of the mechanisms that influencing neuronal activity.
Introduction

Intracellular Ca\(^{2+}\) is a fundamental signal that impacts secretion, gene expression, and ion channel function (Levitan 1999; Greer and Greenberg 2008; Neher and Sakaba 2008). Ca\(^{2+}\) enters neurons through voltage-gated Ca\(^{2+}\) channels as well as via release from intracellular stores (Friel and Chiel 2008). The best-studied store is the endoplasmic reticulum, which may be accessed by Ca\(^{2+}\) influx stimulating ryanodine receptors (Ca\(^{2+}\)-induced Ca\(^{2+}\) release), metabotropic receptors initiating inositol triphosphate synthesis, or block of the Ca\(^{2+}\)-ATPase (by cyclopiazonic acid (CPA) or thapsigargin) permitting Ca\(^{2+}\) to leak out of the organelle (Seidler *et al.* 1989; Thastrup *et al.* 1990; Solovyova *et al.* 2002; Bardo *et al.* 2006). Endoplasmic reticulum Ca\(^{2+}\) can influence neuronal activity and excitability by acting on various ion channels, including Ca\(^{2+}\)-activated K\(^+\) and non-selective cation channels (Tatsumi and Katayama 1994; Crawford *et al.* 1997; Li *et al.* 1999), as well as ionotropic receptors and voltage-gated Ca\(^{2+}\) channels (Emptage *et al.* 1999; Richter *et al.* 2005).

The other major reservoir is the mitochondria, which maintains high Ca\(^{2+}\) because the very negative voltage across the inner membrane makes Ca\(^{2+}\) entry electrically favourable (Campanella *et al.* 2004). Ca\(^{2+}\) can be liberated by collapsing this voltage with protonophores such as carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) (Heytler and Prichard 1962; Fulceri *et al.* 1991). Additionally, loading mitochondria with Ca\(^{2+}\) during action potentials can lead to subsequent release of that Ca\(^{2+}\) through exchangers (Wingrove and Gunter 1986; Colegrove *et al.* 2000). Mitochondria have been considered Ca\(^{2+}\) buffers or sinks, with a less-than-direct role in Ca\(^{2+}\) signalling (Friel and Tsien 1994). Thus, while mitochondrial Ca\(^{2+}\) uptake certainly influences synaptic transmission and plasticity (Tang and Zucker 1997; Billups and Forsythe 2002), there is little evidence of mitochondrial Ca\(^{2+}\) itself accessing membrane channels and regulating excitability.

The bag cell neurons control reproduction in the marine mollusc, *Aplysia californica* (Kupfermann 1967; Pinsker and Dudek 1977). Stimulation of these neurons initiates a prolonged burst, referred to as
the afterdischarge, which culminates in the neurohemal secretion of peptide hormones to trigger egg-laying behaviour (Conn and Kaczmarek 1989). We have previously reported that the bag cell neurons present a unique form of Ca\(^{2+}\)-induced Ca\(^{2+}\) release (Geiger and Magoski 2008). This response is partially attenuated by depleting endoplasmic reticulum Ca\(^{2+}\) with CPA, or blocked altogether by prior pharmacological treatments causing either mitochondrial depolarization (with FCCP) or inhibition of mitochondrial Ca\(^{2+}\) exchange. It appears that subsequent to voltage-gated Ca\(^{2+}\) entry, the mitochondria expel their Ca\(^{2+}\) to elicit further Ca\(^{2+}\) release from the endoplasmic reticulum. The present study examines the biophysical consequence of liberating Ca\(^{2+}\) from either the mitochondria (with FCCP) or the endoplasmic reticulum (with CPA) in bag cell neurons. Our rather surprising finding is that Ca\(^{2+}\) from the mitochondria, rather than the endoplasmic reticulum, causes marked depolarization by opening a cation channel. Not only do these results have implications for the afterdischarge and *Aplysia* reproduction, but broaden the general function of the mitochondria from a somewhat passive store to one capable of actively regulating membrane conductances.
Methods

Animals and cell culture

Primary cultures of isolated bag cell neurons were attained from adult *Aplysia californica*, weighing 150-500 g. Animals were purchased from Marinus (Long Beach, CA, USA) or Santa Barbara Marine Biologicals (Santa Barbara, CA, USA) and housed in an ~300 l aquarium containing continuously circulating, aerated artificial seawater (Instant Ocean; Aquarium Systems; Mentor, OH, USA) at 14-16° on 12/12 h light/dark cycle and fed Romaine lettuce 5x/week. Following anaesthesia by injection of isotonic MgCl₂ (~50% of body weight), the abdominal ganglion was removed and treated for 18 h with neutral protease (13.33 mg/ml; 165859; Roche Diagnostics, Indianapolis, IN, USA) dissolved in tissue culture artificial seawater (tcASW; containing in mM: 460 NaCl, 10.4 KCl, 11 CaCl₂, 55 MgCl₂, 10 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), glucose (1 mg/ml), penicillin (100 U/ml), and streptomycin (0.1 mg/ml), pH 7.8 with NaOH). The ganglion was then transferred to fresh tcASW and the two bag cell neuron clusters dissected from the surrounding connective tissue. Using a fire-polished Pasteur pipette and gentle trituration, neurons were dispersed in tcASW onto 35 x 10 mm polystyrene tissue culture dishes (430165; Corning, Corning, NY, USA or 353001; Falcon Becton-Dickinson, Franklin Lakes, NJ, USA). Cultures were maintained in either tcASW or, on occasion, simple culture medium (SCM; composition as per tcASW plus minimum essential medium (MEM) vitamins (0.5X; 1120052; Gibco/Invitrogen; Grand Island, NY, USA), MEM non-essential amino acids (0.2X; 11400050; Gibco/Invitrogen), and MEM essential amino acids without L-glutamine (0.2X; 1130051; Gibco/Invitrogen) for 1-3 d in a 14°C incubator. Experiments were carried out at 22°C. Salts were obtained from Fisher Scientific (Ottawa, ON, Canada), ICN (Irvine, CA, USA), or Sigma-Aldrich (St. Louis, MO, USA).
Whole-cell, voltage-clamp recordings

Voltage-clamp recordings were made using an EPC-8 amplifier (HEKA Electronics; Mahone Bay, NS, Canada) and the tight-seal, whole-cell method. Microelectrodes were pulled from 1.5 mm internal diameter, borosilicate glass capillaries (TW150F-4; World Precision Instruments, Sarasota, FL, USA) and had a resistance of 1-3 MΩ when filled with intracellular saline. Pipette junction potentials were nulled immediately before seal formation. Pipette and neuronal capacitive currents were cancelled, the series resistance (3-5 MΩ) compensated to 70-80%, and monitored throughout the experiment. Cell capacitance was derived from the EPC-8 whole-cell capacitance compensation. Current was filtered at 1 KHz by the EPC-8 Bessel filter and sampled at 2 KHz using an IBM-compatible personal computer, a Digidata 1300 analogue-to-digital converter (Axon Instruments/Molecular Devices; Sunnyvale, CA, USA) and the Clampex acquisition program of pCLAMP 8.1 (Axon Instruments). Clampex was also used to control the membrane potential. Recordings were done in normal ASW (nASW; composition as per tcASW, but with glucose and antibiotics omitted) or Ca²⁺-free ASW (composition as per tcASW, but with added 0.5 mM ethylene glycol bis(aminooethyl ether) tetraacetic acid (EGTA), as well as omitting glucose, antibiotics, and Ca²⁺). Usually, microelectrodes were filled with regular intracellular saline (composition in mM: 500 K-aspartate, 70 KCl, 1.25 MgCl₂, 10 HEPES, 11 glucose, 10 glutathione, 5, 5 ATP (grade 2, disodium salt; Sigma), and 0.1 GTP (type 3, disodium salt; Sigma); pH 7.3 with KOH; free Ca²⁺ concentration almost always set to 300 nM, but in a few instances set to 1 µM). In some experiments, intracellular Ca²⁺ was buffered using a high-EGTA intracellular saline with 20 mM EGTA, 5 mM MgCl₂, and a free Ca²⁺ concentration set at 35 nM. Ca²⁺ concentrations were calculated using WebMaxC (http://www.stanford.edu/~cpatton/webmaxcS.htm). Both intracellular salines had a calculated junction potential of 15 mV vs ASW, which was compensated by off-line subtraction. For ion substitution, a low K⁺ intracellular saline (composition as per regular saline but with the K-aspartate replaced with N-methyl-D-glucamine and aspartic acid; junction potential of 9 mV vs nASW) and a high Cl⁻ internal (composition as per regular saline but with the K-aspartate replaced with KCl) were used.
Current-clamp recording

Current-clamp recordings were made using either the EPC-8 and the whole-cell, current-clamp method or an Axoclamp 2B amplifier (Axon Instruments/Molecular Devices) and the sharp-electrode, bridge-balanced method. Microelectrode and intracellular solution for whole-cell, current-clamp were as per whole-cell, voltage-clamp. Microelectrodes for sharp-electrode current-clamp were pulled from 1.2 mm internal diameter, borosilicate glass capillaries (IB120F-4; World Precision Instruments) and had a resistance of 7-12 MΩ when filled with 2 M K-acetate (supplemented with 100 mM KCl and 10 mM HEPES; pH=7.3 with KOH). Voltage signals were filtered at 3 kHz and sampled at 2 kHz. Current was delivered either from the amplifier, Clampex, or a S88 stimulator (Grass; Warwick, MA, USA).

Ca²⁺ imaging

The Ca²⁺-sensitive dye, fura-PE3 (K⁺ salt; 0110; Teflabs, Austin, TX, USA; Vorndran et al. 1995), was injected via sharp-electrode using a PMI-100 pressure microinjector (Dagan; Minneapolis, MN, USA), while monitoring membrane potential with the Axoclamp. Microelectrodes (as per sharp-electrode, current-clamp) had a resistance of 15-30 MΩ when tip-filled with 10 mM fura-PE3 and backfilled with 3 M KCl. Injections required 3-10, 200-300 ms pulses at 50-100 kPa to fill neurons with dye - estimated to be 50-100 µM. Neurons used for imaging showed resting potentials of -50 to -60 mV and displayed action potentials that overshot 0 mV (evoked by 0.5-1 nA pulses from the amplifier). After dye injection, neurons were allowed to equilibrate for at least 1 h. Imaging was performed using a Nikon TS100-F inverted microscope (Nikon; Mississauga, ON, Canada) equipped with Nikon Plan Fluor 10X (numerical aperture (NA) = 0.5), 20X (NA=0.5) or 40X (NA=0.6) objectives. The light source was a 75 W Xenon arc lamp and a multi-wavelength DeltaRAM V monochromatic illuminator (Photon Technology International; London, ON, Canada) coupled to the microscope with a liquid-light guide. Excitation wavelengths were 340 and 380 nm. Between acquisitions, the excitation illumination was blocked by a shutter, which along with the excitation wavelength, was controlled by an IBM-
compatible personal computer, a Photon Technology International computer interface, and ImageMaster Pro software (version 1.49; Photon Technology International). The emitted light passed through a 510/40 nm barrier filter prior to being detected by a Photon Technology International IC200 intensified charge coupled device camera. The camera intensifier voltage was set based on the initial fluorescence intensity of the cells and maintained constant thereafter. The camera black level was set prior to an experiment such that at a gain of 1 and with no light going into the camera there was a 50:50 distribution of blue and black pixels on the display. Fluorescence intensities were sampled at 60 sec intervals using regions of interests defined over the somata prior to the start of the experiment and averaged 8 frames per acquisition. The focal plane was set to approximately the middle of the neuron. The ratio of emission following 340 and 380 nm excitation (340/380) was taken to reflect free intracellular Ca\(^{2+}\) and saved for subsequent analysis. Black level determination, image acquisition, frame averaging, emitted light sampling, and ratio calculations were carried out using ImageMaster Pro.

Reagents and drug application

Solution exchanges were accomplished by manual perfusion using a calibrated transfer pipette to first replace the bath (tissue culture dish) solution. Drugs were applied as a small volume (<10 µl) of concentrated stock solution mixed with a larger volume of saline (approximately 100 µl), that was initially removed from the bath, then pipetted back into the bath. Care was taken to add drugs near the side of the dish and as far away as possible from the neurons. Bafilomycin A (B1793; Sigma-Aldrich), calpeptin (03-34-0051; Calbiochem, San Diego, CA, USA), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP; 21857; Sigma-Aldrich), cyclopiazonic acid (CPA; C1530; Sigma-Aldrich or 239805; Calbiochem), and oligomycin A (75351; Sigma-Aldrich) all required dimethyl sulfoxide (DMSO; BP231; Fisher) as a vehicle. The maximal final concentration of DMSO was 0.01 µM, which in control experiments had no effect on current, voltage, or intracellular Ca\(^{2+}\). NiCl\(_2\) (N6136; Sigma-Aldrich), 1-[(β-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride (SKF-96365; 567310; Calbiochem), xanthine (X402, Sigma-Aldrich), and xanthine oxidase (X4500, Sigma-
Aldrich) were made up in distilled water. N-ethylmaleimide (NEM; E3876; Sigma-Aldrich) was dissolved as a stock in 100% ethanol.

Analysis

Clampfit, a program of pClamp, was used to measure current and voltage. For most of these experiments, the analysis involved comparing the average value during a steady-state baseline of 1-5 min, with the average value from regions that had reached a peak for 5-30 s or remained stable for 5-10 min, after the delivery of a drug. All measurements of current were normalized to cell size by dividing by whole-cell capacitance (pA/pF). The current-voltage relationships and reversal potentials were determined from a difference current generated by a -90 to 0 mV ramp given before and after FCCP. To derive the difference current, the ramp current recorded prior to the addition of FCCP was subtracted from the ramp current taken at the peak of the response induced by FCCP. Conductance was derived using Ohm’s law and the current during a 200 ms step from -60 mV to -70 mV. The % change was calculated from the conductance before and after addition of FCCP.

Origin (version 7; OriginLab Corporation; Northampton, MA, USA) was used to import and plot ImageMaster Pro files as line graphs. For intracellular Ca\(^{2+}\) experiments, analysis compared the steady-state value of the baseline 340/380 ratio with the ratio from regions that had reached a peak. Hill curve fits were also generated in Origin and provided the 50% effective concentration (the concentration that is required for 50% of maximal activation) as well as the Hill coefficient.

Summary data are presented as the mean ± standard error of the mean. Statistics were performed using Instat (version 3.0; GraphPad Software, San Diego, CA, USA). The Kolmogorov-Smirnov method was used to test data sets for normality. If the data were normal, Student’s paired or unpaired t-test was used to test for differences between two means, while a standard one-way analysis of variance (ANOVA) with Dunn’s multiple comparisons test were used to test for differences between multiple means. In cases where data were not normal, the Welch correction was applied to Student’s paired or unpaired t-test when testing for differences between two means, while a nonparametric Kruskal-Wallis
ANOVA with Dunn’s multiple comparisons test was used to test for difference between multiple means.

Data were considered significantly different if the p-value was < 0.05.
Results

Bag cell neurons are depolarized by the protonophore, FCCP, but not the endoplasmic reticulum

Ca\(^{2+}\)-ATPase blocker, CPA

In the process of investigating bag cell neuron Ca\(^{2+}\)-induced Ca\(^{2+}\) release, Geiger and Magoski (2008) reported that the release of mitochondrial Ca\(^{2+}\) by FCCP depolarized bag cell neurons. To investigate this quantitatively, the membrane potential of cultured bag cell neurons was recorded using sharp-electrode current-clamp. As expected, 20 μM FCCP (n=18) caused a pronounced depolarization of approximately 35 mV (Fig. 1A, left). On occasion, a burst of action potentials was observed along with the depolarization. To test whether the endoplasmic reticulum had a similar effect, Ca\(^{2+}\) was released by blocking the Ca\(^{2+}\)-ATPase with 20 μM CPA. Interestingly, bag cell neurons treated with CPA exhibited no change in membrane potential (n=8) (Fig. 1A, right). The depolarizing effect of FCCP was significant in comparison to CPA (Fig. 1B).

Many of the subsequent experiments were performed using whole-cell electrodes instead of sharp-electrodes. In whole-cell mode, an ATP-containing intracellular solution is dialysed into the cell via the pipette, which is not the case for sharp-electrode mode. To control for this, 20 μM FCCP was delivered to cultured bag cell neurons in current-clamp under whole-cell configuration (n=8). There was no significant difference in the average change in membrane potential produced by FCCP in whole-cell vs sharp-electrode (Fig. 1B).

FCCP, but not CPA, causes an inward current

We next examined the result of Ca\(^{2+}\) liberation from the mitochondria or the endoplasmic reticulum on membrane current. Cultured bag cell neurons were whole-cell voltage-clamped at -60 mV with regular intracellular saline (K\(^+\)-aspartate based; 300 nM free Ca\(^{2+}\)) in the pipette. The release of mitochondrial Ca\(^{2+}\) with 20 μM FCCP (n=10) generated a slow, inward current of approximately 1 pA/pF (Fig. 2A, upper). Under the same conditions, depletion of endoplasmic reticulum Ca\(^{2+}\) with 20
μM CPA (n=9) failed to evoke a current of significant amplitude in comparison with FCCP (Fig. 2A, lower), nor did DMSO (n=7), the vehicle used for both drugs (Fig. 2B). Moreover, store-interaction or differential Ca\(^{2+}\) handling did not appear to be involved, as pretreatment with CPA (n=9) failed to significantly alter the amplitude of the FCCP-induced current (Fig. 2B). Also, we failed to observe a response to CPA when the neurons were dialysed with an intracellular saline containing 1 μM free Ca\(^{2+}\) (change in holding current = -0.03 ± 0.02 pA/pF n=4; p>0.05, one sample t-test).

The FCCP-induced current is concentration-dependent

The 20 μM of FCCP represented a concentration our laboratory (Gardam et al. 2008; Geiger and Magoski 2008) and others (Jonas et al. 1997; Glitsch et al. 2002; Fulceri et al. 1991) have used to reliably expel mitochondrial Ca\(^{2+}\). Because FCCP collapses mitochondrial membrane potential and releases Ca\(^{2+}\) in a concentration-dependent fashion (Heytler and Prichard 1962), we expected the FCCP-induced current would have a similar concentration dependency. To test this, FCCP was applied at 30 nM, 300 nM, 1 μM, 3 μM, and 20 μM to cultured bag cell neurons, whole-cell voltage-clamped at a holding potential of -60 mV (Fig. 3A). The concentration-response curve revealed a half-maximal effective concentration of approximately 1 μM and a lack of co-operativity, indicated by a Hill co-efficient of 1.1 (Fig. 3B). Furthermore, the curve began to plateau at around 3 μM, placing 20 μM FCCP well at the top of the curve.

The time-to-onset of the FCCP-induced current varied from neuron to neuron as well as between concentrations. The current could appear as soon as 30 sec, but at times was delayed for several minutes. This is apparent in both the sample current traces displayed in figure 3A, and in some of the examples provided for subsequent experiments. At every concentration there was substantial variance in onset time, with no statistical difference overall (30 nM: 2.00 ± 0.52 min, n=5; 300 nM: 1.59 ± 0.63 min, n=5; 1 μM: 2.82 ± 0.96 min, n=5; 3 μM: 1.17 ± 0.50 min, n=5; 20 μM: 2.23 ± 1.00 min, n=7; p >0.05, standard ANOVA). The degree of scatter was likely due to both diffusion time of the FCCP
following the manual addition of the drug into the bath (see Methods) as well as the rate at which Ca2+
was depleted from the mitochondria. We have observed a similar variance in onset using Ca2+ imaging
and FCCP, both in the present study (see figures 6 through 9) and in prior work (Geiger and Magoski 2008). In addition, changes to Ca2+ following mitochondrial depolarization in oligodendrocytes and
DRG neurons also present onset variability (Werth and Thayer 1994; Simpson and Russell 1996).

The FCCP-induced current is consistent with opening of a voltage-independent cation channel

To characterize the channel responsible for the FCCP response, we examined the reversal potential and membrane conductance under control conditions and after the current induced by 20 \(\mu \text{M} \) FCCP had reached peak. The protocol involved delivery of a 200-ms step from -60 to -70 mV followed by a 10-s ramp from -90 to 0 mV. Changes in membrane conductance were calculated from the current during the step. The difference between the current during the ramp before and at peak was taken to be the current evoked by FCCP. The reversal potential was derived from the point where the difference current crossed the abscissa. Consistent with channel opening during the FCCP-induced current, whole-cell conductance increased by over 20 times, which readily met the level of significance compared with control (n=9) (Fig. 4A). In normal extracellular saline (n=12), the current-voltage relationship was largely linear and reversed around -40 mV, suggesting a voltage-independent nonselective cation channel (Colquhoun et al. 1981; Partridge et al. 1994; Hung and Magoski 2007). Some cation channels are Ca2+-permeable (Chesnoy-Marchais 1985; Magoski et al. 2000; Geiger et al. 2009); when Ca2+ was removed from the external solution (n=5) the current remained linear and the reversal shifted to approximately -47 mV, implying that Ca2+ passes through the channel (Fig. 4B, C). Moreover, decreasing intracellular K+ from 570 to 70 mM (n=6), by dialysing neurons for 30 min with low K+ intracellular saline prior to FCCP, right-shifted the reversal to around -20 mV (Fig. 4B, C). However, the reversal potential was not altered by raising intracellular Cl- to 570 mM following 30 min dialysis with high Cl- intracellular saline (n=4) (Fig. 4C). To further confirm Ca2+ permeability, we examined
the FCCP-induced current at -60 mV only. Without extracellular Ca2+, the amplitude of the FCCP-induced current was significantly diminished (Fig. 4D).

The FCCP-induced current depends on intracellular Ca2+

Release of mitochondrial Ca2+ into the cytosol appears to be critical for triggering the current, raising the possibility it is Ca2+-activated. To test this, we dialysed cultured bag cell neurons for 10 min with intracellular solution containing either a regular (5 mM; n=7) or high (20 mM; n=7) concentration of EGTA, and recorded the FCCP-induced current in whole-cell voltage-clamp at -60 mV. If the current was dependent on intracellular Ca2+ elevation, the high-EGTA should buffer the Ca2+ released from mitochondria and inhibit the response (Naraghi, 1997). The FCCP-induced current was attenuated by nearly two-thirds with a high concentration of EGTA (Fig. 5A). This decrease represented a significant reduction in the amplitude of the current compared with regular internal (Fig. 5B). The possibility that mitochondrial Ca2+ increased membrane permeability non-specifically by upregulating Ca2+-sensitive proteases was addressed with the Ca2+ protease inhibitor, calpeptin (Tsujinaka et al. 1988; Mani et al. 2008). As compared to DMSO exposed neurons (n=5), pretreating neurons for 20-30 min with 100 μM calpeptin (n=4) did not alter the FCCP-induced current (Fig. 5C, D). This concentration of calpeptin has been shown to block cytosolic Ca2+-activated proteases in other *Aplysia* neurons (Spira et al. 2001; Khoutorsky and Spira, 2008).

Thus far, the data indicated that FCCP activates a cation current by liberating mitochondrial Ca2+. Prior reports from both our laboratory and others show that FCCP as well as CPA increase intracellular Ca2+ (Jonas et al. 1997; Magoski et al. 2000; Kachoei et al. 2006; Geiger and Magoski 2008), yet there has been little in the way of direct comparison of either kinetics or amplitude of these responses. To examine this quantitatively, we measured intracellular Ca2+ using ratiometric imaging of fura PE3-injected cultured bag cell neurons. With external Ca2+ removed, 20 μM FCCP (n=19) caused a rapid and prominent elevation in cytosolic Ca2+ that persisted for several min (Fig. 6A, upper). Delivery of 20
μM CPA also evoked an increase in cytosolic Ca\(^{2+}\), although this response was less than half of that observed with FCCP, and typically decayed more quickly over time (Fig. 6A, lower). Overall, the mean change in Ca\(^{2+}\) caused by FCCP reached the level of significance when compared to CPA (Fig. 6B). We have previously shown that CPA sufficiently depletes Ca\(^{2+}\) from the endoplasmic reticulum such that it evokes store-operated Ca\(^{2+}\) influx (Kachoei et al. 2006). As an internal control, extracellular Ca\(^{2+}\) was reintroduced to those neurons that had been exposed to CPA, and in a manner typical of store-operated Ca\(^{2+}\) influx (Nilius 2003), this increased intracellular Ca\(^{2+}\) (mean peak change in 340/380: 0.08 ± 0.02; n=12) (Fig. 6A; lower right).

A mechanistically different mitochondrial disruptor fails to evoke a current

The action of FCCP on the mitochondria is to collapse the H\(^+\) gradient, which in addition to releasing Ca\(^{2+}\), also uncouples the respiratory chain. Despite our experiments supplying ATP in the whole-cell pipette, it was important to control for the potential effects of FCCP on ATP synthesis. Thus, we applied the mitochondrial ATPase inhibitor, oligomycin A (Lardy et al. 1958; Fluharty and Sanadi 1963), while either monitoring current or intracellular Ca\(^{2+}\). In neurons whole-cell voltage-clamped at -60 mV in nASW, 20 μM FCCP (n=6) consistently induced an inward current, while 5 μg/ml oligomycin A failed to evoke current (n=6) or alter the FCCP-induced current (n=6) (Fig. 7A). There was no significant change in the current produced by FCCP after pretreatment with oligomycin A; however, there was a significant difference between the average amplitude of the current generated by FCCP alone and oligomycin A alone (Fig. 7C). This could reflect that specific timing of mitochondrial Ca\(^{2+}\) release is critical in activation of the current, or that oligomycin A liberates Ca\(^{2+}\) from another source.

During imaging in Ca\(^{2+}\)-free external, FCCP evoked a robust increase in intracellular Ca\(^{2+}\) (n=12), while oligomycin A caused a modest elevation, with the onset taking approximately twice as long and the peak taking about five times as long (n=27) (Fig. 7B). The average rise in Ca\(^{2+}\) observed in response to oligomycin A was significantly lower than that to FCCP (Fig. 7D); furthermore, when FCCP was added
after oligomycin A had elevated Ca$^{2+}$ (n=10), it did not significantly affect the amplitude of the FCCP-induced Ca$^{2+}$ increase.

Depolarization of the mitochondria has the potential to release reactive oxygen species (Galluzzi et al. 2009), which in turn could contribute to current activation. This prospect was tested by dialysing neurons with 250 μM xanthine and 2.5 U of xanthine oxidase while recording holding current under whole-cell voltage-clamp at -60 mV. The effect on inward current of the reactive oxygen species generator cocktail, which readily produces superoxide (Dr. CA Ward, personal communication; see also Link and Riley, 1988), was minimal a change of -0.11 ± 0.11 pA/pF over the course of 20-30 min (n=5; p>0.05, one sample t-test).

A disruptor of acidic store H$^+$ transport does not induce a current

A second consideration is that, as a protonophore, FCCP has the potential to release Ca$^{2+}$ by collapsing the H$^+$ gradient of the acidic store as well as the mitochondria. The acidic store (vesicles, lysosomes) accumulates Ca$^{2+}$ using H$^+$/Ca$^{2+}$ exchange and a H$^+$ gradient maintained by a H$^+$-ATPase (Goncalves et al. 1999; Christensen 2002). Thus, it is possible that acidic store Ca$^{2+}$ contributes to the FCCP-induced current. However, while 20 μM FCCP elicited an inward current in cultured bag cell neurons whole-cell voltage-clamped at -60 mV (n=6), this was not the case for 100 nM of the V-type H$^+$-ATPase inhibitor, bafilomycin A (Bowman et al. 1988) (n=5) (Fig. 8A). Moreover, prior expulsion of bafilomycin A-sensitive stores did not alter the FCCP-induced current (n=5) (Fig. 8A, C). The amplitude of the current produced by FCCP was significantly greater compared to bafilomycin A (Fig. 8C). Imaging in Ca$^{2+}$-free external showed 20 μM FCCP caused a marked elevation that peaked within minutes (n=13), while bafilomycin A elicited a far more gradual increase which plateaued at an amplitude just 15% of FCCP (Fig. 8B). FCCP evoked a significantly greater peak change in 340/380 compared with bafilomycin A (Fig. 8D). Additionally, following prior liberation of Ca$^{2+}$ from acidic stores, the subsequent rise in Ca$^{2+}$ caused by FCCP was not altered (n=7) (Fig. 8B, D).
An alkylationing agent attenuates the effect of FCCP on both current and intracellular \(\text{Ca}^{2+} \)

Two primary ways for \(\text{Ca}^{2+} \) to leave the mitochondria following loss of organelle membrane potential are through the mitochondrial \(\text{Ca}^{2+} \) uniporter or the mitochondrial permeability transition pore (Campanella et al. 2004). If the release of \(\text{Ca}^{2+} \) from the mitochondria can be prevented by blocking the uniporter or the transition pore, then the current initiated by FCCP should also be reduced. Ruthenium red has been used to block the uniporter in both \(\text{Ca}^{2+} \) imaging and electrophysiology experiments involving mitochondrial function (Kirichok et al. 2004; Matlib et al. 1998). Cultured bag cell neurons were dialysed for 30 min with intracellular saline containing 100 \(\mu \text{M} \) ruthenium red before applying 20 \(\mu \text{M} \) FCCP. The amplitude of the current triggered by FCCP was unaffected by ruthenium red (control: \(-0.574 \pm 0.088 \text{pA/pF}, n=6 \) vs ruthenium red: \(-0.585 \pm 0.049 \text{pA/pF}, n=5; p>0.05\), one-tailed unpaired t-test).

We also explored the role of \(\text{Ca}^{2+} \) release through the mitochondrial permeability transition pore by delivering 20 \(\mu \text{M} \) FCCP to cultured bag cell neurons that had been pretreated for 30 min with either 100 \(\mu \text{M} \) N-ethylmaleimide (NEM) or ethanol (the vehicle). As an alkylationing agent, NEM can inhibit the transition pore (Hunter and Haworth 1979; Petronilli et al. 1994; Costantini et al. 1996). Exposure to NEM lowered the current amplitude, but not the time course, by half (Fig. 9A). On average, the current was significantly reduced following treatment with NEM, compared with ethanol (Fig. 9B). It was essential to take into account that attenuation of the current by NEM could be due to block of mitochondrial \(\text{Ca}^{2+} \) release or the plasma membrane channel itself. To verify that NEM was directly reducing \(\text{Ca}^{2+} \) release from FCCP-sensitive stores, intracellular \(\text{Ca}^{2+} \) was monitored in cultured bag cell neurons. In an absence of extracellular \(\text{Ca}^{2+} \), the elevation in cytosolic \(\text{Ca}^{2+} \) evoked by 20 \(\mu \text{M} \) FCCP was considerably diminished following 30 min treatment with 100 \(\mu \text{M} \) NEM (n=10) compared with ethanol (n=9) (Fig. 9C). The mean rise in intracellular \(\text{Ca}^{2+} \) triggered by FCCP was significantly lowered (nearly 40%) in the presence of NEM (Fig. 9D). As a further control for secondary effects, we
examined the consequence of NEM exposure on a cation current elicited by Ca\(^{2+}\) influx (see Discussion for a listing of the similarities between this current and the FCCP-evoked current). As our laboratory has characterized previously (Hung and Magoski 2007), a 5 Hz, 1 min train of 75 ms steps to +10 mV from a holding potential of -60 mV results in Ca\(^{2+}\) influx and the triggering of an inward current.

Neurons in 100 \(\mu\)M NEM (n=4) showed no difference in the size of this current vs cells in ethanol (n=5) (Fig. 9E, F). In summary, NEM reduced both the FCCP-induced current and Ca\(^{2+}\) change, suggesting the current is triggered by mitochondrial Ca\(^{2+}\).

The FCCP-induced current and depolarization are not sensitive to Ni\(^{2+}\)

In addition to the evoked current, the FCCP-induced depolarization may be furthered by recruitment of voltage-sensitive channels. For example, modest depolarization can trigger a Ni\(^{2+}\)-sensitive persistent Ca\(^{2+}\) current in bag cell neurons (Tam et al. 2009). To determine if this Ca\(^{2+}\) current plays any role in the FCCP response, we first confirmed that Ni\(^{2+}\) does not block the FCCP-induced current. Cultured bag cell neurons were whole-cell voltage-clamped and pretreated with 10 mM Ni\(^{2+}\) before applying 20 \(\mu\)M FCCP. There was no significant difference in the current in the presence (n=6) or absence (n=6) of Ni\(^{2+}\) (Fig. 10A, B). A similar result was obtained using 20 \(\mu\)M of the store-operated channel blocker, SKF-96365 (Cabello and Schilling 1993; Kachoei et al. 2006) (control: -1.00 ± 0.24 nA/nF, n=5 vs SKF-96365: -1.23 ± 0.14 pA/pF, n=6; p>0.05, one-tailed unpaired t-test). Next, whether Ni\(^{2+}\) had any effect on the depolarization evoked by FCCP was considered in sharp-electrode current-clamp. The spiking that sometimes coincided with the FCCP-induced depolarization was consistently abolished following Ni\(^{2+}\) pretreatment, which is not surprising since Ca\(^{2+}\) channels are responsible for a significant portion of the rising phase of the action potential in bag cell neurons (Acosta-Urquidi and Dudek 1981) (Fig. 10C). However, pretreatment with Ni\(^{2+}\) (n=5) did not significantly alter the FCCP-induced depolarization (n=18) (Fig. 10C, D). These observations provide evidence against the involvement of Ca\(^{2+}\) channels in the depolarization elicited by FCCP.
Discussion

To the best of our knowledge, the present study is the first to indicate that mitochondrial Ca2+, rather than endoplasmic reticulum Ca2+, preferentially gates a membrane channel. This current produces substantial depolarization in cultured bag cell neurons, appears to be mediated by a cation conductance, and is attenuated by strong buffering of intracellular Ca2+ or interfering with mitochondrial Ca2+ release. The afterdischarge of intact bag cell neurons is associated with Ca2+-induced Ca2+ release (Fisher et al. 1994), which we have shown to be dependent on Ca2+ from the mitochondria (Geiger and Magoski 2008). Thus, cation channel activation by mitochondrial Ca2+ may further the afterdischarge and play a role in hormone secretion responsible for reproductive behaviour.

Due to the very negative voltage across the mitochondrial membrane, Ca2+ enters from the cytosol via the Ca2+ uniporter; FCCP takes the voltage to zero and causes Ca2+ to exit (Heytler and Prichard 1962; Moore 1971). Invertebrate examples include FCCP-induced depolarization or Ca2+ release from mitochondria isolated from flatworm or squid giant axon (Brinley et al. 1977; Mercer et al. 1999).

Regarding Ca2+ handling, the uniporter is a ruthenium red-sensitive, voltage-independent ion channel in the inner membrane that could allow for Ca2+ efflux from depolarized mitochondria (Moore, 1971; Kirichok et al. 2004). However, this channel shows extreme inward rectification near 0 mV, and efflux would be eliminated upon depolarization. Hence, it is not surprising that ruthenium red was ineffective at blocking the FCCP-induced current in bag cell neurons. Alternatively, Ca2+ could leave through the mitochondrial permeability transition pore, an inner membrane, voltage-dependent mega-channel opened by mitochondrial depolarization and blocked by NEM (Hunter and Haworth 1979). The actions of NEM on the transition pore are well characterized and reasonably specific; however, the drug is capable of altering sulphydryl groups on a number of proteins (Petronilli et al. 1994; Costantini et al. 1996). Nevertheless, consistent with mitochondrial Ca2+ being the trigger, high intracellular EGTA reduces the FCCP current, while NEM lessens both the Ca2+ elevation and current evoked by FCCP.
Futhermore, NEM fails to alter the current opened by Ca\(^{2+}\) entry following a train of depolarizing stimuli (the present study) as well as the voltage-gated Ca\(^{2+}\) current itself (Hickey, 2009), suggesting that acylation does not generally inhibit plasma membrane channels in bag cell neurons.

Because FCCP affects mitochondrial function, lowered ATP levels, rather than Ca\(^{2+}\) release, could influence the current. Oligomycin A blocks the mitochondrial ATP synthetase which, like FCCP, would eliminate mitochondrial ATP production (Lardy et al. 1958; Fluharty and Sanadi 1963). It appears that glycolysis is able to provide sufficient levels of ATP in the short term, despite reduced oxygen consumption in the face of mitochondrial poisoning (Land et al. 1999). The source of the oligomycin A-induced Ca\(^{2+}\) elevation in bag cell neurons may not be mitochondrial. Reduced ATP levels could result in Ca\(^{2+}\) loss from the endoplasmic reticulum or acidic stores, which depend on energy for Ca\(^{2+}\) uptake. However, our laboratory has reported that FCCP does not deplete Ca\(^{2+}\) from the endoplasmic reticulum (Geiger and Magoski 2008). Regardless of origin, Ca\(^{2+}\) liberated by oligomycin A does not evoke a current in bag cell neurons, substantiating the assertion that the FCCP-induced current is not due to changes in ATP. Additionally, we recorded the current using whole-cell and ATP in the pipette.

FCCP theoretically increases the permeability of H\(^{+}\) across all membranes, potentially allowing H\(^{+}\) to contribute to resting potential (Bashford et al. 1985). However, this would not be sensitive to intracellular Ca\(^{2+}\) buffering or changes in extracellular Ca\(^{2+}\) and intracellular K\(^{+}\) - which is the case for the FCCP-induced current. Moreover, the H\(^{+}\) equilibrium potential under our conditions is -30 mV, and too positive with respect to the reversal potential of the current. Nevertheless, we cannot assume that the measured reversal potential is dependent solely upon a single type of channel. Additional currents (mediated by H\(^{+}\) channels, exchangers, or ionophores) could be activated by FCCP and render the measured reversal potential a sum of reversal potentials, which is merely dominated by the Ca\(^{2+}\)-activated cation channel we have characterized (see below). FCCP could lower intracellular pH by drawing H\(^{+}\) out of acidic stores (Werth and Thayer 1994; Park et al. 2002). Yet, a drop of merely half a pH unit would render the H\(^{+}\) equilibrium potential too negative at -60 mV. Acidification could activate
pH-sensitive cation channels, but unlike the FCCP-induced current, such channels are blocked by ruthenium red (Garcia-Hirschfeld et al. 1995; Zeilhofer et al. 1996). Also, the lack of an effect of bafilomycin A, which itself could acidify the cytosol, points away from H+ as a gating factor. Finally, FCCP and related protonophores fail to depolarize or produce a current in hamster kidney, RBL-1, and chromaffin cells (Bashford et al. 1985; Giovannucci et al. 1999; Hernandez-Guijo et al. 2001; Glitsch et al. 2002), as well as crayfish motor and hippocampal neurons (Tang and Zucker 1997; Partridge and Valenzuela 1999). If FCCP generally caused depolarization, this would manifest in all cell types.

The FCCP-induced current is mainly voltage-independent, accompanied by an increase in conductance, and presents a reversal potential of -40 mV, indicative of opening a non-selective cation channel. A reversal potential between -40 and +20 mV is characteristic of a varying degree of cation selectivity and no clear preference (Kass et al. 1978; Colquhoun et al. 1981; Partridge and Swandulla 1987; Partridge et al. 1994). Without external Ca2+, the FCCP-induced current is diminished and the reversal shifts to the left, implying Ca2+ passes. Similarly, dialysis with a low K+ intracellular saline, such that the K+ equilibrium potential changes from around -100 mV to close to -50 mV, shifts the reversal to approximately -20 mV. However, Cl− does not seem to play a role, given that the current is unaffected by moving the Cl− equilibrium potential from -50 mV to near 0 mV after dialysing with high Cl− intracellular saline.

Because a rise in intracellular Ca2+ appears to elicit the current, one or more bag cell neuron Ca2+-activated channels may be responsible. The voltage-dependent cation channel characterized by Wilson et al. (1996) and Geiger et al. (2009), is an unlikely candidate given that it reverses well above 0 mV, although it may contribute to the depolarization through secondary activation. A second remote prospect is the voltage-independent cation channel that reverses around -15 mV and is opened by flufenamic acid-mediated Ca2+ release (Gardam et al. 2008). The most likely possibility is the voltage-independent cation channel reported by Hung and Magoski (2007), which is triggered by Ca2+ influx, reverses near -40 mV, and is not blocked by Ni2+ or SKF-96365 (Tam et al. 2009). In the present study,
a version of this current was evoked by a train of depolarizing stimuli and shown to be insensitive to NEM.

Where the present study suggests a link between mitochondrial Ca\(^{2+}\) and channel activation, other reports point to metabolic or Ca\(^{2+}\) buffering roles for mitochondria in regulating plasma membrane channels. For example, FCCP generates an outward current in hippocampal and locus ceruleus neurons (Hyllienmark and Brismar 1996, Murai et al. 1997; Nowicky and Duchen 1998). Those studies suggest that a reduction in ATP both opens \(K_{\text{ATP}}\) channels and, through a lessing of the Ca\(^{2+}\) ATPase, leads to a leak of endoplasmic reticulum Ca\(^{2+}\) that inturn gates Ca\(^{2+}\)-activated K\(^{+}\) channels. Furthermore, store-operated channels in Chinese hamster ovary and Jurkat T-cells, as well as IP\(_3\) receptors in HeLa cells, are inhibited by mitochondrial depolarization, but not by transition pore block – which would be the source of mitochondrial Ca\(^{2+}\) efflux (Cho et al. 1997; Collins et al. 2000). Thus, work using other preparations does not point to mitochondrial Ca\(^{2+}\) *per se* as a trigger for channel gating. Our data on bag cell neurons fails to establish that simply inhibiting mitochondrial ATP production will open membrane channels; rather, mitochondrial Ca\(^{2+}\) appears to be vital.

In a number of neurons, endoplasmic reticulum Ca\(^{2+}\) either evokes or potentiates voltage-independent cation channels. Ca\(^{2+}\)-induced Ca\(^{2+}\) release enhances depolarizing afterpotentials in supraoptic and hippocampal neurons (Li and Hatton 1997; Partridge and Valenzula 1999). Metabotropic or CPA-stimulated Ca\(^{2+}\) release impacts cation channels in dorsal root ganglion and supraoptic neurons (Crawford et al. 1997; Li et al. 1999), and turns on certain transient receptor potential channels in expression systems (Zitt et al. 1997; Strubing et al. 2001; Launay et al. 2002; Prawitt et al. 2003; Liu and Liman 2003). However, gating of such currents by mitochondrial Ca\(^{2+}\) has not been reported until now. Cultured bag cell neurons are both quite resistive and present a sizeable membrane surface area, resulting in a large membrane time constant. Thus, once the cation current has depolarized the neuron, it may be lengthened in part by the time constant slowing recovery of the membrane potential. Because bag cell neurons release mitochondrial Ca\(^{2+}\) during prolonged action potential firing (Fisher et al. 1994;
Geiger and Magoski, 2008), the cation channel could contribute to the depolarization necessary for the afterdischarge.

Why does endoplasmic reticulum Ca\(^{2+}\) fail to open channels? Potentially, the reduced magnitude, rate, or duration of the Ca\(^{2+}\) rise elicited by CPA, compared with FCCP, limits the ability of endoplasmic reticulum Ca\(^{2+}\) to trigger current. That stated, the persistence of the FCCP response at low doses or in the face of a reduced Ca\(^{2+}\) response under NEM, suggests that the size of the Ca\(^{2+}\) signal is less of a factor, i.e., a small amount of mitochondrial Ca\(^{2+}\) still evokes a current. Differential distribution may give mitochondrial Ca\(^{2+}\) preferential physical access to membrane channels. For example, in oligodendrocytes mitochondria are localized to areas of Ca\(^{2+}\) signal amplification during wave propagation (Simpson and Russell 1996). Endoplasmic reticulum is sometimes more associated with the nucleus, while mitochondria are evenly distributed (Palade, 1955; Verkhratsky, 2005).

Accordingly, dye-staining of bag cell neurons shows mitochondria are present throughout the soma and neurites (White and Kaczmarek 1997). Alternatively, the channel could be gated by an intermediate, yet mobile Ca\(^{2+}\)-sensor, such as calmodulin. Both Wood et al. (1980) and Pardue et al. (1981) provide evidence that calmodulin tightly associates with mitochondria. Our laboratory has established that both calmodulin and various enzymes can closely-associate with channels in bag cell neurons (Magoski, 2004; Magoski and Kaczmarek 2005; Lupinsky and Magoski 2006; Gardam and Magoski 2009). If the Ca\(^{2+}\) sensor favours association with the mitochondria, as opposed to the endoplasmic reticulum, then mitochondrial Ca\(^{2+}\) could be privileged for channel activation. In fact, this may be key to why simply increasing Ca\(^{2+}\) with CPA or bafilomycin does not have an effect. Finally, along with opening the cation channel, a secondary Ca\(^{2+}\)-dependent process could synergize with mechanisms already discussed (lengthy time constant, voltage-dependent channels) to extend or further the depolarization.

To summarize, Ca\(^{2+}\) from mitochondria opens a cation channel that profoundly impacts neuronal activity. This regulation appears unique, in so much that it is not recapitulated by endoplasmic reticulum Ca\(^{2+}\). Given the role of mitochondrial permeability in apoptosis and excitotoxicity
(Campanella et al. 2004; Galluzzi et al. 2009), gating of a depolarizing current by this Ca\(^{2+}\) source also has implications for pathophysiology.
References

Cabello OA, Schilling WP. Vectorial Ca$^{2+}$ flux from the extracellular space to the endoplasmic reticulum via a restricted cytoplasmic compartment regulates inositol 1,4,5-triphosphate-stimulated Ca$^{2+}$ release from internal stores in vascular endothelial cells. *Biochem J* 295: 357-366, 1993.

Friel DD, Chiel HJ. Calcium dynamics: analyzing the Ca\(^{2+}\) regulatory network in intact cells. Trends Neurosci 31: 8-19, 2008.

Hickey CM. Ca^{2+} influx and release controls neuroendocrine cell secretion and excitability. MSc thesis dissertation, Queen’s University, Department of Physiology, 2009.

Nilius B. From TRPs to SOCs, CCEs, and CRACs: consensus and controversies. Cell Calcium 33: 293-298, 2003.

Figure legends

Figure 1. Targeting the mitochondria with FCCP, but not the endoplasmic reticulum with CPA, depolarizes bag cell neurons

A, Sharp-electrode, current-clamp recordings from two separate bag cell neurons show that expelling Ca\(^{2+}\) from the mitochondria with 20 μM FCCP, induces depolarization and spiking (left), but depleting endoplasmic reticulum Ca\(^{2+}\) stores with 20 μM CPA does not (right).

B, Summary data of the mean change in membrane potential shows that the effect of FCCP readily meets the level of significance when compared with CPA (Kruskal-Wallis nonparametric ANOVA; Dunn’s multiple comparisons test); however, the effect of FCCP is not significantly different when whole-cell (WC), rather than sharp-electrode (SE), is employed for current-clamp recording.

Figure 2. FCCP, but not CPA, causes an inward current

A, Whole-cell, voltage-clamp recordings from separate neurons at -60 mV demonstrate that 20 μM FCCP (upper) elicits an inward current, but 20 μM CPA (lower) does not.

B, Summary data of the mean peak current normalized to cell size (pA/pF) shows that the current triggered by FCCP is significantly greater than the current produced by either CPA or the vehicle, DMSO. Furthermore, pretreatment with CPA does not significantly change the current induced by FCCP (Kruskal-Wallis nonparametric ANOVA; Dunn’s multiple comparisons test).

Figure 3. The current induced by FCCP is dose-dependent

A, Whole-cell, voltage-clamp recordings from different bag cell neurons in response to 30 nM (n=5), 300 nM (n=5), 1 μM (n=5), 3 μM (n=5), and 20 μM (n=7) FCCP, at a holding potential of -60 mV.

B, The dose-response curve for FCCP reveals a half-maximal effective concentration near 1 μM, a
plateau around 10 μM, and a lack of co-operativity with a Hill coefficient of 1. Only one neuron is exposed to a given concentration of FCCP as per the n-value given in A.

Figure 4. The FCCP-induced current is consistent with the opening of a voltage-independent cation channel

A, Left, Whole-cell, voltage-clamp recording of current during a 10 mV hyperpolarizing step from a holding potential of -60 mV before (*thin line*) and after (*thick line*) 20 μM FCCP reveals a marked elevation in conductance. Data are aligned for the purposes of comparison. **Right,** Summary data shows that FCCP significantly increases conductance compared to control (two-tailed paired t-test).

B, Subtraction current (F CCP minus control) during a ramp from -90 to 0 mV (see inset). In nASW (*thick line, middle*), the FCCP-induced current is largely linear and reverses near -40 mV. In Ca\(^{2+}\)-free external (*thin line, left*), the reversal is left-shifted although the current remains linear. When intracellular K\(^+\) is reduced by dialysis with low K\(^+\) internal (*thin line, right*), the current reverses at a more depolarized potential of around -20 mV. A degree of inward rectification at voltages approaching 0 mV is apparent in the nASW current trace. This is observed for one-third to one-half of cases in all three ionic conditions (5 of 12 for nASW, 3 of 5 for Ca\(^{2+}\)-free external, and 2 of 6 for low K\(^+\) internal).

C, Consistent with a cation channel mediating the FCCP-induced current, a lack of extracellular Ca\(^{2+}\) significantly shifts the mean reversal potential from approximately -40 mV to -47 mV, low intracellular K\(^+\) significantly alters the reversal to nearly -20 mV, while high intracellular Cl\(-\) has no significant affect (standard ANOVA; Dunn’s multiple comparisons test).

D, Summary data of the mean peak current normalized to cell size shows that the removal of extracellular Ca\(^{2+}\) significantly decreases the amplitude of the current evoked by FCCP (two-tailed unpaired t-test; Welch corrected).
Figure 5. Buffering intracellular Ca\(^{2+}\) decreases the amplitude of the FCCP-induced current

A, Whole-cell, voltage-clamp recordings from two different neurons at a holding potential of -60 mV show that the current produced by FCCP in the presence of regular EGTA (5 mM; *left*) is inhibited when intracellular Ca\(^{2+}\) is buffered by a high concentration of EGTA (20 mM; *right*) in the pipette. In both cases, the neurons are dialysed for 10 min prior to the addition of FCCP. The delay in current onset with high-EGTA is not characteristic of this experimental condition and is found in both data sets.

B, Summary data shows that the mean peak current density elicited by 20 μM FCCP is significantly reduced when regular internal is replaced with high-EGTA internal (two-tailed unpaired t-test).

C, Current traces from two different neurons at a holding potential of -60 mV demonstrate that the response to FCCP subsequent to DMSO (*left*) is not changed by a 20 min pretreatment with 100 μM of the protease inhibitor, calpeptin (*right*).

D, The average peak current observed following 20 μM FCCP and normalized to cell size is not significantly impacted by calpeptin (two-tailed unpaired t-test).

Figure 6. Both FCCP and CPA increase intracellular Ca\(^{2+}\)

A, Ratiometric imaging of intracellular Ca\(^{2+}\) in fura PE3-injected bag cell neurons. In Ca\(^{2+}\)-free external, 20 μM FCCP (*upper*) depletes the mitochondria of Ca\(^{2+}\) and causes an elevation in cytosolic Ca\(^{2+}\), as indicated by an increase in the intensity of the 340/380 ratio. A cell exposed to 20 μM CPA (*lower*), also shows rise in intracellular Ca\(^{2+}\), albeit not as large as that seen with FCCP. Confirming that the endoplasmic reticulum is actually depleted by CPA, the addition of extracellular Ca\(^{2+}\) (at arrow) consistently results in a secondary rise in intracellular Ca\(^{2+}\), *i.e.*, store-operated influx.

B, Summary data of the mean change in 340/380 shows that the effect of FCCP readily meets significance compared to CPA (two-tailed unpaired t-test; Welch corrected).
Figure 7. Blocking the mitochondrial ATP synthetase increases intracellular \(\text{Ca}^{2+} \) but fails to produce a current

A, Whole-cell, voltage-clamp recordings from three separate neurons at -60 mV demonstrate that an inward current is brought about by 20 μM FCCP (right), but not by 5 μg/ml oligomycin A (middle), a blocker of the mitochondrial ATP synthetase; additionally, the FCCP-induced current is not sensitive to pretreatment with oligomycin A (left).

B, Intracellular \(\text{Ca}^{2+} \) is measured using ratiometric imaging in two cultured bag cell neurons injected with fura PE3. Without \(\text{Ca}^{2+} \) in the extracellular saline, 20 μM FCCP produces a sharp elevation in cytosolic \(\text{Ca}^{2+} \) (upper). A slower rise in cytosolic \(\text{Ca}^{2+} \) that is about one-third the size of FCCP is seen in response to 5 μg/ml oligomycin A (lower). Pretreatment with oligomycin A does not appear to alter the \(\text{Ca}^{2+} \) elevation evoked by FCCP. Note that the time base in the lower panel is three times that of the upper panel.

C, Summary data of the mean peak current normalized to cell size details that the difference between the current generated by FCCP and oligomycin A readily reaches significance; however, no difference is found when comparing the current triggered by FCCP alone to FCCP following oligomycin A pretreatment.

D, Summary data of the mean change in 340/380 reveals that oligomycin A evokes an increase in cytosolic \(\text{Ca}^{2+} \) that is significantly less than that elicited by FCCP; as well, addition of FCCP following oligomycin A does not significantly affect the resulting \(\text{Ca}^{2+} \) increase (Kruskal-Wallis nonparametric ANOVA; Dunn’s multiple comparisons test).

Figure 8. Liberating acidic store \(\text{Ca}^{2+} \) does not elicit a current

A, Whole-cell, voltage-clamp recordings at -60 mV show that releasing \(\text{Ca}^{2+} \) from mitochondrial stores with 20 μM FCCP elicits an inward current (right), while accessing acidic stores with 100 nM bafilomycin A does not (middle). Furthermore, the current evoked by FCCP persists despite prior
liberation of the bafilomycin-sensitive stores (left). Both the middle and left traces are from the same neuron, while the right trace is from a separate neuron.

B, In the absence of extracellular Ca\(^{2+}\), ratiometric imaging of two separate fura PE3-injected neurons demonstrates that depletion of FCCP-sensitive stores causes a relatively quick elevation in cytosolic Ca\(^{2+}\) (upper), compared with the very slow rise seen with expelling of stores sensitive to the H\(^+\)-ATPase inhibitor, bafilomycin A (lower). In addition, following bafilomycin A, FCCP causes essentially the same elevation in intracellular Ca\(^{2+}\) as control. Note that the time base in the lower panel is three times that of the upper panel.

C, Summary data of the mean peak current normalized to cell size indicates that FCCP produces a significantly greater current than bafilomycin A (Baf), but any change to the average FCCP-induced current following 20 min pretreatment with bafilomycin A is not significant (Kruskal-Wallis nonparametric ANOVA; Dunn’s multiple comparisons test).

D, Summary data of the mean change in 340/380 indicates that the increase produced by FCCP is significantly greater compared with bafilomycin A (Kruskal-Wallis nonparametric ANOVA; Dunn’s multiple comparisons test). Furthermore, while the average response elicited by FCCP with prior application of bafilomycin A appears smaller, consistent with the protonophoric action of FCCP depleting Ca\(^{2+}\) from both acidic and mitochondrial stores, it does not reach significance.

Figure 9. An alkylating agent attenuates both the rise in intracellular Ca\(^{2+}\) and the current induced by FCCP

A, Whole-cell, voltage clamp recordings at -60 mV, in separate neurons bathed in nASW, demonstrate a notable reduction in the amplitude of the FCCP-induced current following a 30 min pretreatment with 100 \(\mu\)M N-ethylmaleimide (NEM; right) but not the vehicle, ethanol (EtOH; left).

B, Summary data of mean peak current normalized to cell size indicates that the current evoked by 20 \(\mu\)M FCCP is significantly decreased subsequent to treatment with NEM vs ethanol (two-tailed unpaired
C, Monitoring intracellular Ca\(^{2+}\) with ratiometric imaging in Ca\(^{2+}\)-free external shows that 20 μM FCCP causes a prominent rise in cytosolic Ca\(^{2+}\) with ethanol (left); however, this effect is greatly diminished following a 30 min treatment with NEM (right). Note that application of ethanol or NEM alone does not alter intracellular Ca\(^{2+}\).

D, Summary data shows that the mean change in 340/380 evoked by FCCP is significantly less following NEM than after ethanol (two-tailed unpaired t-test; Welch corrected).

E, Current traces under voltage clamp at -60 mV from different neurons. Delivery (at bar) of a 5 Hz, 1 min train of 75 ms steps to +10 mV elicits an inward current. Compared to ethanol exposure (left), the magnitude of the train-evoked current subsequent to NEM (right) is similar. Differences in time-course following the peak are observed in both data sets and similar to our prior observations (see Hung and Magoski, 2007).

F, Summary of average peak train-evoked current normalized to capacitance. This activity-dependent current is not significantly different when ethanol is compared to NEM (two-tailed unpaired t-test).

Figure 10. Ni\(^{2+}\) does not block the FCCP-induced current or depolarization

A, Whole-cell, voltage-clamp recordings at -60 mV of separate neurons, with (right) and without (left) 5 min of 10 mM Ni\(^{2+}\) pretreatment, indicate that Ni\(^{2+}\) does not alter the amplitude of the FCCP-induced current.

B, Summary data shows no significant difference in the mean peak current, normalized to cell size, elicited by 20 μM FCCP in the presence or absence of Ni\(^{2+}\) (one-tailed unpaired t-test).

C, Sharp-electrode current-clamp recordings in separate neurons show that the FCCP-induced depolarization is not altered by 5 min of 10 mM Ni\(^{2+}\) pretreatment. The firing of action potentials in response to FCCP is observed in 8 out of the 18 neurons under control conditions (left); however, this response is consistently eliminated in all 5 neurons previously exposed to Ni\(^{2+}\) (right).
D, Summary data of the mean change in membrane potential shows that the depolarization induced by FCCP is not significantly different, with or without Ni$^{2+}$ pretreatment (two-tailed unpaired t-test).
Figure 2

A HP = -60 mV

20 μM FCCP

20 μM CPA

1 min

100 pA

B

<table>
<thead>
<tr>
<th>DMSO</th>
<th>CPA</th>
<th>FCCP</th>
<th>FCCP post-CPA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peak current (pA/pF)

(7) (9) (10) (9)

ns

p<0.01

ns
Figure 3

A

HP = -60 mV

FCCP

30 nM

300 nM

1 µM

3 µM

20 µM

100 pA

1 min

B

IC$_{50}$ = 958 nM

Hill = 1.1

[FCFP] log M

peak current (-µA/µF)
Figure 4

A. Control and 20 μM FCCP.

B. Current profile in 20 μM FCCP.

C. Reversal potential at -60 mV.

D. Peak current at -60 mV.
Figure 5

A HP = -60 mV
regular internal

20 µM FCCP

high-EGTA internal

20 µM FCCP

1 min

200 pA

B

peak current (pA/pF)

reg high-
EGTA

p<0.05

(7) (7)

C HP = -60 mV
DMSO

20 µM FCCP

100 µM calpeptin

20 µM FCCP

2 min

100 pA

D

peak current (pA/pF)

DMSO calpep

ns

(5) (4)
Figure 6

A in Ca\(^{2+}\)-free external

20 µM FCCP

20 µM CPA

Ca\(^{2+}\)

B

\[\text{peak } \Delta \text{340/380} \]

\(p < 0.0001 \)

(19) (12)
Figure 7

A
HP = -60 mV

- 20 μM FCCP
- 5 μg/ml oligomycin A
-FCCP post-oligomycin A

B
in Ca\(^{2+}\)-free external

- 20 μM FCCP
- 5 μg/ml oligomycin A

C

<table>
<thead>
<tr>
<th></th>
<th>FCCP</th>
<th>oligo</th>
<th>FCCP post-oligo</th>
</tr>
</thead>
<tbody>
<tr>
<td>peak current (pA/pF)</td>
<td>(6)</td>
<td>(6)</td>
<td>(6)</td>
</tr>
<tr>
<td>p < 0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th></th>
<th>FCCP</th>
<th>oligo</th>
<th>FCCP post-oligo</th>
</tr>
</thead>
<tbody>
<tr>
<td>peak (\Delta 340/380)</td>
<td>(12)</td>
<td>(27)</td>
<td>(10)</td>
</tr>
<tr>
<td>p < 0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 8

A HP = -60 mV

20 μM FCCP

100 nM bafilomycin A

FCCP post-bafilomycin A

B in Ca²⁺-free external

20 μM FCCP

100 nM bafilomycin A

C

peak current (pA/pF)

0

-0.5

-1.0

(6) (5) (5)

ns

p<0.01

D

Δ 340/380

0

0.1

0.15

0.30

(13) (7) (7)

FCCP

baf

FCCP post-baf

p<0.001

ns
Figure 9

A HP = -60 mV
20 μM FCCP in EtOH

B FCCP in 100 μM NEM

C in Ca²⁺-free external
EtOH 100 μM NEM
20 μM FCCP

D 10 min
EtOH NEM
0.1 (340/380)

E HP = -60 mV
EtOH

F 100 μM NEM

peak current (pA/pF)

(6) (8)

(9) (10)

p<0.01

ns

5 Hz 5 Hz

0.30

p<0.01

peak Δ 340/380

EtOH NEM
Figure 10

A HP = -60 mV
20 µM FCCP

FCCP in Ni²⁺

B

peak current (pA/pF)

FCCP in Ni²⁺

(6)
ns

C

20 µM FCCP

FCCP in Ni²⁺

D

depolarization (mV)

(18) (5)

ns