Characterization of voltage-gated K^+ currents contributing to subthreshold membrane potential oscillations in hippocampal CA1 interneurons

France Morin1*, Darrell Haufler2,3*, Frances K Skinner2,3,4 and Jean-Claude Lacaille1

* authors contributed equally to this work

1GRSNC, Département de physiologie, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, Québec, Canada, H3C 3J7, 2Toronto Western Research Institute, University Health Network, 3Department of Physiology, 4Medicine (Neurology), Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada, M5T 2S8.

Running head: K^+ current subtypes in LM/RAD interneurons

Corresponding author:

Dr. Jean-Claude Lacaille
Département de physiologie
Université de Montréal
CP 6128, succ. Centre-Ville
Montréal, Qc, Canada H3C 3J7
Tel: 514-343-5794 Fax: 514-343-2111
e-mail: jean-claude.lacaille@umontreal.ca
Abstract

CA1 inhibitory interneurons at the stratum lacunsum-moleculare and radiatum junction (LM/RAD-INs) display subthreshold membrane potential oscillations (MPOs) involving voltage-dependent Na$^+$ and A-type K$^+$ currents. LM/RAD-INs also express other voltage-gated K$^+$ currents, however their properties and role in MPOs remain unclear. Here, we characterized these voltage-gated K$^+$ currents and investigated their role in MPOs. Using outside-out patch recordings from LM/RAD-IN somata, we distinguished four voltage-gated K$^+$ currents based on their pharmacology and activation/inactivation properties: a fast delayed rectifier current ($I_{K\text{fast}}$), a slow delayed rectifier current ($I_{K\text{slow}}$), a rapidly inactivating A-type current (I_A), and a slowly inactivating current (I_D). Their relative contribution to the total K$^+$ current was $I_A > I_{K\text{fast}} > I_{K\text{slow}} = I_D$. The presence of I_D and the relative contributions of K$^+$ currents in LM/RAD-INs are different from that of other CA1 interneurons, suggesting the presence of differential complement of K$^+$ currents in subgroups of interneurons. We next determined if these K$^+$ currents were sufficient for MPO generation using a single-compartment model of LM/RAD-INs. The model captured the subthreshold voltage dependence of MPOs. Moreover, all K$^+$ currents were active at subthreshold potentials but I_D, I_A and the persistent sodium current (I_{NaP}) were most active near threshold. Using impedance analysis, we found that I_A and I_{NaP} contribute to MPO generation by modulating peak spectral frequency during MPOs and governing the voltage range over which MPOs occur. Our findings uncover a differential expression of a complement of K$^+$ channels that underlies intrinsic rhythmic activity in inhibitory interneurons.
Key words

Outside-out patch recording, theta rhythmic activity, single-compartment mathematical model
Introduction

In behaving animals, patterns of hippocampal synchronous oscillatory activity in the theta frequency range are linked to learning and memory formation (Bland 1986; Buzsaki 2002; Vinogradova 1995; Winson 1978). In the CA1 hippocampus, theta activity arises from GABAergic and cholinergic afferents from the medial septum (Bland and Colom 1993). The synchronization of CA1 pyramidal cells at theta frequency (4-12 Hz) involves inhibitory interneurons which rhythmically inhibit principal cells through GABA_A chloride conductances (Fox 1989; Fox et al. 1983; Leung 1984; Leung and Yim 1986; Soltesz and Deschênes 1993; Tóth et al. 1997; Ylinen et al. 1995). In addition, application of carbachol to *in vitro* slices generates theta-frequency membrane potential oscillations (MPOs) in inhibitory interneurons that lead to rhythmic firing and pacing of CA1 pyramidal cells (Chapman and Lacaille 1999b). This intrinsic rhythmic activity in CA1 pyramidal cells (Leung and Yim 1991) and inhibitory interneurons likely also participate in pacing the CA1 network into theta activity (Bourdeau et al. 2007; Chapman and Lacaille 1999b). MPOs were characterized in interneurons located at the junction of strata radiatum and lacunsum-moleculare (LM/RAD-INs) and found to involve the interplay of voltage-dependent Na^+ and K^+ conductances (Chapman and Lacaille 1999a). Recently, the implication of Kv4.3-mediated A-type K^+ currents in MPOs was demonstrated by siRNA knocking-down of Kv4.3 in LM/RAD-INs (Bourdeau et al. 2007). However other K^+ currents have also been characterized in interneurons (Lien et al. 2002; Martina et al. 1998; Zhang and McBain 1995). Voltage-gated K^+ channels can be differentiated based on their biophysical properties or on their sensitivity to pharmacological agents such as 4-aminopyridine (4-AP), tetraethylammonium (TEA) and neurotoxins (Coetzee et al. 1999; Lien et al. 2002; Locke and Nerbonne 1997;
Martina et al. 1998). Using different concentrations of 4-AP and TEA, Lien et al. (2002) have demonstrated that hippocampal CA1 interneurons in stratum oriens near the alveus (OA-INs) possess three subtypes of voltage-gated K⁺ currents: a fast delayed rectifier current, sensitive to low concentration of 4-AP and TEA; a slow delayed rectifier current, sensitive to high concentrations of TEA; and a rapidly inactivating A-type K⁺ current, blocked by high concentrations of 4-AP. While MPOs in LM/RAD-INs were not prevented by blockers of delayed rectifier currents (tetraethylammonium, TEA), Iḥ (ZD7288) and Iₘ (Xe991) (Bourdeau et al. 2007; Chapman and Lacaille 1999a), the presence of other voltage-gated K⁺ currents has not been examined in LM/RAD-INs, and their role in MPOs remain unexplored. Thus, the aim of this study was 1) to identify voltage-dependent K⁺ current subtypes in LM/RAD-INs and characterize their gating properties, and 2) to develop a mathematical model of LM/RAD-INs based on the experimental data and use the model to examine how the complement of voltage-dependent currents generates MPOs.

Materials and methods

Slice preparation

All animal procedures conformed to the animal welfare guidelines of the Université de Montréal (CDEA, Université de Montréal, Quebec, Canada). Sixteen to 20 day-old male rats (Sprague-Dawley, Charles River, Canada, n=46) were deeply anesthetized with halothane (MTC pharmaceuticals, Cambridge, Ontario, Canada). The brain was dissected in ice-cold (0-4°C) artificial cerebrospinal fluid (ACSF) and transverse hippocampal slices (300 μm-thick) were cut using a vibratome (Leica VT1000S,
Germany). After approximately one hour, hippocampal slices were transferred to the recording chamber and superfused with oxygenated ACSF (2 ml/min) at room temperature (20-22°C). Slices were viewed with an upright microscope (Zeiss Axioskop, Germany) equipped with Hoffmann optics (Modulation optics, NY), a long-range water immersion objective (40X) and an infrared video camera (model 6500, Cohu, San Diego, CA). Recordings were made with an Axopatch 200B or a multiclamp 700B amplifier (Molecular devices, Foster City, CA) and signals were filtered at 2 kHz (8-pole Bessel filter) and digitized at 10 kHz on a Pentium based computer using pClamp 9.0 (Molecular Devices, CA).

Electrophysiological recordings

Voltage clamp recordings of K+ currents were made in ACSF containing (in mM): 125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, 2 MgCl2, 23 glucose, saturated with 95% O2-5% CO2 (pH 7.4, 310 mOsm). Patch pipettes pulled from borosilicate glass tubing (1.2 mm OD, 2-3 MΩ, WPI) were filled with (in mM): 120 K-gluconate, 20 KCl, 10 HEPES, 5 EGTA, 1 MgCl2, 5 glutathione, 2 ATP-Tris, 0.4 GTP-Tris and 0.05% oregon green dextran (Invitrogen, Canada) (pH adjusted between 7.2-7.3 with KOH, 295 mOsm). Outside-out patches were isolated from somata of CA1 interneurons located at the border of stratum lacunosum-moleculare and stratum radiatum (LM/RAD-INs). Generally, membrane patches excised from somata in our outside-out patch recordings had similar membrane area as nucleated patches (as illustrated in Figure 1A and in Figure 1Ac in Lien et al., 2002). The inclusion of the fluorescent dye oregon green in the recording solution was used to confirm that we did not record from pyramidal cells.
Because of the use of the outside-out patch configuration, cell labeling was successful in approximately 30% of recordings and in all cases these were interneurons. Interneurons had mean resting potential of -68.8±0.7 mV and were maintained at -73 mV during voltage clamp experiments. The injected current to maintain outside-out recordings at -73 mV was continuously monitored and only recordings with stable holding current were included in the analysis. Leakage and capacitative currents were subtracted on-line using a P/4 procedure (Lien et al. 2002; Zhang and McBain 1995). Series resistance was compensated by 60%, except for recordings of small amplitude currents for which it was not compensated. Traces shown are either single traces (activation and inactivation protocols) or the average of 5 sweeps given at 0.125 Hz interval. Potassium current subtypes were characterized in the presence of TTX (0.5 µM) to block Na⁺ currents and low or high concentrations of tetraethylammonium chloride (TEA, 0.5 and 20 mM) to prevent fast or slow delayed rectifier K⁺ currents (Lien et al. 2002), respectively. The Kv1.1, Kv1.2 and Kv1.6 potassium channel blocker, α-dendrotoxin (α-DTX, 500 nM) and low doses of 4-aminopyridine (4-AP, 60 µM) were bath-applied in some experiments. When α-DTX was used, bovine serum albumin (0.1%, Jackson Immunoresearch, Canada) was added to the extracellular solution.

Whole-cell current clamp recordings of membrane potential oscillations (MPOs) were made in ACSF containing (in mM): 124 NaCl, 26 NaHCO₃, 2.5 KCl, 1.25 NaH₂PO₄, 2 CaCl₂, 2 MgSO₄, 10 glucose, saturated with 95% O₂-5% CO₂ (pH 7.4, 300 mOsm). Recording pipettes (1.0 mm OD, 3-6 MΩ) were filled with (in mM): 140 K-gluconate, 5 NaCl, 10 HEPES, 0.5 EGTA, 2 MgCl₂, 2 ATP-Tris, 0.4 GTP-Tris and 0.1% biocytin (285 mOsm). Biocytin-filled interneurons were recovered in 83% of cases and morphology
confirmed that recorded cells were interneurons. Interneurons had mean resting potential of -70.8±1.2 mV, and series resistance was compensated using the bridge balance technique and ranged between 9 and 24 mΩ (n=12). The liquid junction potentials for voltage and current clamp experiments were 13 and 14 mV, respectively and were corrected.

All chemicals were purchased from Sigma except for tetrodotoxin and α-dendrotoxin which were purchased from Alomone Labs (Jerusalem, Israel).

Data analysis

Peak current amplitudes (peak component for I_A, $I_{K_{fast}}$ and I_D and plateau component for $I_{K_{slow}}$) were measured from baseline. To obtain the activation curve of K^+ currents, we calculated the chord conductance (g) by dividing respective peak currents at different test potentials by the driving force, assuming ohmic behavior and a reversal potential of -101 mV (measured using reversal of tail currents, data not shown). The activation curves of K^+ currents were obtained by fitting the curve with a Boltzmann function of the form:

$$\frac{g}{g_{\text{max}}} = (1 + \exp\left(-\frac{(V-V_{1/2})}{k}\right))^{-1},$$

where g/g_{max} is the conductance normalized to its maximal value, V is the membrane potential, $V_{1/2}$ is the membrane voltage at which the current amplitude is half-maximum, and k is the slope factor. The inactivation curve of A-type K^+ currents was fitted with the Boltzmann function:

$$\frac{I}{I_{\text{max}}} = (1 + \exp\left((V-V_{1/2})/k\right))^{-1},$$
where I/I_{max} is the current normalized to its maximal value. To account for the remaining sustained K^+ current in the presence of 20mM TEA, we subtracted K^+ currents that remained with a pre-pulse of 30 mV from K^+ currents evoked at all potentials.

The inactivation curves of $I_{K_{\text{fast}}}$ and $I_{K_{\text{slow}}}$ were best fitted with a Boltzmann function plus a constant:

$$I / I_{\text{max}} = A \left(1 + \exp \left(\frac{(V - V_{1/2})}{k}\right)\right)^{-1} + (1-A),$$

where A is the fraction of channels that inactivate.

Segments of membrane potential recordings used for spectral analysis of MPOs were low-pass filtered at 100 Hz and the sampling rate was reduced to 1 kHz. The average power spectra were calculated from three 2.048-sec duration segments without action potentials (Chapman and Lacaille 1999a) using Clampfit 9.0 (Molecular Devices, CA). Changes in peak frequency (measured between 1.5 and 5 Hz) and total power were assessed following drug applications using Student’s paired t tests ($p<0.05$). Data are reported as mean ± sem.

Single-compartment interneuron model

The model is given by the current balance equation:

$$C \frac{dV}{dt} = I_{\text{applied}} - (I_{NaT} + I_{NaP} + I_{K_{\text{fast}}} + I_{K_{\text{slow}}} + I_A + I_D + I_{\text{leak}})$$

where C is the specific membrane capacitance in μF/cm2, V is the membrane potential in mV, and the I’s are the membrane currents. The transient and persistent sodium current, I_{NaT} and I_{NaP}, as well as the fast and slow delayed rectifiers, $I_{K_{\text{fast}}}$ and $I_{K_{\text{slow}}}$, and
alpha-dendrotoxin sensitive current I_D, are all modeled according to the Hodgkin-Huxley (HH) formalism. I_A represents an A-type K^+ current mediated by Kv4.3 (Bourdeau et al. 2007). Detailed multistate models exist for Kv4.3 (Wang et al. 2004, 2005), and we used a simplified version of these models (see details in the Appendix). I_{leak} is the passive leak conductance current with conductance set to match the membrane time constant for LM/RAD-INs given in Chapman and Lacaille (1999a). Further model details and parameter values are provided in the Appendix.

The applied current I_{applied} consists of a mean offset (DC) component and a white noise component:

$$I_{\text{applied}} = I_{\text{DC}} + I_{\text{noise}}$$

Implementation of the noise term is described in the Numerics section. The intensity of noise is chosen to generate MPOs of approximately 1 mV in amplitude immediately subthreshold to action potential generation. The DC component is used as a control parameter to depolarize the model cell and represents injected current to the LM/RAD-IN under current-clamp. Although the noise is independent of channel activity in the model, our interpretation is that the noise is intrinsically generated, for example through the stochastic gating of ion channels. This is consistent with the intrinsic presence of MPOs in the absence of synaptic input as observed experimentally.

The maximal conductance values of the potassium currents are set based on the maximum and relative current amplitudes from experimental LM/RAD-IN data. To compute K^+ current amplitudes, we use the mean patch capacitance of 0.57 pF and assume specific membrane capacitance of 1 μF/cm2. The mean peak current for I_A patch recordings based upon a voltage step to 57 mV is 660.2 pA. An estimate for surface area of clamped membrane is:
\[
\frac{0.57 \times 10^{-12} F}{1 \times 10^{-6} F/cm^2} = 0.57 \times 10^{-6} cm^2
\]

and current density for \(I_A \) is:

\[
\frac{660 \mu A}{0.57 \times 10^{-6} cm^2} = 11582 \mu A/cm^2
\]

From simulation, the channel open probability (gating variable) at the peak \(I_A \) current (maximal outward current) at 57 mV is 0.376. The maximal conductance required for a peak outward current of 1158.2 \(\mu A/cm^2 \) is therefore:

\[
g_{\text{max}} = \frac{-1158.24 \mu A/cm^2}{(0.376)(-101mV - 57mV)} = 19.5 mS/cm^2
\]

Analogous computations are performed for the other potassium currents with maximal conductance values given in the Appendix Table.

Numerics

Model and voltage clamp simulations were performed in XPPAUT (Ermentrout 2002). Numerical integration was done using the forward Euler method with a step size of 0.05 ms. MATLAB was used for analyses and to automate calls to XPPAUT and change parameter values using the freely available XPP-MATLAB interface written by Rob Clewley (http://www.math.pitt.edu/~bard/xpp/xpp.html). Multiple runs were performed simultaneously using a Linux cluster available through Research Information Systems (RIS) at the University Health Network (UHN). The cluster is composed of 42 nodes with each node consisting of a dual 3.0GHz Xeon processor with 2 Gb of RAM. All other computing was performed on a 3.2 GHz Pentium 4 PC running Linux. The noise term for model simulations was simulated in XPPAUT using wiener parameters
(Ermentrout 2002) scaled by an intensity of 0.05. We note that the exact noise intensity used is not critical, so long as it is small enough for the linear assumptions made in the model analysis described below to hold.

Model Analysis

We use impedance analysis to examine our single compartment model. In impedance (or resonance) analysis, typically one injects sinusoidal current (such as a ZAP function) into the cell, records the voltage and calculates the impedance function from which one can determine whether there is an impedance peak, a resonance, at particular frequencies. The effect of different currents can be examined by blocking particular currents and determining how resonance is affected (e.g., Hu et al. 2002). Here, because we have a mathematical model of the system, we can deal directly with the currents which not only provides insight into the effect of the different currents, but is also computationally efficient. We perform computational resonance analyses on the constituent currents and these responses can then be manipulated to obtain the voltage response of the system. This is done as follows:

Constructing the response function

The solution of the current balance equation,

$$\frac{dV}{dt} = \frac{1}{C_m} \left(I_{DC} + I_{\text{Noise}} - \sum I_k \right)$$

(1)

can be expressed around the subthreshold steady-state solution provided that certain restrictions on the behavior of the currents are met (outlined below). Our aim is to express the output of the system at a given frequency ω and level of depolarization V_{ss} as a product of the noise component at ω and a response function $H(\omega, V_{ss})$, which is
computed over a range of ω and V_{ss}. The fixed point of the system is determined by I_{DC} which parameterizes the steady-state values for the membrane potential (V_{ss}) and currents ($I_{k,ss}$) although the parameterization is not explicitly shown. We assume that all oscillatory activity in the currents and membrane potential is centered at these fixed values. This is reasonable if the scale of oscillations is small with respect to the nonlinearity in the current activation properties. We further assume that for sinusoidal membrane potential drive at frequency ω, the current response is a pure sinusoid at ω (no harmonics are present) and that the response scales linearly with the amplitude of the drive. We now proceed to construct $H(\omega, V_{ss})$.

We fix the membrane potential to be a sinusoid with amplitude V_0 centered at V_{ss} and we represent the oscillatory component using complex exponential notation:

$$\hat{V} = V_0 e^{i\phi}$$

This is related to the observed signal through:

$$V(t) - V_{ss} = V_0 \cos(2\pi \omega t + \phi) = \text{Re}\left\{e^{2\pi i \omega t} \hat{V}\right\}$$

We apply this fixed voltage signal to each current model and compute the steady-state current response (allowing all transients to decay to zero). If the oscillatory voltage is of sufficiently small amplitude, the currents can reasonably be approximated by a constant plus the sinusoidal drive scaled by A_k and phase shifted by ϕ_k.

$$I_k = I_{k,ss} + A_k e^{i\phi_k} \hat{V}$$

(2)

Note that A_k and ϕ_k are functions of the driving frequency ω and the depolarization level V_{ss}. We also define:
\[Ae^{\Phi} = \sum_k A_k e^{i\phi_k} \]

(3)

so that

\[\sum_k I_k = \sum_k I_{k,ss} + Ae^{\Phi} \hat{V} \]

(4)

Because we are examining the system near steady state, we expect that:

\[\sum_k I_{k,ss} = I_{DC} \]

(5)

Substituting (4) and (5) into (1) and expressing the time-dependent voltage derivative in complex notation gives:

\[2\pi i\omega \hat{V} = \frac{1}{C_m} \left(\hat{I}_{\text{Noise}} - Ae^{\Phi} \hat{V} \right) \]

(6)

which can be rearranged to give:

\[\hat{V} = \frac{1}{2\pi i\omega C_m + Ae^{\Phi}} \hat{I}_{\text{Noise}} \]

(6)

The term in brackets in (6) is our system response function \(H(\omega, V_{ss}) \), and this is what is plotted in Figure 8B, 9 and S2. \(\hat{I}_{\text{Noise}} \) denotes the component of the noise signal at frequency \(\omega \).

Results

Pharmacological characterization of K+ current subtypes

To investigate the complement of K\(^+\) channels that are expressed in LM/RAD-INs, we recorded from outside-out patches of interneuron somata and used pharmacological blockers to isolate K\(^+\) current subtypes (Figure 1). The use of tetraethylammonium (TEA) to differentiate distinct components of K\(^+\) currents is not entirely selective for specific
channels. For example, low doses of TEA may block Kv3, BK and some Kv1 channels while Kv2 and Kv7 channels are significantly blocked by high TEA (see Coetzee et al., 1999). Nevertheless, this pharmacological approach was used because the main goal of our study was to compare K^+ current subtypes in LM/RAD-INs to those previously characterized in OA-INs (Lien et al., 2002). Thus, we first determined the inhibitory effect of increasing concentrations of TEA on K^+ currents in interneurons. Data points representing the fraction of K^+ currents blocked by different concentrations of TEA were best fitted by the sum of two Hill equations, with the Hill coefficient constrained to 1 (Figure 1B, C) (Kirsch and Drewe 1993; Lien et al. 2002). First for the peak component of K^+ currents, the half-maximal inhibitory concentrations (IC_{50} values) were $17\pm7\, \mu M$ and $8.9\pm6.4\, mM$ (Figure 1A) with blocked fractions of 65 and 35%, respectively. Similarly measured for the plateau component of K^+ currents (Figure 1C), the IC_{50} values were $19\pm19\, \mu M$ and $8.8\pm14.0\, mM$ with blocked fractions of 62 and 38%, respectively. Despite the application of high concentration of TEA (20 mM), a portion of the plateau component of the delayed rectifier K^+ currents still remained unblocked (Coetzee et al. 1999; Storm 1988). These results suggest that LM/RAD-INs possess at least two K^+ current subtypes that are preferentially blocked by low and high concentrations of TEA.

Based on digital subtraction of K^+ currents in different pharmacological conditions (Lien et al. 2002) and current kinetics, we distinguished four distinct subtypes of K^+ currents in LM/RAD-INs (Figure 1D, E). First, we identified a fast delayed rectifier current, sensitive to low TEA (0.5 mM) ($I_{Kfast} = I_{TTX} - I_{0.5mM\, TEA}$), that activated rapidly but that only partially inactivated (Figure 1D). Second, we isolated a slow delayed rectifier...
current, partially blocked by a high concentration of TEA (20 mM) \((I_{K_{slow}} = I_{0.5mM\,TEA} - I_{20mM\,TEA})\), that activated very slowly and that only slightly inactivated. Third, prominent A-type K\(^+\) currents remained in high concentrations of TEA that activated and inactivated rapidly. The mean amplitude of \(I_{K_{fast}}\), \(I_{K_{slow}}\) and A-type K\(^+\) currents, evoked with a test pulse to 57 mV, was 257.8\pm35.1 \, pA (n=12), 147.0\pm40.7 \, pA (n=13), and 660.2\pm201.9 \, pA (n=13), respectively (Table 1).

Finally, all cells displayed a residual plateau current that remained in the presence of TTX and 20 mM TEA in addition to \(I_A\) (ex Figure 1D). Thus we examined if this K\(^+\) current component was sensitive to the selective Kv1.1, Kv1.2 and Kv1.6 channel blocker, \(\alpha\)-DTX (500 nM), which is usually referred as \(I_D\) in other cell types (Bekkers and Delaney 2001; Locke and Nerbonne 1997). In this case, K\(^+\) currents in the presence of \(\alpha\)-DTX were subtracted from currents in TTX and we then identified an \(I_D\)-like current \((I_D=I_{TTX}-I_{\alpha\text{-DTX}})\) that activated fairly rapidly but had a slow inactivation (Figure 1E). The mean amplitude of \(I_D\), evoked with a test pulse to 57 mV, was 170.7\pm33.4 \, pA (n=12, Table 1). Not all LM/RAD-INs displayed this K\(^+\) current and \(I_D\) was observed in 12/16 cells. Additional \(\alpha\)-DTX experiments were performed in the presence of TTX and high doses of TEA (20mM) which revealed \(I_D\) currents with similar characteristics as \(I_D\) isolated in TTX only: mean amplitude (190.5\pm109.1 mV, n=5), risetime (2.5\pm1.3 ms) and decay \(\tau\) (62.6\pm16.7 ms). Thus the DTX-sensitive component appears insensitive to TEA.

The relative contribution of each current to the total K\(^+\) current was estimated by measuring the individual peak amplitudes of each respective current relative to the total peak amplitude of K\(^+\) currents. Because there is a temporal aspect of the relative contribution of each current, the peak amplitudes of \(I_A\), \(I_{K_{fast}}\) and \(I_D\) were measured at
their maximal peaks while the peak amplitude of I_{Kslow} was measured at the plateau component. As a result, the relative contributions of $I_A > I_{\text{Kfast}} > I_{\text{Kslow}} = I_D$ had values of 49±15%, 23±3%, 14±4% and 14±4%, respectively (Table 1). These results indicate that LM/RAD-INs express four pharmacologically distinguishable K^+ currents activated near threshold. The presence of I_D and the relative contributions of these currents differ from those reported in OA-INs (Lien et al. 2002), suggesting that LM/RAD-INs express a differential complement of K^+ currents.

Gating properties of K^+ current subtypes

Fast delayed rectifier K^+ current

To understand how these different K^+ currents may regulate LM/RAD-INs excitability, we next characterized the gating properties of each K^+ current subtype isolated pharmacologically. First, the fast delayed rectifier current was isolated by subtraction of K^+ currents in the presence of low concentration of TEA from K^+ currents in the presence of TTX ($I_{\text{Kfast}} = I_{\text{TTX}} - I_{0.5mM \text{ TEA}}$). I_{Kfast} had an activation curve with a midpoint potential of -14.3±0.2 mV and a steep slope factor (k constant) of 10.7±0.2 mV (Figure 2C, Table 1, n=14). The inactivation curve of I_{Kfast} obtained using 1-sec pre-pulses between -143 and 27 mV had a midpoint potential of -64.6±0.7 mV and a slope factor of 24.5±0.6 mV (n=7, Figure 2C, Table 1), with approximately 20% of I_{Kfast} that did not fully inactivate. The percentage of current remaining reflects a constant that is added to the inactivation equation (see methods section) to obtain an appropriate fit of the inactivation curve. The 20-80% risetime of I_{Kfast} measured with test pulse potentials between 57 and -23 mV was independent of voltage and ranged between 10.1±4.1 ms and 20.2±6.2 ms (n=11, Figure 2D). The decay time constant of I_{Kfast} was obtained by
fitting the subtracted K$^+$ current and thus represents a fast component of a multiexponential process because of the presence of a non-inactivating component. The decay time constant of I_{Kfast} evoked at 57 mV was best fitted with a monoexponential function and was 67.3±14.6 ms (n=4, Table 1). The decay time constant was independent of voltage (Figure 2D). The deactivation time constant of I_{Kfast}, obtained by measuring the decay of tail currents evoked by a pulse to -43 mV, was 10.1±2.2 ms (Figure 2E, Table 1, n=9).

Slow delayed rectifier K$^+$ current

The slow delayed rectifier current was isolated by subtraction of K$^+$ currents in the presence of high concentration of TEA (20 mM) from K$^+$ currents in the presence of low TEA (0.5 mM) ($I_{Kslow} = I_{0.5mM TEA} - I_{20mM TEA}$). The activation curve of I_{Kslow} had a more depolarized midpoint potential (-5.9±0.6 mV) than I_{Kfast} and a less steep slope factor (16.3±0.6 mV) than I_{Kfast} (Figure 3C, Table 1, n=16). I_{Kslow} did not completely inactivate with approximately 10% of current remaining (Figure 3C). The inactivation curve of I_{Kslow} displayed a midpoint potential (-60.8±0.8 mV) slightly more depolarized than I_{Kfast} but a similar slope factor (26.6±0.7 mV) (Figure 3C, Table 1, n=8). The 20-80% risetime of I_{Kslow} measured between 57 and -23 mV was not dependent on voltage and ranged between 14.6±4.6 ms and 34.3±6.8 ms (Figure 3D, Table 1, n=11). The decay time constant of I_{Kslow} measured at 57 mV was best fitted with a monoexponential function, was much slower (301.6±109.0 ms, n=6, Table 1) than that of I_{Kfast} and was independent of voltage (Figure 3D). The deactivation time constant of I_{Kslow} measured at test pulse to -43 mV was slower (20.4±5.4 ms) than that of I_{Kfast} (Figure 3E, Table 1, n=6).
A-type K^+ current

A-type K^+ currents were isolated in the presence of high concentration of TEA (I_{20mM} TEA). The activation curve of A-type K^+ currents had a midpoint potential of -4.9 ± 0.3 mV with a slope factor of 18.5 ± 0.3 mV (Figure 4C, Table 1, n=14). The inactivation curve of A-type K^+ currents had a more hyperpolarized midpoint potential (-84.1 ± 0.2 mV) than that of other currents and a much steeper slope factor (10.0 ± 0.2 mV) than that of I_{Kfast} and I_{Kslow} (Figure 4C, Table 1, n=6). The 20-80% risetime of A-type K^+ currents measured between 57 and -33 mV was voltage-dependent and varied between 0.6\pm0.04 and 2.9\pm0.6 ms (Figure 4D, n=14). The decay of A-type K^+ currents, measured at a test pulse potential of 57 mV, was best fitted with a biexponential function ($\tau_{fast}: 11.1\pm1.6$ ms, 54\% contribution and $\tau_{slow}: 46.0\pm6.0$ ms, 46\% contribution, n=13). At test pulse potentials ranging between 57 and -33 mV, τ_{fast} and τ_{slow} were independent of voltage (at -33 mV, $\tau_{fast}: 6.4\pm2.2$ ms and $\tau_{slow}: 38.7\pm7.5$ ms, Figure 4E). The recovery from inactivation of A-type K^+ currents, studied with a double-pulse protocol (Figure 4F), was best fitted by a biexponential function with a τ_{fast} of 29.0 ± 2.0 ms (63\% contribution) and a τ_{slow} of 141.6 ± 34.5 ms (15\% contribution) (Figure 4F, Table 1, n=10).

α-dendrotoxin-sensitive K^+ current

A fourth K^+ current was isolated by subtraction of K^+ currents in the presence of α-dendrotoxin from K^+ currents in the presence of TTX ($I_D = I_{TTX}-I_{\alpha-DTX}$). This α-DTX-sensitive K^+ current, described as I_D in other cortical neurons (Bekkers and Delaney 2001; Locke and Nerbonne 1997; Storm 1988), was present in 75\% of LM/RAD-INs (Figure 1E and 5A). The activation curve of I_D had a midpoint potential of -3.8 ± 0.8 mV.
and a much less steep slope factor 24.9±0.7 mV than that of other currents (Figure 5B, Table 1, n=9). Because the I_D current obtained by subtraction was of small amplitude, its inactivation curve could not be fully characterized. The 20-80% risetime of I_D, measured at 57 mV, was 4.4±1.9 ms. Its decay was best fitted with a monoexponential function and was 49.3±5.0 ms (Table 1, n=9).

In other cortical neurons (Bekkers and Delaney 2001; Locke and Nerbonne 1997) the α-dendrotoxin-sensitive I_D was also found to be blocked by low concentrations of 4-aminopyridine. Therefore, we also isolated the low 4-AP-sensitive K^+ currents I_D by subtracting K^+ currents in the presence of low 4-AP (60 μM) from K^+ currents in the presence of TTX and TEA, ($I_D = I_{TTX/TEA} - I_{TTX/TEA+4-AP}$) and compared their properties to α-DTX-sensitive K^+ current (Figure 5C-D).

When K^+ currents were recorded in TTX and low TEA (0.5 mM) to block the I_{Kfast} current which is also sensitive to low concentration of 4-AP (Lien et al. 2002), 60 μM 4-AP significantly reduced total K^+ currents (TTX/TEA=937.7±166.9 pA; +4-AP=700.5±158.6 pA; blocked fraction=0.27±0.04; Figure 5D, n=4, p<0.05). This value is similar to the blocked fraction of the total K^+ current by α-DTX (TTX=741.2±126.5 pA; +α-DTX=592.6±120.8 pA; blocked fraction=0.25±0.04; Figure 5D, n=12, p<0.05). When K^+ currents were recorded in TTX and high TEA (20 mM), the application of 60 μM 4-AP also reduced K^+ currents (TTX/TEA=379.2±95.8 pA; +4-AP=317.1±96.5 pA; blocked fraction=0.19±0.06; Figure 5D, n=3, p<0.05). Moreover, K^+ current sensitive to low concentration of 4-AP isolated by subtraction (Figure 5C, inset) had a similar risetime to that of I_D (4.4±1.9 ms for I_D; 5.3±3.2 ms for 4-AP-sensitive current isolated in low TEA; 3.3±1.5 ms for 4-AP-sensitive current isolated in high TEA; Figure 5D). Similarly, the
decay time constant of K^+ currents sensitive to 4-AP isolated in low and high TEA were not different from that of I_D (49.3±5.0 ms for I_D; 40.7±15.2 ms for K^+ currents sensitive to low concentration of 4-AP isolated in low TEA; 66.1±10.9 ms for K^+ currents sensitive to low concentration of 4-AP isolated in high TEA; Figure 5D). These results indicate that the majority of LM/RAD-INs express I_D and a K^+ current that is sensitive to low concentration of 4-AP. Taken together, our experiments indicate that four distinct subtypes of K^+ currents activated at near threshold membrane potentials can be differentiated in LM/RAD-INs based on their sensitivity to TEA, 4-AP and α-DTX, as well as their gating properties.

Role of I_D in membrane potential oscillations

Previous work has shown that A-type K^+ currents contribute to MPOs in LM/RAD-INs whereas TEA-sensitive K^+ currents are not necessary (Chapman and Lacaille 1999a). Since MPOs and I_D are similarly sensitive to low concentration of 4-AP, we investigated if I_D contributes to MPOs in LM/RAD-INs by comparing the effects of α-DTX and low concentration of 4-AP on MPOs in current-clamp recordings. Membrane potential oscillations were characterized near action potential threshold in the presence of non-NMDA, NMDA and GABA$_A$ receptors antagonists (CNQX, 20 μM; AP5, 50 μM; bicuculline, 25 μM; Figure 6A, C) (Bourdeau et al. 2007; Chapman and Lacaille 1999a).

The mean power of MPOs was significantly reduced in the presence of α-DTX (1.1±0.1 mV2/Hz in control vs 0.6±0.1 mV2/Hz in α-DTX (Figure 6A, B and E, n=7, p<0.05). In contrast, the peak frequency of MPOs was unchanged in α-DTX (1.8±0.1 Hz in control vs 2.0±0.1 Hz in α-DTX; Figure 6E). Similarly, low concentration of 4-AP (60 μM)
reduced the mean power of MPOs (1.2±0.3 mV²/Hz in control vs 0.9±0.2 mV²/Hz in 4-AP; Figure 6C-E, n=5, p<0.05) without changing the peak frequency (2.0±0.3 Hz in control vs 2.2±0.1 Hz in 4-AP; Figure 6E). Overall these results indicate that I_D partially contributes to the generation of MPOs in LM/RAD-INs. The observations that MPOs were only partially blocked in the presence of dendrotoxin or low 4-AP are consistent with the known contribution of other currents such as A-type K⁺ currents in MPOs (Bourdeau et al. 2007).

Currents implicated in MPOs: modeling study

To understand how the complement of K⁺ currents identified in LM/RAD-INs contributes to the generation of MPOs, a mathematical single-compartment model of a LM/RAD-IN was built. The model included the four potassium currents characterized above as well as persistent and transient sodium currents, leak current, noise (assumed to be intrinsically generated) and injected currents (see details in Methods and Appendix). Output from the LM/RAD model cell and a current clamp recording from an LM/RAD-IN are shown in Figure 7A. The correspondence between the two indicates that the model produces MPOs as found experimentally (Chapman and Lacaille 1999a).

The contribution of individual currents underlying the model MPOs is shown in Figure 7B. Of the outward currents, I_D had the largest mean current activity during MPOs, followed by I_A, I_Kslow, and I_Kfast. I_NaP was the largest contributor of the inward currents in the subthreshold region with the transient sodium current I_NaT only activating significantly during action potentials. As observed experimentally (Chapman and Lacaille 1999a), there is an increase in the amplitude of MPOs at membrane potentials approaching threshold. Our model MPOs also exhibited this voltage-dependent characteristic. The
voltage dependence is shown in Figure 8A for five different levels of injected DC current. As the intensity and instantiation of the noise was preserved for these different current levels the MPO amplitude is not attributable to different noise levels. These results suggest that the Na\(^+\) persistent current and the complement of K\(^+\) currents (I_D, I_A, I_{K_{fast}} and I_{K_{slow}}) are sufficient to generate MPOs showing voltage-dependent amplitude at subthreshold membrane potentials.

Analysis of the model system

To dissect out the contribution of the different currents underlying MPOs, we determined the response characteristics of the model system to a noise input by computing its impedance over a range of frequencies and membrane potential values in the subthreshold range. This was done computationally by driving the model currents with sinusoidal voltages for a range of frequencies and membrane potential values in the subthreshold range. The resulting current responses to this drive can be manipulated algebraically to give an expression for the voltage response of the system to a sinusoidal current at a particular frequency (the system’s impedance), which we refer to as the response function of the system. So long as the system is in the subthreshold voltage range and the deviations away from resting potential induced by the current noise are small (on the order of 1 mV to allow linearity to hold), the response function describes how the spectrum of the membrane potential depends on the spectrum of current noise. In other words, the response function shows where the model system (consisting of potassium, sodium, leak currents and noise) could exhibit subthreshold oscillations or an enhanced response to noise. This would be at frequency and
depolarization values just subthreshold to the impedance peak of the response function. Details for obtaining the response function of the system are provided in the Methods.

In Figure 8 we show that the response function for our model system was able to capture frequency and voltage ranges where subthreshold oscillations occur in the model. Figure 8A illustrates a series of membrane potential traces that approach threshold by increasing the level of DC current while preserving the intensity and instantiation of the noise. Figure 8B shows the response function of the system. Note that this involved a summing of the current responses (shown in Supplementary Figure 1), as described in the Methods. The response function indicates for which frequencies (x-axis) and levels of depolarization (y-axis) the response (impedance) of the system is expected to be greatest (warmer colors indicate a larger response). The colormap is saturated at dark red with the response function becoming unbound at its peak. This is where the model system became unstable, and above which action potentials occurred. The levels of depolarization corresponding to the blue traces in Figure 8A are shown by dashed lines in Figure 8B. Note that the DC current can be set so that the system is below threshold but action potentials can still occur because of perturbation by noise. This is seen in the black trace in Figure 8A (in which the action potential has been truncated), resulting from a slight increase in DC current with respect to the most depolarized of the blue traces.

Figure 8C demonstrates that the response function accurately captures the subthreshold dynamics of the system. The blue traces correspond to the amplitude of the spectra for each of the five subthreshold traces in Figure 8A, averaged across eight two-second intervals. The red traces correspond to the predicted amplitude based on the response function by multiplying the Fourier transform of the noise instantiation by
the corresponding response function values. The agreement is good and only begins to
diverge from the actual values near threshold. The black dashed lines correspond to the
response function amplitude scaled by the mean power of white noise used.

Thus, the response function represents a mechanistic description of MPO generation
and provides additional advantages over simulations alone. First, it indicates where in
the frequency range and at what depolarization MPOs are expected. Second, because it
does not depend on a particular instantiation of noise (as the simulations would), the
results are more general. Finally, it is computationally efficient as the response function
can be easily recomputed for different maximal conductance values from the current
responses.

Contribution of the different currents using the response function analysis

We examined next how the response function is affected by changes in the
underlying model currents. We expect the A-type current to have an important effect on
MPOs as this has been found in the previous experimental studies (Bourdeau et al.
2007; Chapman and Lacaille 1999a). Indeed, we found that manipulation of the A-type
K⁺ and persistent Na⁺ currents had a significant effect on the response function (Figure
9). We show in Supplementary Figure 2 that changes in the fast and slow delayed
rectifiers, the transient sodium and leak currents did not significantly affect the response
function, i.e., MPOs are not dependent on these currents. However, the response
function was sensitive to manipulations of I_D (see Supplementary material).

In Figure 9 we investigated how I_A and I_NaP contribute to MPO generation. We show
response functions for a larger range of membrane potential values over which maximal
conductances of I_A and I_NaP have been changed. In examining the effects of changes of
maximal conductances on the response function, we focused on two properties: the
frequency of the most hyperpolarized impedance peak, and the sharpness of this peak
(whether it occurred abruptly or gradually with depolarization, as can be observed via
the colour grading). Eliminating the contribution of I_A caused a reduction in frequency of
the peak impedance and a more gradual increase relative to control (Figure 9, top
middle). In contrast, increasing I_A shifted the frequency of the non-zero peak to higher
frequencies and resulted in a sharper rate of increase of impedance around this
frequency with depolarization relative to control (Figure 9, middle bottom). Moreover,
changes of maximal conductances of I_{NaP} had opposite effects to that of I_A on the
response function. A decrease in the maximal conductance of I_{NaP} caused an increase in
peak frequency and a sharpening of the peak (Figure 9, top right), while an increase in
I_{NaP} caused a reduction in peak frequency and a more gradual increase to the peak
(Figure 9, bottom right). This former observation can be seen by the larger colour
variation (for the same voltage range) in the response function plot.

We also compared the subthreshold amplitude spectrum in the control condition to
that of the cases where I_A and I_{NaP} were reduced (Figure 9, bottom left). In both cases
the spectra were taken at <1mV below the impedance peak (about 0.5 mV below spike
threshold where spiking was first observed to occur). The impedance peak is taken as
the most hyperpolarized local maximum of the response function. In the case where I_A
was blocked, the response function no longer showed a distinct peak in the theta
frequency range. When the persistent Na^+ current was inhibited, the peak frequency
was shifted above the theta frequency range and the response function increased more
sharply as the system was brought towards threshold. Because the range over which
the response function was rapidly increasing shrinks with respect to the control case for
a fixed distance away from the peak on the y-axis, the value of the response function was larger for the control case. Thus, the elimination of I_A (Figure 9, bottom left, inset, green trace) and a 50% reduction of I_{NaP} (inset, red trace) both significantly reduced the amplitude of MPOs produced in the control condition (inset, blue trace).

In summary, the persistent Na current is important in maintaining a gradual slope toward impedance peaks and the A-type current is important for keeping impedance values high in the theta frequency range. This is achieved because of the characteristics of these currents (frequency dependent current response for A-type current, and significant current response changes with depolarization for persistent Na current – see Supplementary Figure 1).

Discussion

Our major findings are that four voltage-gated K$^+$ currents can be differentiated in LM/RAD-INs based on their pharmacology and activation and inactivation properties: a fast delayed rectifier K$^+$ current (I_{Kfast}), a slow delayed rectifier current (I_{Kslow}), a rapidly inactivating A-type K$^+$ current (I_A), and a slowly inactivating K$^+$ current (I_D). In addition, A-type K$^+$ currents contributed predominantly to the total K$^+$ currents followed by I_{Kfast}, I_{Kslow} and I_D. Moreover, a single-compartment computational model, based on the experimental data and incorporating transient and persistent Na$^+$ currents, was sufficient to enable voltage-dependent membrane potential oscillations (MPOs) and demonstrated that A-type K$^+$ and persistent Na$^+$ currents modulate the frequency of MPOs and regulate the voltage range over which they occur.

A-type K$^+$ currents are predominant in LM/RAD-INs
Voltage-gated K^+ channels composed of specific Kv subunits shape interneuron firing properties. Kv3-mediated fast delayed rectifier K^+ currents are prevalent in basket cells and OA-INs and generate fast spiking (Lien et al. 2002; Martina et al. 1998; Rudy and McBain 2001). In contrast, Kv4.3-mediated A-type K^+ currents are predominant in LM/RAD-INs and contribute to regular firing (Rudy 1988; Chen and Wong 1991; Bourdeau et al. 2007). Distinct expression of Kv channels also contributes to intrinsic rhythmic activity in specific interneurons, as Kv4.3-mediated A-type K^+ currents are necessary for MPOs in LM/RAD-INs (Bourdeau et al. 2007). Interestingly, we found here that LM/RAD-INs also display slowly inactivating I_D currents, as do CA1 pyramidal cells (Golding et al. 1999; Metz et al. 2007; Storm 1988; Wu and Barish 1992) but unlike CA1 OA-INs and dentate gyrus basket cells (Lien et al. 2002; Martina et al. 1998). Moreover we found that I_D currents contribute in part to MPOs in LM/RAD-INs, consistent with the reported sensitivity of MPOs (and of I_D) to low concentration of 4-AP (Chapman and Lacaille 1999a). Given that the contribution of individual currents to the total K^+ currents was different in LM/RAD-INs ($I_A > I_{K\text{fast}} > I_{K\text{slow}} = I_D$) and in OA-INs ($I_{K\text{fast}} > I_{K\text{slow}} > I_A$), our findings suggest that the expression of K^+ channel complements differs between interneuron subgroups and the predominant expression of I_A and I_D may define a participation of interneuron subgroups in hippocampal rhythmic activity.

MPO generation in LM/RAD-INs – a generic mechanism

Based on the physiological characterization of K^+ currents from LM/RAD-INs, we developed a single compartment model of LM/RAD-INs which incorporates a noise term that is assumed to be due to intrinsic processes such as channel gating. The LM/RAD-IN model exhibits MPOs in the theta frequency range when depolarized near action
potential threshold. Moreover, MPOs show voltage dependence and increase in amplitude with depolarization, as observed experimentally. The generation of MPOs in our model is fully accounted for by the physics concept of critical slowing down, suggesting that this concept accounts for MPOs in LM/RAD-INs.

Critical slowing down (or simply critical slowing) consists of the increase in response of a system to a noise input as the system is brought towards an instability or a bifurcation point (a point where there is a qualitative change in the dynamic output of the system) by slowly varying a parameter of the system. The enhancement in response is preferential, occurring at a frequency close to 0 Hz for an integrator type model system (that occurs with a saddle node type bifurcation) or some positive value for a resonator type model system (that occurs with an Andronov-Hopf type bifurcation) (Izhikevich 2007). Depending on the type of bifurcation, the amplitude of peak frequency response as the membrane potential is varied in the subthreshold range follows a different scaling law, with the resonator type being sharper than the integrator type (Steyn-Ross et al. 2006). The height of the spectral peak at this frequency increases and the autocorrelation of the system’s trajectory broadens (perturbations applied to the system show a slower rate of decay) as the system approaches threshold. Critical slowing has been demonstrated in a variety of systems including resonant and integrator type model neurons (Steyn-Ross et al. 2006), speech perception (Lancia et al. 2008), human posture (Bardy et al. 2002), ecology (Gandhi et al. 1998), as well as various physical and chemical systems (Kostko et al. 2007; Oh et al. 2004; Reis and Mullin 2002).

Previous characterization of LM/RAD-INs indicated that the membrane potential response to brief, depolarizing current pulses shows a biphasic exponential decay consisting of an initial rapid phase and a late slower component which is voltage-
dependent (Williams et al. 1994, see Figure 6). This biphasic response first appears at potentials 10-20 mV below spike threshold. As one approaches spike threshold, the time constant and relative contribution of the slow component increases. This describes the prototypical critical slowing phenomena in which the component of the system that gives rise to the instability shows a slower response as the system approaches that instability while other components of the system show little change with distance from threshold. Thus, in our LM/RAD-IN model system, the enhanced sensitivity to noise near threshold (as given by the increase in amplitude of the MPOs) may be a manifestation of a generic property of excitable systems with noise, critical slowing. Although critical slowing is generic, the details of the LM/RAD-IN model determine its characteristics such as the voltage range over which its contribution is significant and the frequency around which it is centered.

MPO generation in LM/RAD-INs – specific currents and implications

Our model shows that I_A, $I_{K_{fast}}$, $I_{K_{slow}}$ and I_D conductances are all active during subthreshold oscillations. We used a membrane resonance analysis to predict the response of the model system to noise over a range of subthreshold membrane potentials and frequencies. This avoids the need for repeated model simulations for changes in depolarization and/or current balances which are time-consuming and dependent on the specific instantiation of noise used. Through this analysis we showed that the frequency of MPOs depends largely on the balance of the A-type K^+ and the persistent Na^+ currents. In fact, our model suggests that, at subthreshold membrane potentials, A-type K^+ channels are actively contributing to MPO generation. As the cell approaches spike threshold, the balance of currents shifts towards contributions from
Na$^+$ currents with I_{NaP} playing an essential role in bringing about the occurrence of MPOs.

The rate and range of the model behavior as it approaches threshold are important aspects of the critically slowed system to consider. In particular, for MPOs to occur there needs to be a gradual rise in the response function as threshold is approached. Changes that make this transition more gradual will extend the range over which critical slowing occurs. This is the case for increasing I_{NaP} but not for increasing I_A (see response functions of Figure 9). This suggests that I_{NaP} plays an essential role to bring about the occurrence of MPOs. This is in contrast to the transient Na$^+$ current with its faster kinetics and more depolarized activation curve that does not affect the response function. Similarly, subthreshold oscillations in stellate cells of medial entorhinal cortex are known to depend on persistent Na$^+$ currents for their generation (Alonso and Llinás, 1989; Klink and Alonso, 1993).

Although we have shown that the theta frequency MPOs in LM/RAD-INs can arise without the need for any special voltage or frequency dependence of the noise itself, it is likely that such effects do contribute. In stellate cells of the entorhinal cortex, it was shown through pharmacological block of persistent sodium channels and reinsertion of "virtual" versions of them using dynamic clamp, that subthreshold oscillations in those cells depend critically on the noise contributed by the channels which activates together with the current in the subthreshold range. Reinserting a purely deterministic version of the channels (i.e., without noise) was insufficient to recover oscillations (Dorval and White, 2005). To explicitly verify the contribution of particular currents to critical slowing in LM/RAD-INs, one could take advantage of the ability of dynamic clamp to add or remove the deterministic component of a current (given an adequate model), while
leaving the noise level of the system intact. Properties of the critically slowed component of the system could then be directly augmented and the effect on MPOs assessed. Verification of changes in the critically slowed component of the system could be measured by averaging together the subthreshold response to brief current pulses.

Functional significance

We have shown that impedance analysis is sufficient to account for the generation of MPOs in LM/RAD-INs, implying that our linear approximation is valid. For this analysis approach to provide insight, it is important that the determination of MPOs by the underlying currents also governs spiking behavior. There is disagreement over whether related phenomena such as spike timing and reliability depend critically on nonlinear current activity (see Haas and White 2002; Schreiber et al. 2004). Schreiber et al. (2009) have recently described distinct spike time reliability behavior for spiking below threshold (driven by current noise) and above threshold (driven by the current mean). For spiking driven by strong noise far below threshold, linear impedance analysis is insufficient to account for reliability behavior and a direct assessment of nonlinear current activation is required. However, close to threshold the linear approximation is valid.

Our results uncover mechanisms of intrinsic rhythmic activity in inhibitory interneurons that may contribute to hippocampal theta activity (Buzsáki 2002). Hippocampal and entorhinal theta activity are in part driven by extrinsic inputs from the medial septum (Mitchell et al. 1982; Petsche et al. 1962). In CA1 pyramidal cells, theta frequency MPOs generated by intrinsic membrane conductances also contribute to theta activity (Leung and Yim 1991), in addition to their intrinsic resonant oscillatory properties.
dependent on I_{Na}, I_h and I_M (Hu et al. 2002). Hippocampal inhibitory interneurons play an additional crucial role in theta activity by rhythmically inhibiting pyramidal cells (Fox 1989; Leung 1984; Ylinen et al. 1995). Septal cholinergic afferents target pyramidal cells and inhibitory interneurons (Léránth and Frotscher 1987), whereas septal GABAergic inputs contact mostly interneurons (Freund and Antal 1988; Gulyás et al. 1990). Thus during theta, activation of septal GABAergic afferents disinhibit pyramidal cells by inhibiting tonically active interneurons (Toth et al. 1997). Rhythmic activation of presynaptic basket and axo-axonic interneurons, phase-locked with CA1 pyramidal cell firing, may thus contribute to subthreshold membrane potential oscillations in principal cells (Cobb et al. 1995). Finally, rhythmic activity of interneurons driven by intrinsic MPOs may also contribute to hippocampal theta since pyramidal cells can be paced by rhythmic inhibition generated by LM/RAD interneurons at theta frequency (Chapman and Lacaille, 1999a, b). Thus, our findings uncover how a differential expression of a complement of K^+ and Na^+ channels underlies intrinsic rhythmic activity in CA1 inhibitory interneurons that may contribute to hippocampal theta activity.
Grants

This research was supported by the Canadian Institutes of Health Research (MT-10848; JCL), Fonds de la recherche en santé du Québec (Groupe de recherche sur le système nerveux central; JCL) and the Canada Research Chair Program (Canada Research Chair in Cellular and Molecular Neurophysiology; JCL), and the Natural Sciences and Engineering Research Council of Canada (FKS).
References

Figure Legends

Figure 1. Pharmacological dissociation of K^+ current subtypes. A. Digital image of a LM/RAD-IN in whole-cell configuration (left) and outside-out patch configuration (right) Scale bars, 20 (Aa) and 10 (Ab) μm. Potassium currents from a representative interneuron were evoked with a test pulse to 57 mV following a pre-pulse to -133 mV and were sensitive to low (0.5 mM) and high (20 mM) concentrations of TEA. B-C. Concentration-response curves of TEA effects on peak (B) and plateau (C) components of K^+ currents. Data points were best fitted by the sum of two Hill equations (Hill coefficients=1). The IC$_{50}$ values for the peak component were 17±7 μM and 8.9±6.4 mM, while that of the plateau component were 19±19 μM and 8.8±14.0 mM. Number of outside-out patches is indicated in parentheses. D. Current subtraction in different concentrations of TEA revealed the presence of three distinct K^+ currents: a fast delayed rectifier (I_{Kfast}, $I_{TTX-I0.5mM TEA}$), a slow delayed rectifier (I_{Kslow}, $I_{0.5mM TEA-I20mM TEA}$), and an A-type K^+ current remaining in the presence of high TEA (I_{A}, $I_{20 mM TEA}$). E. In addition, a slowly inactivating K^+ current subtype was identified using the selective blocker for Kv1.1, Kv1.2 and Kv1.6 subunits, α-DTX (500 nM) (I_{D}, $I_{TTX-I500nM α-DTX}$).

Figure 2. Properties of fast delayed rectifier K^+ currents (I_{Kfast}). A. Fast delayed rectifier K^+ currents from a representative interneuron were isolated by subtraction ($I_{TTX-I0.5mM TEA}$) and evoked by test pulses between 57 and -73 mV following a pre-pulse to -133 mV. B. Inactivation of I_{Kfast} was studied by applying 1-sec pre-pulses between -143 and 27 mV followed by a test pulse to 57 mV. C. Activation curve of I_{Kfast} (open triangles, n=14) was fitted by a first-order Boltzmann function. Because I_{Kfast} does not completely
inactivate during depolarized pre-pulses, the inactivation curve (open circles, n=7) was fitted by a Boltzmann function plus a constant. D. The 20-80% risetime and decay time of $I_{K_{fast}}$ were plotted against test pulse potentials (n=11 and 4, respectively). E. The deactivation time course of $I_{K_{fast}}$ ($I_{TTX}-I_{0.5mM\,TEA}$) was obtained by fitting the decay of the tail current evoked at -43 mV with a monoexponential equation.

Figure 3. Gating properties of slow delayed rectifier K^+ currents ($I_{K_{slow}}$). Activation (A) and inactivation (B) of slow delayed rectifier K^+ currents isolated by subtraction ($I_{0.5mM\,TEA}-I_{20\,mM\,TEA}$) in another interneuron. C. The activation curve of $I_{K_{slow}}$ (open triangles, n=16) was fitted with a first-order Boltzmann function while its inactivation curve (open circles, n=8) was fitted by a Boltzmann function plus a constant. D. The 20-80% risetime and decay time of $I_{K_{slow}}$ were plotted against test pulse potentials (n=11 and 6, respectively). E. The deactivation time course of $I_{K_{slow}}$ ($I_{0.5\,mM\,TEA}-I_{20\,mM\,TEA}$) was obtained by fitting the decay of the tail current evoked with a pulse to -43 mV with a monoexponential equation.

Figure 4. Properties of A-type K^+ currents (I_A). Activation (A) and inactivation (B) of A-type K^+ currents isolated in TTX and 20 mM TEA from a representative interneuron. C. The activation (open triangles, n=14) and inactivation (open circles, n=6) curves of A-type K^+ currents were fitted with a first-order Boltzmann function. D. The 20-80% risetime of A-type K^+ currents plotted against test pulse potentials shows voltage dependency (n=14). E. The decay phase of A-type K^+ currents was best fitted with a biexponential function. Fast and slow components were plotted against test pulse potentials and were independent of voltage (n=13). F. The recovery from inactivation of
A-type K⁺ currents was studied using a protocol consisting of a pre-pulse to -143 mV followed by a first conditioning pulse to 57 mV, then followed by another pre-pulse of variable duration to -143 mV and a second test pulse to 57 mV. G. The ratio of peak current (I₂) evoked by the second test pulse over that of peak current (I₁) evoked by the first conditioning pulse plotted against interpulse intervals was best fitted with a biexponential function (n=10).

Figure 5. Properties of α-DTX sensitive slowly inactivating K⁺ current (I₉). A. Example of slowly inactivating K⁺ currents isolated by subtraction (I_TTX-I₅₀₀ nM α-DTX) with test pulses between 57 and -93 mV following a pre-pulse to -133 mV. B. The activation curve (open triangles, n=9) of I₉ was fitted with a first-order Boltzmann function. C. The slowly inactivating K⁺ current isolated with α-DTX is similar to the K⁺ current isolated in low concentration of 4-AP. K⁺ currents from another interneuron isolated in TTX and a high concentration of TEA and evoked with a test pulse to 57 mV following a pre-pulse to -133 mV are reduced following application of low concentration of 4-AP (60 μM, grey line). The subtracted K⁺ current (I_TTX/20 mM TEA-I₆₀ μM 4-AP) is shown in the above inset. D. Summary bar graphs showing similar blocked fraction of K⁺ currents by α-DTX (I_TTX-I₉-DTX, n=12) and 60 μM 4-AP (I_TTX/0.5 mM TEA, n=4 and I_TTX/20 mM TEA, n=3), as well as comparable risetime and decay τ of α-DTX-sensitive and 4-AP-sensitive K⁺ currents.

Figure 6. I₉ contribution to membrane potential oscillations in LM/RAD-INs. A. MPOs from a representative LM/RAD-IN recorded at membrane potential near spike threshold (Vₘ -61 mV, black trace) in the presence of non-NMDA, NMDA and GABAₐ receptor
antagonists (CNQX, 20 μM; AP5, 50 μM; bicuculline (BIC), 25 μM; top trace). Action potentials in current clamp recordings (in A and C) are truncated. In the presence of α-DTX (500 nM; red trace), MPOs were reduced but still present. B. Power spectra showing the reduction in power of MPOs by α-DTX (black, control; red, α-DTX) in this cell. C. MPOs recorded in another interneuron (V_m -65 mV, black trace) are also reduced by bath application of low concentration of 4-AP (60 μM, blue trace). D. Power spectra demonstrating the reduction in power of MPOs by low 4-AP (black, control; blue, 4-AP) in this cell. E. Summary bar graphs for all cells indicating the reduction in power of MPOs (top) by α-DTX (500 nM) and 4-AP (60 μM). In contrast, the peak frequency of MPOs (bottom) was not changed.

Figure 7. Membrane potential oscillations in single compartment model of LM/RAD-IN. A. Comparison between the model LM/RAD-IN and a current clamp recording from an LM/RAD-IN. Action potentials have been clipped. To exemplify the correspondence between model and experiment, a higher noise intensity is used relative to the voltage trace shown in B. However, as explained in the Methods, the exact noise intensity does not affect the model analysis. B. Voltage trace of the model LM/RAD-IN cell for an applied current set to bring the system just above threshold. MPOs are seen before and following the action potential which is clipped. Currents underlying the voltage trace are shown below it. During MPOs I_D (black) shows the largest outward current followed by I_A (red), I_Kslow (green), and I_Kfast (yellow). The persistent sodium current (dark blue) shows the largest inward current during MPOs while the transient sodium current (light blue) only activates significantly during action potential onset. Note that the action potential
and underlying currents have been clipped. Parameter values as in Appendix Table, $I_{\text{applied}} = 6.8289 \, \mu\text{A/cm}$.

Figure 8. Response function analysis of LM/RAD-IN single-compartment model. A. Subthreshold voltage traces (blue) and suprathreshold trace (black). The DC injected current is varied to depolarize in 0.5 mV steps with the noise intensity and instantiation held constant. MPOs (deviation from mean voltage) increase in amplitude as the system approaches threshold. B. Model response function near threshold. Warmer colors indicate a greater impedance magnitude. Dashed lines indicate membrane potential values (-66.5, -66.0, -65.5, -65.0, -64.5 mV in depolarizing order), corresponding to subthreshold traces in A (in blue). Immediately below threshold (-64.5 mV) the response function is bimodal: there is a large peak in response near 7 Hz and an additional increase in response towards lower frequencies. Note that the graph is only meaningful below the action potential threshold, above threshold the system exhibits sustained action potentials and this analysis does not apply. C. Spectra of predicted and computed traces. Red traces correspond to predicted amplitude spectrum of the subthreshold traces in A calculated using the response function in B and the particular instantiation of white noise. Blue traces indicate actual spectra computed from simulations. Dashed line indicates amplitude spectra scaled by the mean amplitude of the white noise spectrum. Computed and predicted traces are averaged over eight two-second intervals. Parameter values as in Appendix Table, I_{applied} values are 6.5282, 6.6316, 6.7168, 6.7816, 6.8235, 6.8289 \, \mu\text{A/cm} in depolarizing order. The impedance peak is at a depolarization level of -63.8 mV and a frequency of 3 Hz. Thus, the most depolarized
dashed line in B (-64.5), which refers to the uppermost blue trace in A, is less than 1 mV below the impedance peak.

Figure 9. The Effect of Modifying A-type Potassium and Persistent Sodium Currents. Top left. Response function for control case for an extended range of voltages. Top middle. Complete block of A-type current. There is a hyperpolarizing shift of threshold, an increase in subthreshold impedance magnitude, and a shift of peak response towards lower frequencies. Middle bottom. Increasing A-type maximal conductance to 200% control has an opposite effect to A-type current block (depolarizing shift of threshold). This results in a separation in the lower and higher frequency peaks in the response function, as seen by high impedance magnitude values. Top right. The 50% reduction in persistent sodium mirrors the effect of increased A-type current: a depolarizing shift in threshold, separation of frequency peaks, and a decrease in subthreshold impedance magnitude. Bottom right. Increase in persistent sodium current hyperpolarizes threshold, lowers frequency of peak response, and increases impedance magnitude subthreshold. Bottom left. Amplitude spectra computed from the response function for control (blue), 0% A-type (green), and 50% persistent sodium (red). In each case, the spectra is computed at a membrane potential 0.5 mV below threshold where spiking was first observed to occur and these values are indicated by dotted lines in the corresponding panels. Note that these values correspond to <1 mV below the impedance peaks. A-type block decreases theta frequency MPOs by shifting peak response to a lower frequency. Reduction in persistent sodium decreases power at theta frequency by both shifting peak response above theta frequency and increasing the rate of increase in impedance magnitude with depolarization (the peak steepness).
Parameter values are as in Appendix Table but with maximal conductances of the A-type and persistent sodium currents adjusted as shown. I_{applied} values are 6.8235, 3.8521 and 10.7699 μA/cm for the control, 0% A-type and 50% NaP respectively. Dashed lines on top panels are -64.5, -67.5 and -59 mV for control, 0% A-type and 50% NaP respectively. Impedance peaks for these cases occur at (-63.8 mV, 3 Hz), (-66.9 mV, 0.5 Hz) and (-58.4 mV, 9.5 Hz) respectively.
Appendix

Fast and slow delayed rectifiers, I_D

The fast and slow delayed rectifier potassium currents are modelled by the Hodgkin-Huxley type representation:

$$I = \bar{g}MH(V - E_K)$$

where \bar{g} is the maximal conductance in mS/cm2, M and H are activation and inactivation gating particles respectively, V is the membrane potential, and E_K is the potassium reversal potential. The evolution of the gating particles is given by:

$$\frac{dM}{dt} = \frac{M_\infty(V) - M}{\tau_M}$$

$$M_\infty(V) = \frac{1}{1 + e^{-\frac{(V - V_{1/2})}{k}}}$$

$$\frac{dH}{dt} = \frac{H_\infty(V) - H}{\tau_H}$$

$$H_\infty(V) = \frac{A}{1 + e^{-\frac{(V - V_{1/2})}{k}}} + (1 - A)$$

A represents the fraction of channels that show inactivation, which is incomplete for the delayed rectifiers. The time constants of inactivation are obtained by averaging together experimental values at all membrane potential values for which it was measured.

Characterization of the I_D inactivation steady state curve was not possible in LM/RAD-INs. The inactivation seen upon depolarization to 57 mV is comparable to the α-DTX sensitive current described in Guan et al. (2006) in pyramidal cells of the neocortex. The inactivated component of this current is small in the subthreshold range of LM/RAD-INs and therefore we model I_D as non-inactivating, with the understanding that this approximation is appropriate only for subthreshold activity and not necessarily during action potentials.

All other values characterizing activation and inactivation are the values obtained experimentally. Time constants are constant values as determined from the data, and
are not functions of voltage due to the lack of data in this regard. Parameter values are
provided in the Appendix Table.

A-type K⁺ current

We model the A-type K⁺ current as a multi-state model rather than a Hodgkin and
Huxley model because it is known to be encoded by Kv4.3 in LM/RAD cells based on
interfering RNA experiments (Bourdeau et al. 2007), and detailed models of this current
have been developed previously which we can use to further constrain the added
parameters. Our A-type model is based on a previously developed model of Kv4.3
(Wang et al. 2004; Wang et al. 2005) but we use a simplified inactivation process. The
gating scheme is shown below:

\[
C_0 \overset{4\alpha}{\Rightarrow} C_1 \overset{3\alpha}{\Rightarrow} C_2 \overset{2\alpha}{\Rightarrow} C_3 \overset{\alpha}{\Rightarrow} C_4 \overset{K_1}{\Rightarrow} O \overset{K_f}{\Rightarrow} I
\]

The current is given by:

\[
I_A = g \cdot \left(\frac{O}{C_0 + C_1 + C_2 + C_3 + C_4 + I + O} \right) \cdot (V - E_K)
\]

The fraction of channels in each state is taken to be continuous and the time evolution of
the system is described by:

\[
\begin{align*}
C_0' &= C_1^* \beta(V) - C_0^* 4^* \alpha(V) \\
C_1' &= C_0^* 4^* \alpha(V) - C_1^* \beta(V) + C_2^* 2^* \beta(V) - C_1^* 3^* \alpha(V) \\
C_2' &= C_1^* 3^* \alpha(V) - C_2^* 2^* \beta(V) + C_3^* 3^* \beta(V) - C_2^* 2^* \alpha(V) \\
C_3' &= C_2^* 2^* \alpha(V) - C_3^* 3^* \beta(V) + C_4^* 4^* \beta(V) - C_3^* \alpha(V) \\
C_4' &= C_3^* \alpha(V) - C_4^* 4^* \beta(V) + O^* K_2 - C_4^* K_1 \\
O' &= C_4^* K_1 - O^* K_2 + K_b^* I - K_f^* O \\
I' &= K_f^* O - K_b^* I
\end{align*}
\]

where the voltage-dependent functions alpha and beta are given by:
\[
\alpha(V) = f_\alpha (a_1 \exp(z_{\alpha_1}e_0VF / RT) \exp((V + 10)/10.0) + a_2 \exp(z_{\alpha_2}e_0VF / RT)) \\
\beta(V) = f_\beta (b_1 \exp(z_{\beta_1}e_0VF / RT) \exp((V + 5)/10.0) + b_2 \exp(z_{\beta_2}e_0VF / RT))
\]

with

\[
f_\alpha = 1/(1 + \exp((V + 10.0)/10.0)) \\
f_\beta = 1/(1 + \exp((V + 5.0)/10.0))
\]

The functions \(\alpha(V)\) and \(\beta(V)\) are chosen so that they approach simple exponential functions for depolarized and hyperpolarized membrane potentials:

\[
\alpha(V) \propto \exp(z_{\alpha_1}e_0VF / RT) \quad \text{when } V \text{ approaches } +50\text{mV} \quad \alpha(V) \propto \exp(z_{\alpha_2}e_0VF / RT) \quad \text{when } V \text{ approaches } -120\text{ mV}.
\]

Values for the effective gating charges, \(z_{\alpha_1}, z_{\alpha_2}, z_{\beta_1}\), and \(z_{\beta_1}\) are fit to the LM/RAD-IN \(I_A\) current steady state curve with values as given in the Appendix Table.

Inactivation in LM/RAD-INs follows a biexponential function (with fast and slow time constants of 11.1 and 46.0 ms respectively). Examination of the unaveraged steady-state inactivation curves from individual cells shows that the half activation values exhibit high variability (with values spanning approximately 20 mV), while slope factors are relatively constrained. This specific variability can be accounted for by changes in the \(K_f\) and \(K_b\) parameters of the model. When \(K_f\) is much larger than \(K_b\), the inactivation time constant of the model is approximately \(1/K_f\) (our model form exhibits only a single time constant of decay), and \(K_f\) and \(K_b\) together determine \(V_{1/2}\). The values used match the fast component of experimentally characterized inactivation and give a \(V_{1/2}\) value lying in the more depolarized range of the data. Parameters governing activation (such as \(K_1\) and \(K_2\)) were not explored as \(I_A\) activation in LM/RAD-INs was in good agreement with the model of Wang et al. (2004, 2005).
Transient and persistent sodium currents

The transient sodium current has not been characterized in LM/RAD-INs and we use a previously developed model that was used to represent the sodium current in a hippocampal interneuron (Wang and Buzsáki 1996). The current is given by:

$$I_{NaT} = \bar{g}(M_\infty)^3 H(V - E_{Na})$$

where \bar{g} is the maximal conductance, H is the inactivation gating particle, E_{Na} is the sodium reversal potential, and V is the membrane potential. The activation of the channel is assumed to change fast with respect to the other state variables of the system so channel activation is set to its steady-state value, $M_\infty(V)$, given by:

$$M_\infty(V) = \frac{\alpha_M(V)}{\alpha_M(V) + \beta_M(V)}$$

$$\alpha_M(V) = \frac{-0.1(V + 35)}{\exp\left\{-\frac{(V + 35)}{10}\right\} - 1}$$

$$\beta_M(V) = 4 \exp\left\{-\frac{(V + 60)}{18}\right\}$$

The inactivation variable H evolves according to:

$$H' = \varphi (\alpha_H(V)(1 - H) - \beta_H(V)H)$$

$$\alpha_H(V) = 0.07 \exp\left\{-\frac{(V + 58)}{20}\right\}$$

$$\beta_H(V) = \frac{1}{\exp\left\{-\frac{(V + 28)}{10}\right\} + 1}$$

φ is used to correct for changes in temperature and is set to 1.

The persistent sodium current is based on the data in French et al. (1990) for hippocampal pyramidal cells. It is given by:

$$I_{NaP} = \bar{g}P(V - E_{Na})$$

with the activation dynamics of P described by:
\[
\frac{dP}{dt} = \frac{P_m(V) - P}{\tau}
\]

\[
P_m(V) = \frac{1}{1 + \exp\left\{-\frac{V - V_{1/2}}{k}\right\}}
\]

We set the transient sodium current maximal conductance value to a value that gives an action potential amplitude of approximately 20 mV and the persistent sodium current maximal conductance at 1/50th of this value. Parameter values are given in the Appendix Table.
100ms
200pA

Fast delayed rectifier (I_{TTX-I0.5 mM TEA})

A-type (I_{20 mM TEA})

[A] [TEA] (mM) -73 mV -133 mV 57 mV

plateau current
peak current

Blocked fraction

Whole-cell Outside-out

Slow delayed rectifier (I_{0.5 mM TEA-I20 mM TEA})

E

TTX + \alpha-\text{DTX} (500nM)

I_D (I_{TTX-I\alpha-\text{DTX}})

[TEA] (mM)

1.0 0.8 0.6 0.4 0.2 0.0

0.001 0.01 0.1 1 10 100

peak
plateau

TTX

0.5mM TEA
20mM TEA

1.0
0.8
0.6
0.4
0.2
0.0

0.001 0.01 0.1 1 10 100

Blocked fraction

D

Fast delayed rectifier (I_{TTX-I0.5 mM TEA})

Slow delayed rectifier (I_{0.5 mM TEA-I20 mM TEA})

A-type (I_{20 mM TEA})
TTX

A

B

C

D

4-AP-sensitive current

TTX/TEA (20 mM)

+ 4-AP (60 μM)

(12) (4) (3)

Blocke fraction

(12) (4) (3)

Risetime (ms)

(12) (4) (3)

Decay τ (ms)

(12) (4) (3)
A

CNQX/AP5/BIC

$V_m = 61$

$+ \alpha$-DTX (500 nM)

$V_m = 61$

2 sec

4 mV

B

Power (mV²/Hz)

Frequency (Hz)

0 2 4 6 8

0 0.2 0.4 0.6 0.8 1.0 1.2

C

CNQX/AP5/BIC

$V_m = 65$

$+ 4$-AP (60 µM)

$V_m = 68$

2 sec

4 mV

D

Power (mV²/Hz)

Frequency (Hz)

0 2 4 6 8

0 0.2 0.4 0.6 0.8 1.0 1.2

E

Control

α-DTX

4-AP

$+$

Power (mV²/Hz)

Frequency (Hz)

0 0.2 0.4 0.6 0.8 1.0 1.2

0 0.2 0.4 0.6 0.8 1.0 1.2 1.6

$+$

*
A

Model

LM/Rad Cell

B

Voltage (mV)

Current (μA/cm²)

Time (ms)

Voltage (mV)

Current (μA/cm²)

Time (ms)
Table 1. Gating properties of K⁺ current subtypes in interneurons

<table>
<thead>
<tr>
<th></th>
<th>$I_{K_{fast}}$</th>
<th>$I_{K_{slow}}$</th>
<th>I_A</th>
<th>I_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean amplitude ‡ (pA)</td>
<td>257.8±35.1 (12)</td>
<td>147.0±40.7 (13)</td>
<td>660.2±201.9 (13)</td>
<td>170.7±33.4 (12)</td>
</tr>
<tr>
<td>Activation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{1/2}$ (mV)</td>
<td>-14.3±0.2</td>
<td>-5.9±0.6</td>
<td>-4.9±0.3</td>
<td>-3.8±0.8</td>
</tr>
<tr>
<td>k constant (mV)</td>
<td>10.7±0.2 (14)</td>
<td>16.3±0.6 (16)</td>
<td>18.5±0.3 (14)</td>
<td>24.9±0.7 (9)</td>
</tr>
<tr>
<td>Inactivation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{1/2}$ (mV)</td>
<td>-64.6±0.7</td>
<td>-60.8±0.8</td>
<td>-84.1±0.2</td>
<td>NA</td>
</tr>
<tr>
<td>k constant (mV)</td>
<td>24.5±0.6 (7)</td>
<td>26.6±0.7 (8)</td>
<td>10.0±0.2 (6)</td>
<td>NA</td>
</tr>
<tr>
<td>Risetime ‡ (ms)</td>
<td>10.3±4.7 (11)</td>
<td>20.8±5.9 (11)</td>
<td>0.6±0.04 (14)</td>
<td>4.4±1.9 (9)</td>
</tr>
<tr>
<td>Decay ‡ (ms)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ_{fast}</td>
<td>67.3±14.6 (4)</td>
<td>301.6±109.0 (6)</td>
<td>11.1±1.6 (13)</td>
<td>49.3±5.0 (9)</td>
</tr>
<tr>
<td>τ_{slow}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recovery from</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inactivation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ_{fast} (ms)</td>
<td>NA</td>
<td>NA</td>
<td>29.0±2.0</td>
<td>NA</td>
</tr>
<tr>
<td>τ_{slow} (ms)</td>
<td></td>
<td>141.6±34.5 (10)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Deactivation † (ms)</td>
<td>10.1±2.2 (9)</td>
<td>20.4±5.4 (6)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Relative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>contribution</td>
<td>23±3% (12)</td>
<td>14±4% (12)</td>
<td>49±15% (12)</td>
<td>14±4% (12)</td>
</tr>
</tbody>
</table>

Values indicate mean ± sem; number of patches (in parentheses).
‡ measured at 57 mV.
† measured at -43 mV.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1</td>
<td>μF cm$^{-2}$</td>
<td>Membrane capacitance</td>
</tr>
<tr>
<td>E_K</td>
<td>-101</td>
<td>mV</td>
<td>Reversal potential of potassium currents</td>
</tr>
<tr>
<td>E_{Na}</td>
<td>55</td>
<td>mV</td>
<td>Reversal potential of sodium currents</td>
</tr>
<tr>
<td>E_L</td>
<td>-60</td>
<td>mV</td>
<td>Reversal potential of leak</td>
</tr>
<tr>
<td>Fast Delayed Rectifier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>4.19</td>
<td>mS cm$^{-2}$</td>
<td>Maximum conductance</td>
</tr>
<tr>
<td>$V_{1/2}$ (activation)</td>
<td>-14.3</td>
<td>mV</td>
<td>Membrane potential at half activation</td>
</tr>
<tr>
<td>k (activation)</td>
<td>10.7</td>
<td>mV</td>
<td>Slope of steady-state activation at $V_{1/2}$</td>
</tr>
<tr>
<td>τ (activation)</td>
<td>10.3</td>
<td>ms</td>
<td>Time constant of activation</td>
</tr>
<tr>
<td>$V_{1/2}$ (inactivation)</td>
<td>-64.6</td>
<td>mV</td>
<td>Membrane potential at half inactivation</td>
</tr>
<tr>
<td>k (inactivation)</td>
<td>24.5</td>
<td>mV</td>
<td>Slope of steady state inactivation curve at $V_{1/2}$</td>
</tr>
<tr>
<td>τ (inactivation)</td>
<td>235</td>
<td>ms</td>
<td>Time constant of inactivation</td>
</tr>
<tr>
<td>A</td>
<td>0.853</td>
<td>--</td>
<td>Fraction of current inactivating</td>
</tr>
<tr>
<td>Slow Delayed Rectifier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>2.7</td>
<td>mS cm$^{-2}$</td>
<td>Maximum conductance</td>
</tr>
<tr>
<td>$V_{1/2}$ (activation)</td>
<td>-5.9</td>
<td>mV</td>
<td>Membrane potential at half activation</td>
</tr>
<tr>
<td>k (activation)</td>
<td>16.3</td>
<td>mV</td>
<td>Slope of steady-state activation at $V_{1/2}$</td>
</tr>
<tr>
<td>τ (activation)</td>
<td>20.8</td>
<td>ms</td>
<td>Time constant of activation</td>
</tr>
<tr>
<td>$V_{1/2}$ (inactivation)</td>
<td>-60.8</td>
<td>mV</td>
<td>Membrane potential at half inactivation</td>
</tr>
<tr>
<td>k (inactivation)</td>
<td>26.6</td>
<td>mV</td>
<td>Slope of steady state inactivation curve at $V_{1/2}$</td>
</tr>
<tr>
<td>τ (inactivation)</td>
<td>235</td>
<td>ms</td>
<td>Time constant of inactivation</td>
</tr>
<tr>
<td>A</td>
<td>0.917</td>
<td>--</td>
<td>Fraction of current inactivating</td>
</tr>
<tr>
<td>I_d Current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>2.08</td>
<td>mS cm$^{-2}$</td>
<td>Maximum conductance</td>
</tr>
<tr>
<td>$V_{1/2}$ (activation)</td>
<td>-3.8</td>
<td>mV</td>
<td>Membrane potential at half activation</td>
</tr>
<tr>
<td>k (activation)</td>
<td>24.9</td>
<td>mV</td>
<td>Slope of steady-state activation at $V_{1/2}$</td>
</tr>
<tr>
<td>τ (activation)</td>
<td>4.4</td>
<td>ms</td>
<td>Time constant of activation</td>
</tr>
<tr>
<td>Transient A-type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>19.5</td>
<td>mS cm$^{-2}$</td>
<td>Maximum conductance</td>
</tr>
<tr>
<td>K_1</td>
<td>6</td>
<td>ms$^{-1}$</td>
<td>Pre-open closed state to open state transition rate</td>
</tr>
<tr>
<td>K_2</td>
<td>1.5</td>
<td>ms$^{-1}$</td>
<td>Open state to pre-open closed state transition rate</td>
</tr>
<tr>
<td>K_f</td>
<td>0.09</td>
<td>ms$^{-1}$</td>
<td>Forward inactivation rate</td>
</tr>
<tr>
<td>K_b</td>
<td>0.00075</td>
<td>ms$^{-1}$</td>
<td>Recovery from inactivation rate; when this is much smaller than K_3 it determines the steady state inactivation curve</td>
</tr>
<tr>
<td>z_{α_1}</td>
<td>0.12</td>
<td>--</td>
<td>Forward gating charge for V\rightarrow +50 mV</td>
</tr>
<tr>
<td>z_{α_2}</td>
<td>0.5</td>
<td>--</td>
<td>Forward gating charge for V\rightarrow -120 mV</td>
</tr>
<tr>
<td>z_{β_1}</td>
<td>-0.54</td>
<td>--</td>
<td>Reverse gating charge for V\rightarrow +50 mV</td>
</tr>
<tr>
<td>z_{β_2}</td>
<td>-0.48</td>
<td>--</td>
<td>Reverse gating charge for V\rightarrow -120 mV</td>
</tr>
<tr>
<td>a_1</td>
<td>0.425</td>
<td>--</td>
<td>Weighting of exponentials</td>
</tr>
<tr>
<td>a_2</td>
<td>0.0836</td>
<td>--</td>
<td>Weighting of exponentials</td>
</tr>
<tr>
<td>b_1</td>
<td>0.2244</td>
<td>--</td>
<td>Weighting of exponentials</td>
</tr>
<tr>
<td>b_2</td>
<td>0.0252</td>
<td>--</td>
<td>Weighting of exponentials</td>
</tr>
<tr>
<td>Transient Sodium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>30</td>
<td>mS cm$^{-2}$</td>
<td>Maximum conductance</td>
</tr>
<tr>
<td>Persistent Sodium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>\bar{g}</td>
<td>0.6</td>
<td>mS cm$^{-2}$</td>
<td>Maximum conductance</td>
</tr>
<tr>
<td>$V_{1/2}$ (activation)</td>
<td>-51</td>
<td>mV</td>
<td>Half activation</td>
</tr>
<tr>
<td>k (activation)</td>
<td>5</td>
<td>mV</td>
<td>Slope of steady-state activation at $V_{1/2}$</td>
</tr>
<tr>
<td>τ</td>
<td>5</td>
<td>ms</td>
<td>Time constant of activation</td>
</tr>
</tbody>
</table>

Leak Current

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{g}</td>
<td>0.04</td>
<td>mS cm$^{-2}$</td>
</tr>
</tbody>
</table>