MECHANISMS OF CROSS-MODAL PLASTICITY IN EARLY BLIND SUBJECTS

Lindsay B. Lewis¹, Melissa Saenz² and Ione Fine³*

1. Department of Ophthalmology, McGill Vision Research, McGill University, Montreal, Quebec, Canada H3A 1A1
2. Department of Clinical Neuroscience, CHUV Hospital, University of Lausanne, Switzerland
3. Department of Psychology, University of Washington, Seattle, Washington, USA 98195

Running Head: Cross-modal plasticity in early blind subjects

* Corresponding author:
Ione Fine
Department of Psychology
University of Washington
Seattle, Washington, USA 98195
(206) 685-6157

Fax: (206) 685-3157
ionefine@u.washington.edu

KEYWORDS
blindness, auditory, tactile, cross-modal plasticity, fMRI
ABSTRACT

A variety of studies have demonstrated enhanced BOLD responses to auditory and tactile stimuli within occipital cortex as a result of early blindness. However, little is known about the organizational principles that drive this cross-modal plasticity. We compared BOLD responses to a wide variety of auditory and tactile tasks (vs. rest) in early blind and sighted subjects. As expected, cross-modal responses were larger in blind than sighted subjects in occipital cortex for all tasks (cross-modal plasticity). Within both blind and sighted subject groups, we found patterns of cross-modal activity that were remarkably similar across tasks: a large proportion of cross-modal responses within occipital cortex are neither task- nor stimulus-specific. We next examined the mechanisms underlying enhanced BOLD responses within early blind subjects. We found that the enhancement of cross-modal responses due to early blindness was best described as an additive shift, suggesting that cross-modal plasticity within blind subjects does not originate from either a scaling or unmasking of cross-modal responsivities found in sighted subjects.

INTRODUCTION

A number of studies have demonstrated benefits in behavioral performance and/or enhancement of auditory and tactile responses – “cross-modal plasticity” - in the occipital cortex of blind subjects across a wide range of tasks. For example, within the auditory domain, cross-modal plasticity as a result of blindness has been demonstrated for auditory

Cross-modal plasticity in blind subjects has been shown to be influenced by the normal visual function of a given area. Area MT+ shows motion-specific auditory (Ricciardi, Vanello et al. 2007; Saenz, Lewis et al. 2008) responses in sight recovery and early blind subjects and tactile motion responses within early blind subjects (Ricciardi, Vanello et al. 2007). Mahon et al. (2009) has shown in sighted subjects that overlapping regions of medial ventral occipital cortex show stronger responses while performing a size task for non-living vs. living objects using picture stimuli in sighted subjects and auditory words in the early blind subjects. The opposite (living>non-living) pattern of overlapping category preferences
between sighted and early blind subjects was found within a very small region in left lateral occipital cortex. This group also compared cross-modal responses in blind and sighted subjects, as described below.

Until recently, it was generally assumed that occipital cortex responses within sighted subjects were normally driven exclusively by vision. However, in recent years it has become clear that occipital cortical responses are modulated by auditory and tactile stimuli even within sighted individuals. For example, lateral occipital cortex can show substantial activation during the tactile recognition of objects by blindfolded sighted individuals (Amedi, Malach et al. 2001; Amedi, Jacobson et al. 2002; James, Humphrey et al. 2002). Even primary visual cortex can be activated (Merabet, Swisher et al. 2007) or modulated by information from other senses, especially when this information is congruent with visual stimulation (Calvert, Brammer et al. 1999; Macaluso, Frith et al. 2000; Shams, Kamitani et al. 2001; James, Humphrey et al. 2002; Shams, Iwaki et al. 2005; Watkins, Shams et al. 2006; Merabet, Swisher et al. 2007), for review see (Amedi, Merabet et al. 2005).

It has been suggested by Pascual-Leone et al. (2001) that cross-modal plasticity as a result of short- or long-term visual deprivation may be due to enhancement of existing cross-modal responses that are normally masked by visual input. In support of this, short-term (hours/days) visual deprivation results in enhanced cross-modal responses to tactile and auditory stimuli within the occipital cortex of sighted subjects. Normally sighted subjects that have been briefly blindfolded show both positive and negative occipital responses to tactile tasks (Merabet, Swisher et al. 2007), and more prolonged blindfolding (5 days) of sighted
subjects results in an increase in BOLD responses to a Braille discrimination task (Merabet, Hamilton et al. 2008). These changes in BOLD response seem to have functional significance: short-term deprived blindfolded subjects perform better than non-blindfolded control subjects in a Braille character discrimination task (Kauffman, Theoret et al. 2002), and Braille performance for blindfolded subjects is disrupted by occipital rTMS (Merabet, Hamilton et al. 2008). However the location of these cross-modal responses within sighted blindfolded subjects has not yet been compared to cross-modal responses within early blind subjects, making it unclear whether there is a relationship between the cross-modal responses found as a result of short term blindfolding in adults and the much stronger cross-modal responses that result from prolonged blindness, especially when it occurs early in life.

A few studies have compared response patterns for auditory/tactile stimuli within sighted and early blind individuals. Auditory (Poirier, Collignon et al. 2005) and tactile (Ricciardi, Vanello et al. 2007) motion responses have been reported within an area identified as MT+ in sighted subjects. However, using an ROI approach across individual subjects, Saenz et al. (Saenz, Lewis et al. 2008) found that apparent auditory motion responses within MT+ (as found by Poirier, Collignon et al. 2005) were an artifact of group averaging, and that within individual sighted subjects auditory motion responses were in fact restricted to an adjacent non-visual area that did not overlap with MT+. The location of the tactile motion responses found within sighted subjects by Ricciardi et al. (2007) (who also used a group averaging approach) suggests that a similar mislocalization may have occurred, thus it remains unclear whether or not sighted tactile-motion responses overlap with MT+ within individual subjects. Mahon et al. (2009) compared responses to size judgments using
auditory stimuli in sighted and early blind subjects. A region within an area of medial ventral occipital cortex previously associated with tactile object recognition within both sighted and blind subjects (Pietrini, Furey et al. 2004) showed less suppression for non-living than living objects in sighted subjects and more activation for non-living than living objects in early blind subjects. Similarly a very small ROI within left lateral occipital cortex showed less suppression for living than non-living objects in sighted subjects and more activation for living than non-living objects in early blind subjects. Thus, a similar distribution of responses as a function of stimulus category was found for this auditory task within sighted and early blind subjects. However it is worth noting that the double-dissociation between living vs. non-living responses (on which their argument for shared category specificity between early blind and sighted subjects rests) relied upon a very small living>non-living ROI in the left hemisphere defined using a low threshold [q(FDR)<0.05] and the change in response to living/non-living categories reported along the medial to lateral direction may primarily reflect a general reduction in response to both living and non-living categories rather than a change in selectivity.

Here we further examine how cross-modal plasticity in early blind subjects is related to the cross-modal responses that exist within the occipital cortex of normally sighted individuals. A variety of models of cross-modal plasticity are plausible, with different predictions for whether the pattern of responses found as a result of early blindness should resemble sighted cross-modal responses. For example, a simple “scaling” hypothesis would be that cross-modal plasticity in early blind subjects is driven by a (for example, multiplicative) scaling of the cross-modal responses that exist within sighted subjects.
According this model it is those regions that show reasonably strong cross-modal responses in sighted individuals that would be expected to show a further enhancement of response within early blind subjects, while the responses of regions that show weak or negative cross-modal responses would remain unenhanced.

A second "suppression unmasking" or "homeostatic regulation of neural sensitivity" hypothesis makes the opposite prediction: the largest amount of plasticity should be found within those areas that show the weakest cross-modal response in sighted subjects. According to a suppression unmasking hypothesis, all regions have ‘latent’ cross-modal responses that vary in the extent to which they are suppressed by vision. Regions that are most suppressed (i.e. show the weakest cross-modal responses in sighted subjects) will show the largest enhancement of response as a result of loss of visual input. The homeostatic regulation of neural sensitivity interpretation of this explanation makes a similar prediction: more purely visual areas suffer a greater loss of afferent input, which in turn leads to a greater shift in sensitivity that ‘amplifies’ pre-existing cross-modal responses. At the neuronal level it has been shown that synaptic strengths are globally scaled up or down as a result of short- or long-term deprivation to stabilize firing rates within visual cortex (Carmignoto and Vicini 1992; Kirkwood, Rioult et al. 1996; Desai, Cudmore et al. 2002; Morales, Choi et al. 2002; Gu 2003; Herrero, Roberts et al. 2008; Tropea, Van Wart et al. 2009).

Finally, it is possible that cross-modal plasticity as a result of early blindness is the result of very different processes from those that govern cross-modal responses in sighted or temporarily blindfolded subjects. As described above, there is evidence that early blindness
leads to the development of cross-modal responses that seem analogous to the normal visual functional specialization of that cortical region (Pietrini, Furey et al. 2004; Ricciardi, Vanello et al. 2007; Saenz, Lewis et al. 2008; Mahon, Anzellotti et al. 2009). It is also possible that cross-modal plasticity as a result of early blindness is mediated by different patterns of anatomical connectivity (Ghazanfar and Schroeder 2006). In normally sighted infant animals, there are connections from auditory/temporal areas to visual cortex (Dehay, Bullier et al. 1984; Innocenti and Clarke 1984; Dehay, Kennedy et al. 1988; Innocenti, Berbel et al. 1988; Ghazanfar and Schroeder 2006), and from somatosensory and fronto-parietal cortex to visual cortex (Clarke and Innocenti 1986). During normal visual development a large proportion of these cross-modal connections are "pruned" (Innocenti and Clarke 1984; Rodman and Consuelos 1994). However reduced visual experience may lead to abnormal pruning, such that excess connectivity remains between areas that usually subserve different modalities: in the bilaterally enucleated opossum abnormal connections projecting to visual cortex have been noted from both the auditory and somatosensory thalamus (Kahn and Krubitzer 2002; Karlen, Kahn et al. 2006) as well as from auditory and somatosensory cortex (Kahn and Krubitzer 2002; Karlen, Kahn et al. 2006). If cross-modal plasticity is determined by patterns of anatomical connectivity that differ substantially from those found in sighted subjects, then cross-modal responses in early blind subjects might not be systematically related to the occipital cross-modal responses found in sighted subjects.

Because we were interested in the effects of loss of visual input rather than the cognitive demands of being blind, we limited our analysis to the occipital lobe. Although extensive cross-modal plasticity has been found outside the occipital cortex, within parietal
(Sadato, Pascual-Leone et al. 1998; Vanlierde, De Volder et al. 2003; Ricciardi, Bonino et al. 2006; Bonino, Ricciardi et al. 2008), temporal (Noppeney, Friston et al. 2003; Burton, McLaren et al. 2006) and frontal cortices (Sadato, Pascual-Leone et al. 1998; Noppeney, Friston et al. 2003), it seems likely that much of the plasticity within these multimodal or auditory/language areas are driven by the cognitive demands of being blind, such as increased reliance on auditory and tactile information and increased memory demands, rather than the loss of visual input per se.

Within occipital cortex, we compared BOLD responses to a wide variety of auditory and tactile tasks across early blind and normally sighted subjects to determine whether those regions that showed the greatest enhancement of response within blind subjects were those that showed strong or weak cross-modal responses in sighted subjects. Within both blind and sighted subject groups, we found patterns of cross-modal activity that were remarkably similar across tasks: a large proportion of cross-modal responsivity within occipital cortex is neither task- nor stimulus- specific. We also found that the enhancement of response as a result of early blindness was best described as an additive shift, suggesting that cross-modal plasticity within blind subjects does not originate from either a scaling or an unmasking of cross-modal responsivities found in sighted subjects.
MATERIALS AND METHODS

SUBJECTS

This study included seven early blind subjects (EB: ages 32-56, mean = 47.0 years, s.e. = 3.3 years; 4 men; 5 right-handed) and six normally sighted control subjects (C: ages 26-55, mean = 36.3 years, s.e. = 4.3 years; 3 men; 5 right-handed). Details of blind subjects can be found in Table 1. All sighted subjects had normal or corrected-to-normal vision. All subjects reported no neurological or psychiatric problems, and no current use of any psychoactive medications. No screening was carried out for endocrinological disorders, hypertension or other medications.

All subjects gave written, informed consent. Data from one additional sighted control subject was excluded from analysis due to significant head motion artifacts. Experimental procedures were approved by the California Institute of Technology Committee for the Protection of Human Subjects and the University of California, San Diego Human Research Protections Program in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki).

Table 1: Details of blind subjects (NLP – no light perception; LP – light perception; CF – counting fingers; ROP – retinopathy of prematurity)

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age</th>
<th>Age of Blindness Onset</th>
<th>Handedness</th>
<th>Reason for blindness</th>
<th>Full-term or Premature</th>
<th>Visual Acuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>32</td>
<td>Birth</td>
<td>Right</td>
<td>Leber’s disease</td>
<td>Full-term</td>
<td>LP</td>
</tr>
<tr>
<td>Name</td>
<td>Age</td>
<td>Birth</td>
<td>Side</td>
<td>Condition</td>
<td>Age</td>
<td>Visual</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-------</td>
<td>------</td>
<td>-----------</td>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>F</td>
<td>38</td>
<td>Birth</td>
<td>Right</td>
<td>ROP Premature</td>
<td>2 mo.</td>
<td>LP</td>
</tr>
<tr>
<td>F</td>
<td>48</td>
<td>Birth</td>
<td>Left</td>
<td>Anophthalmia (RE), microphthalmia (LE)</td>
<td>Full-term</td>
<td>NLP</td>
</tr>
<tr>
<td>M</td>
<td>54</td>
<td>Birth</td>
<td>Left</td>
<td>ROP</td>
<td>Premature, 1.75 mo.</td>
<td>NLP/LP</td>
</tr>
<tr>
<td>M</td>
<td>50</td>
<td>0-18 mo.</td>
<td>Right</td>
<td>Retinoblastoma, enucleation at 12-18 mo.</td>
<td>Full-term</td>
<td>NLP</td>
</tr>
<tr>
<td>M</td>
<td>56</td>
<td>6 mo.</td>
<td>Right</td>
<td>Fever, 6 mo.</td>
<td>Full-term</td>
<td>NLP</td>
</tr>
<tr>
<td>F</td>
<td>51</td>
<td>Birth</td>
<td>Right</td>
<td>ROP</td>
<td>Premature, 2.5 mo.</td>
<td>NLP/LP</td>
</tr>
</tbody>
</table>

MRI SCANNING

Blood oxygenation-level dependent (BOLD) functional imaging was performed with a 3 Tesla Siemens (Erlangen, Germany) TRIO scanner at California Institute of Technology (3x3x4 mm voxels; repetition time (TR), 12 s; echo time, 30; flip angle, 90°; field of view, 192; matrix size, 64x64; 30 slices; slice acquisition order, sequential). Slices were obliquely oriented for optimal coverage of visual, auditory, and somatosensory cortices. The first volume of every scan was discarded. Three-dimensional (3D) anatomical images were acquired using a 1x1x1 T1-weighted MPRAGE (magnetization-prepared rapid gradient echo) sequence.

A sparse EPI (echo planar imaging) pulse sequence was used in all experiments to allow the presentation of stimuli uninterrupted by MRI scanner noise (Hall, Haggard et al. 1999). Each 2 s volume acquisition was preceded by a 10 s quiet delay (TR = 12 s) during which visual, auditory, or tactile stimuli were presented. Due to the hemodynamic delay
(approximately 5 seconds to peak response (Boynton, Engel et al. 1996)), each volume
acquisition therefore measured the BOLD response to stimulation during the middle of the
stimulus period, with relatively little contribution from the auditory noise of the previous
acquisition. It is worth noting that the longer delay between acquisitions (which allows for
more time to restore magnetic equilibrium) results in a higher signal-to-noise ratio for each
individual acquisition, which partially compensates for the reduced number of acquisitions
(Hall, Haggard et al. 1999).

STIMULI AND TASK

Each block consisted of a 10 s stimulation period followed by a 2 s data acquisition
period. All trials in a given 10 s stimulation period always consisted of the same task. Tasks
presented during the stimulation period included a control task (key-press), 3 auditory tasks
(auditory letters (AL), auditory motion (AM), and auditory frequency (AF), and 3 tactile tasks
tactile letters (TL), tactile animals (TA), and tactile orientation (TO). For sighted subjects, task
conditions consisted of the same control task (key-press) and 6 auditory and tactile tasks as
blind subjects, as well as an additional 4 visual tasks (visual letters, visual animals, visual
orientation, and visual motion) that were not included in these analyses.

All tasks consisted of a two-alternative forced choice (2-AFC) judgment, see Figure 1.

For most tasks we used a structure containing 2 stimulus presentation intervals, followed by
a response period. At the beginning of each response period, there was a brief auditory
“click” which was presented as a reminder to the subject that it was time to press a key.
For all auditory tasks (auditory letters, auditory motion, and auditory frequency) and all letter tasks (auditory letters and tactile letters), each of the 2 intervals was 1 s in length and the response period was 0.5 s, for a total of 4 trials per 10 s stimulation period. For the tactile orientation and tactile animals tasks, we found we had to allow more time per trial. The tactile orientation task contained a single 2 s interval and a 0.5 s response period, also resulting in a total of 4 trials per 10 s stimulation period. The tactile animals task contained two 4.75 s intervals and a 0.5 s response interval, resulting in a single trial in a 10 s stimulation period. The control task (key-press) had 4 trials/key-presses per 10 s stimulation period.

Our goal was to choose a broad set of tasks, that spanned a range between simple “low-level” discrimination tasks and more complex “object recognition” tasks, as well as including tasks (such as Braille reading) that play an important behavioral role in people who are blind. As a result, our tasks varied widely in nature, including both active “exploratory” tasks such as the tactile animals and tactile letters tasks, and tasks where the stimuli were passively presented (note that a discrimination response was always required) such as our auditory tasks and the tactile orientation task. The timing of the tasks also differed significantly. While some attempt was made to match difficulty across tasks and subject groups, these six tasks should in no way be considered “balanced” in terms of task demands. To ensure that subjects understood all of the tasks, every subject was given a short practice.
session (10-20 minutes) before entering the scanner, where they were given instructions and several practice trials for each of the tasks below. If the subject seemed uncertain about a particular task the instructions and practice trials were repeated for that task. Tasks were informally controlled for task difficulty based on pilot data, but the nature of the tasks and the complexity of the experimental design made it impossible to run individual staircases for each subject/task, and performance did differ across tasks (see Figure 3). As a result, it is likely that attentional demands varied across tasks.

Because it was technically not feasible (and would be confusing to the subject) to present all tasks within a single scan, we presented a pseudo-random subset of three tasks per scan, plus the key-press control task, for a total of four tasks per scan. These three tasks per scan could consist of any combination of auditory and tactile (or visual in the case of sighted subjects) tasks. During each scan, each sequence of four tasks was repeated eight times (each scan therefore contained 32 blocks in total, for a total scan duration of 6 minutes 24 seconds). While it is possible that a preceding visual block might affect responses within an auditory/tactile block it should be noted that our sparse design, that only measures BOLD responses within the middle of each block, probably minimized such effects.

Each task was included within six scans for each subject. For each task we therefore collected data from 48 block repetitions in total. Scan order was randomized across subjects. Subjects were typically able to complete 6-7 scans per one hour session. Blind subjects carried out 12 scans in total across two one-hour sessions, whereas sighted subjects carried out 18-21 scans in total across three one-hour sessions (sighted subjects were required to
carry out more scans because of the extra visual conditions). Because the *key-press* task was included in every scan, in blind subjects we collected 96 block repetitions in total for that task, and in sighted subjects we collected 144-168 block repetitions in total for that task.

STIMULUS PRESENTATION

Auditory stimuli were generated using MATLAB and Psychophysics Toolbox (www.psychtoolbox.org) (Brainard 1997; Pelli 1997), and were delivered to the subject via MRI-compatible stereo headphones (MRCONFON). A separate computer used MATLAB to deliver auditory cues to an *experimenter’s* headphones; these auditory cues cued the experimenter for presenting tactile stimuli (i.e. when to present and withdraw each tactile stimulus for the subject).

Key-press Task

The *key-press* task was included as a baseline to which other tasks could be compared. This stimulus contained no task or stimulus besides key-pressing timed to match most of the other tasks in the study. After 2 s of no auditory or tactile stimulation, the standard “click” sound was presented, and subjects had a 0.5 s response period during which to press a key. Subjects were asked to alternate between pressing each of the two possible response keys across the four trials within each 10 s block.

Auditory Tasks

There were 3 auditory tasks: “auditory letters” (AL), “auditory motion” (AM), and “auditory frequency” (AF). The *auditory letters* stimulus consisted of two sets of three letters
(trigrams), produced via a computer-generated voice that orally pronounced sets of letters. Each set of letters was randomly generated from the alphabet (excluding the letter “O”), with the exception of one letter in either the first or second set of letters, which was randomly selected and replaced with the target letter “O”. In each auditory letters trial, each set of letters was presented for a duration of 1 s, and both sets of letters were followed by a 0.5 s response period (for a total of 2.5 s per trial, with 4 trials per 10 s stimulus block). The subject’s task was to indicate via key-press whether the letter “O” was contained in the first or second set of letters.

The auditory motion stimulus was created by linearly ramping (between 0 and max-intensity) the volume of a 600 Hz tone in opposite directions between the left and right speakers, creating the vivid percept of a sound source moving horizontally from one side of the head to the other. Maximum auditory intensity was approximately 50 dB and was adjusted to a comfortable level for individual subjects. In each auditory motion trial, this stimulus was presented twice, for a duration of 1 s per presentation, and both presentations were followed by a 0.5 s response period (for a total of 2.5 s per trial, with 4 trials per 10 s stimulus block). For a given presentation, the direction of auditory motion was equally likely to be from left-to-right, or from right-to-left. Subjects performed a “same-different” task, indicating via key-press whether the auditory motion was in the same direction during both presentations, or in different directions.

The auditory frequency stimulus was a 580 Hz, 600 Hz, or 620 Hz tone with equal intensity (0.5 of max intensity) in the two speakers, creating the percept of a centrally
located stationary sound source. In each auditory frequency trial, this stimulus was presented
twice, for a duration of 0.9 s per presentation, with an inter-stimulus interval (ISI) of 0.2 s (to
slightly increase task difficulty), and both presentations were followed by a 0.5 s response
period (for a total of 2.5 s per trial, with 4 trials per 10 s stimulus block). For a given set of
presentations, the frequency of the auditory tone was equally likely to be 600 Hz in both
presentations, or 580 Hz in one presentation, and 620 Hz in the other presentation
(accordingly, the frequency was always centered around 600 Hz). Subjects performed a
“same-different” task, indicating via key-press whether the auditory tones were the same or
different frequencies.

Tactile Tasks

There were 3 tactile tasks: “tactile letters” (TL), “tactile animals” (TA), and “tactile
orientation” (TO). All tactile stimuli were applied to the subject’s hand manually by the
experimenter, who stood as still as possible just outside the scanner, near where the
subject’s hand rested on a firm piece of cardboard placed on his or her lap.

For blind subjects, the tactile letters stimulus consisted of two sets of three letters
(trigrams). Each set of letters contained three Braille letters, produced via a Braille labeler,
embossed onto tape, and placed in a row (with a space between each pair of sets) on an
index card. As with the auditory letters task, each distractor letter was randomly generated
from the alphabet (excluding the letter “O”), with the exception of one letter in either the
first or second set of letters, which was randomly selected and replaced with the target letter
“O”. The subject had 1 s to read both sets of letters, followed by a 0.5 s response period (for
a total of 2.5 s per trial, with 4 trials per 10 s stimulus block). The subject’s task was to indicate whether the letter “O” was contained in the first or second set of letters. To reduce subject motion in the scanner, we arranged each index card with four rows of trials, so that each card contained all the trials for a given stimulus block. Accordingly, unlike the other tasks in this study, the tactile letters task was necessarily self-paced by the subject. For sighted subjects (since they did not read Braille), we created a modified tactile letters stimulus. The stimulus and procedure were as described above, except that instead of embossed Braille letters, we used the embossed Roman letter “I” for every distractor and the Roman letter "O" as the target. Despite it being difficult, if not impossible to equate a Braille reading task across blind and sighted subjects (see Discussion), given that we were trying to select tasks that best represent the plasticity induced by blindness we felt it was important to include Braille reading in our selection of tasks.

The tactile animals stimulus consisted of a collection of toy plastic animals, with equal numbers of mammals (pig, goat, bear, gorilla, giraffe, elephant), and non-mammals (snake, insect, lizard, turtle, crab, shark). During each of two (4.75 s) intervals, a plastic animal was placed into the subject’s hand by the experimenter, and the subject was encouraged to feel them actively with the hand (while minimizing movement of the arm). Mammals and non-mammals were presented with equal frequency, and the probability of their belonging to the same category was 50%. This was followed by a 0.5 s response period, for a total of 10 s per trial, and one trial per 10 s stimulus block. Subjects performed a “same-different” task, indicating via key-press whether or not both animals belonged to the same mammal/non-mammal category.
For the tactile orientation task, the experimenter applied a JVP dome (2.0 mm, Stoelting Co., IL) tactile grating to the index finger of the subject by slowly “swiping” it along the fingertip. Similar methods using JVP domes have been used by others (e.g. Sathian and Zangaladze 2002; Zhang, Mariola et al. 2005). Each “swipe” was oriented such that the indentations of the JVP dome ran parallel to the length of the finger (“vertical”), or across the width of the finger (“horizontal”). Each swipe was presented over a duration of approximately 2 s, and was followed by a 0.5 second response period (for a total of 2.5 s per trial, with 4 trials per 10 s stimulus block). The subject’s task was to indicate via key-press whether the orientation of the grating had been vertical, or horizontal.

COMPARISON OF EYES-OPEN/EYES-CLOSED RESPONSES

Because of the interleaving of visual conditions in the main experiment, sighted subjects were asked to fixate a 0.27 degree white or gray central circle (rather than close their eyes) during each scanning session. Pilot data collected using auditory motion stimuli suggests similar occipital cross-modal responses in sighted subjects between eyes-open and eyes-closed conditions, though see (Merabet, Swisher et al. 2007).

In a control experiment we compared responses in two sighted subjects with eyes open vs. eyes closed in the *auditory frequency* and *auditory letters* task. A single session was run for each subject containing three eyes-open runs and two or three eyes-closed runs (a single run was lost due to a computer crash). Within each run subjects performed eleven repeats of an interleaved *key-press*, *auditory frequency* and *auditory letters* tasks for 22-33 block repetitions in total for each task under both the eyes-open and eyes-closed condition.
These data were analyzed using a subtraction analysis (eyes-open - eyes-closed) fixed-effects GLM analysis corrected for multiple comparisons using the false discovery rate (FDR) method (Genovese, Lazar et al. 2002), see below. Neither subject showed any regions of cortex that showed significant differences (p>0.05) between eyes-open and eyes-closed conditions for either task.

BOLD DATA ANALYSIS

Brain Voyager QX (Brain Innovation, Maastricht, Netherlands) and MATLAB (Mathworks) were used for data analysis. fMRI data pre-processing included linear trend removal, temporal high-pass filtering, and motion correction.

GLM ANALYSES (BRAIN VOYAGER)

For general linear model (GLM) analyses, individual 3D anatomical images were transformed into Talairach space and segmented at the gray/white matter boundary. This allowed for cortical surface reconstruction of each individual subject’s brain hemispheres. Cortex-based alignment was applied to further improve inter-subject alignment beyond Talairach correspondence. The reconstructed cortical surfaces were each transformed into a spherical representation that was subjected to non-rigid alignment to a selected target brain sphere based on the gyral/sulcal folding pattern (Fischl, Sereno et al. 1999). fMRI data were aligned to same-session anatomical volumes and transformed into the cortical surface-based aligned coordinate space. Using a common space based on gyral/sulcal folding patterns allowed us to compare patterns of responses across subjects’ occipital cortices relative to their own gyral and sulcal landmarks, and this technique has been shown to outperform
linear and non-linear volume-based registration methods at aligning functionally defined visual areas (Fischl, Sereno et al. 1999; Hinds, Rajendran et al. 2008; Hinds, Polimeni et al. 2009). However it should be noted that cortical folding patterns may differ between early blind and sighted subjects (Dehay, Horsburgh et al. 1989; Dehay, Giroud et al. 1996).

The GLM used for subtraction analyses contained only data from the auditory, tactile, and the key-press tasks for blind and sighted subjects (because no effects of handedness were noticed in the occipital lobe, data were collapsed across right- and left-handed subjects), with all visual conditions manually removed. This GLM was used within Brain Voyager for subtraction analyses using a fixed-effects GLM analysis corrected for multiple comparisons using the false discovery rate (FDR) method (Genovese, Lazar et al. 2002) because we did not have a sufficient number of subjects for a random-effects analysis.

Data for each vertex (from the cortical surface-based coordinate space) for each scan were then exported from Brain Voyager to custom software in MATLAB for correlational analyses.

ROI definition

Figure 2: (A) Anatomical landmarks on the target anatomy. ROIs were drawn by hand using anatomical landmarks, as described in the text. CaS – Calcarine sulcus; CS – Collateral sulcus; FuG – Fusiform gyrus; IPS – Intraparietal sulcus; ITG Inferior temporal gyrus; LG – Lingual gyrus; LOS – Lateral occipital sulcus; POS – Parieto-occipital sulcus.
Definition of ROIs, see Figure 2, was done by hand on the cortical surface-based coordinate space using a combination of functional (informal inspection of the responses to visual conditions in sighted subjects and cross-modal responses in blind and sighted subjects) and anatomical criteria. We defined a main occipital ROI and 5 sub-region ROIs, as described below. ROI definition was carried by an author naïve to the results of the correlational analyses described below. Identification of the regions likely to be included in each ROI is based on descriptions by Wandell et al. (Wandell, Dumoulin et al. 2007) though it should be noted that the organization of many extrastriate visual areas remains a matter of discussion.

Occipital ROI: A combination of responses to visual conditions in sighted subjects as well as sulcal and gyral landmarks were used to help define the boundaries of the occipital ROI, though it should be noted that activity to visual conditions was seen outside the occipital ROI, particularly for the visual animals and visual letters condition. This ROI was likely to include foveal and peripheral early visual areas as well as substantial extrastriate areas.

Foveal confluence ROI: The foveal confluence ROI was selected based on anatomical criteria. This ROI was drawn on the medial surface along the calcarine sulcus and was centered on the occipital pole. This ROI was likely to include the foveal confluence of early (retinotopically organized) visual areas (V1-V4).

Peripheral early visual areas ROI: The peripheral early visual areas ROI was selected, using anatomical criteria, to be anterior to the foveal confluence ROI along the medial surface. Although the size of early visual areas differs substantially across subjects
(Dougherty, Koch et al. 2003; Duncan and Boynton 2003), these changes generally seem to align with anatomical folding patterns within occipital cortex, making it possible to roughly localize early visual areas based on cortical landmarks (Hinds, Rajendran et al. 2008). This ROI is likely to primarily consist of regions of cortex that normally represent non-foveal V1-V2, though it is possible that in some subjects regions of V3 are also included.

Dorsal/parietal ROI: The dorsal/parietal ROI was defined based on anatomical criteria and cross-modal responses in blind subjects to include dorsal regions along the intraparietal sulcus that would, in normally sighted observers, be likely to include dorsal portions of V3, V3A, V3B and early intraparietal areas including IPS-0-2 and possibly IPS-3-4 in some observers (Wandell, Dumoulin et al. 2007).

Ventral ROI: The ventral ROI was chosen, based on anatomical criteria, to include ventral regions anterior to the posterior fusiform gyrus along the lateral bank of the collateral sulcus. In normally sighted observers this ROI would be likely to include hV4, and ventral occipital areas including VO-1 and VO-2 (Wandell, Dumoulin et al. 2007).

Lateral ROI: The lateral ROI was chosen, on the basis of anatomical criteria and cross-modal responses in blind subjects, to include lateral occipital regions along the lateral occipital sulcus that in normally sighted observers are likely to include LO-1 and LO-2 and possibly, in some subjects, portions of V3A and MT+ (Wandell, Dumoulin et al. 2007).

CORRELATIONAL ANALYSES
The analyses described here were carried out using custom software written in MATLAB. As described above, all subjects’ data were transformed into a cortical-surface based aligned coordinate space. This results in a common number of vertices/surface voxels per subject (aligned relative to each subject’s gyral and sulcal landmarks) that allowed the following voxelwise correlational analysis.

We calculated response amplitudes (percent BOLD signal change) for each task in each vertex by calculating the difference between the response to that task and the key-press task, divided by the response to the key-press task:

\[
\text{Percent BOLD signal change} = 100\times\left(\frac{\bar{X}_{\text{task}}}{\bar{X}_{\text{key-press}}} - 1\right)
\]

where \(\bar{X}_{\text{task}}\) is the mean activation for each task, and \(\bar{X}_{\text{key-press}}\) is the mean activation for the key-press task (our sparse design made it inappropriate to fit the full hemodynamic response function). Percent BOLD signal change for each task was then calculated as simply the mean of each of these ratios across all scans.

The pattern of responses to two conditions was calculated as the Pearson correlation of the amplitudes across vertices. For example, to determine whether sighted subjects showed a similar pattern of responses to auditory letter and auditory frequency tasks across the occipital cortical surface, the correlation coefficient was computed as follows:

\[
r = \frac{\sum_{i=1}^{n}(X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n}(X_i - \bar{X})^2 \sum_{i=1}^{n}(Y_i - \bar{Y})^2}}
\]
where \(i=1,2, \ldots, n \); \(n \) is the number of vertices; \(x_i \) is the mean response to the auditory letter task averaged across all sighted subjects in a given vertex; \(y_i \) is the mean response to the auditory frequency task averaged across all sighted subjects in that vertex; \(\bar{x} \) and \(\bar{y} \) are the mean responses for auditory letters and auditory frequency, respectively, averaged across all vertices in all sighted subjects, and \(s_x \) and \(s_y \) are the standard deviations of the mean responses across all vertices in all sighted subjects for the two tasks, respectively. A positive correlation would imply that a similar pattern of cortical regions is activated (and deactivated) across the two tasks. A negative correlation would imply that those regions that showed positive responses in the auditory frequency task had negative responses in the auditory letter task and vice versa.

RESULTS

Behavioral Performance

Due to technical problems at the scanner, behavioral data for eleven out of the 133 scans were lost. Subjects were unaware of the technical problems, and so presumably performed the tasks as usual while in the scanner. Additionally, due to a technical glitch in the MRI-compatible button box, a small percentage of responses (~10%) were not recorded. Unfortunately, these responses were not distinguishable from subjects failing to respond within the allotted response interval. Analyses were carried out both including and excluding late/lost responses. The pattern of results was similar for both analyses.
Late/lost responses classified as incorrect responses

A two-way mixed ANOVA (subject group x task) indicated that although there was no effect of subject group [$F(1,11)=2.63$, $p=0.13$] and no interaction effect [$F(5,55)=0.78$, $p=0.57$; data corrected for lack of sphericity], there was a main effect of task [$F(5,55)=13.90$, $p<0.0001$; data corrected for lack of sphericity]. Individual t-tests confirmed that task performance was not significantly different between blind vs. sighted subjects for any task or averaged across all tasks, see Table 2.

The main effect of task is explained by t-tests across subject groups; performance for both tactile letters and tactile animals was significantly worse than performance for all three auditory tasks ($p<0.01$ for all comparisons). Performance for tactile orientation was significantly worse than performance for auditory frequency ($p<0.05$), and significantly better than performance for tactile letters and tactile animals ($p<0.01$ for both comparisons). Performance for auditory frequency was significantly better than performance for auditory motion ($p<0.02$).

Late/lost responses excluded

When late/lost responses were excluded, a two-way mixed ANOVA (subject group x task) indicated that although there was no effect of subject group [$F(1,11)=1.72$, $p=0.22$], there was again a main effect of task [$F(5,55)=11.29$, $p<0.0001$; data corrected for lack of sphericity] and an interaction effect [$F(5,55)=5.29$, $p<0.01$; data corrected for lack of sphericity]. Individual t-tests confirmed that task performance was not significantly different between blind vs. sighted subjects, with the exception of tactile letters, see Table 2.
For blind subjects, while performance was close to 90% in the *tactile animals* and the *tactile letters* task when late/lost trials were excluded, a high proportion of late/lost trials meant that performance was poor for both tasks when late/lost trials were included: providing a response within the allotted response-interval was challenging for both these tasks.

The main effect of task is explained by *t*-tests across subject groups; performance for *tactile letters* was significantly worse than performance for all other auditory and tactile tasks (*p*<0.02 for all comparisons). Performance for *tactile animals* was significantly worse than performance for *auditory frequency* (*p*<0.03). Performance for *auditory letters* and *auditory frequency* were significantly better than performance for *auditory motion* (*p*<0.03 for both comparisons).

The interaction effect is explained by *t*-tests comparing each task within each subject group: in sighted subjects performance for *tactile letters* was significantly worse than performance for all other auditory and tactile tasks (*p*<0.01 for all comparisons). It is perhaps not surprising that sighted subjects performed more poorly on *tactile letters* than blind subjects, since not only were they unable to read Braille, but they were also not used to reading Roman letters tactiley (i.e. in our non-Braille version of *tactile letters*).

In blind subjects performance for *auditory letters* was significantly better than performance for *auditory motion* and *tactile letters* (*p*<0.05 for both comparisons), performance for *auditory frequency* was significantly better than performance for *auditory
letters, auditory motion, and tactile letters \((p<0.02\) for all comparisons), and performance for tactile letters was significantly worse than performance for tactile orientation \((p<0.05)\).

Analysis of late/lost responses

A two-way mixed ANOVA (subject group x task) on percentage of late/lost responses indicated that although there was no effect of subject group \([F(1,11)=1.58, p=0.23]\) and no interaction effect \([F(5,55)=0.68, p=0.63]\); data corrected for lack of sphericity), there was a main effect of task \([F(5,55)=10.03, p<0.001]\); data corrected for lack of sphericity). Individual \(t\)-tests confirmed that the percentage of late/lost responses did not significantly differ between blind and sighted subjects for any task, see Table 2. The main effect of task is explained by \(t\)-tests across subject groups; the percentage of late/lost responses for both tactile letters and tactile animals was significantly greater than percentage of late/lost responses for all other auditory and tactile tasks \((p<0.02\) for all comparisons), and the percentage of late/lost responses for tactile orientation was significantly greater than the percentage of late/lost responses for auditory frequency \((p<0.05)\). These findings suggest that it was generally more difficult for subjects to respond within the allotted time period to tactile than to auditory tasks.

<table>
<thead>
<tr>
<th></th>
<th>Late/lost responses</th>
<th>Blind</th>
<th>Sighted</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Averaged across all tasks</td>
<td>Included as incorrect</td>
<td>73.8%</td>
<td>70.2%</td>
<td>(p=0.36)</td>
</tr>
<tr>
<td></td>
<td>Excluded</td>
<td>94.3%</td>
<td>94.6%</td>
<td>(p=0.86)</td>
</tr>
<tr>
<td></td>
<td>Late/lost responses</td>
<td>21.8%</td>
<td>25.7%</td>
<td>(p=0.32)</td>
</tr>
<tr>
<td>AL</td>
<td>Included as incorrect</td>
<td>86.7%</td>
<td>72.2%</td>
<td>(p=0.09)</td>
</tr>
<tr>
<td></td>
<td>Excluded</td>
<td>96.5%</td>
<td>96.8%</td>
<td>(p=0.84)</td>
</tr>
</tbody>
</table>

Table 2: Behavioral performance for blind and sighted subjects. Significant task differences between blind and sighted subjects are shown in bold.
Late/lost responses 10.3% 25.5% \(p=0.08 \)

<table>
<thead>
<tr>
<th></th>
<th>Included as incorrect</th>
<th>Excluded</th>
<th>Late/lost responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>83.6%</td>
<td>90.0%</td>
<td>7.0%</td>
</tr>
<tr>
<td></td>
<td>75.7%</td>
<td>94.8%</td>
<td>21.0%</td>
</tr>
<tr>
<td></td>
<td>(p=0.08)</td>
<td>(p=0.19)</td>
<td>(p=0.13)</td>
</tr>
<tr>
<td>AF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>91.1%</td>
<td>99.7%</td>
<td>8.6%</td>
</tr>
<tr>
<td></td>
<td>81.4%</td>
<td>94.9%</td>
<td>15.4%</td>
</tr>
<tr>
<td></td>
<td>(p=0.34)</td>
<td>(p=0.13)</td>
<td>(p=0.44)</td>
</tr>
<tr>
<td>TL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>43.1%</td>
<td>91.1%</td>
<td>51.1%</td>
</tr>
<tr>
<td></td>
<td>32.1%</td>
<td>99.7%</td>
<td>52.0%</td>
</tr>
<tr>
<td></td>
<td>(p=0.18)</td>
<td>(p=0.13)</td>
<td>(p=0.92)</td>
</tr>
<tr>
<td>TA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45.5%</td>
<td>91.7%</td>
<td>50.9%</td>
</tr>
<tr>
<td></td>
<td>36.0%</td>
<td>92.9%</td>
<td>57.6%</td>
</tr>
<tr>
<td></td>
<td>(p=0.57)</td>
<td>(p=0.84)</td>
<td>(p=0.73)</td>
</tr>
<tr>
<td>TO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>62.7%</td>
<td>94.0%</td>
<td>33.5%</td>
</tr>
<tr>
<td></td>
<td>76.0%</td>
<td>95.8%</td>
<td>21.8%</td>
</tr>
<tr>
<td></td>
<td>(p=0.36)</td>
<td>(p=0.72)</td>
<td>(p=0.40)</td>
</tr>
</tbody>
</table>

Figure 3: Behavioral performance for blind and sighted subjects including and excluding late/lost trials. AL = auditory letters, AM = auditory motion, AF = auditory frequency, TL = tactile letters, TA = tactile animals, TO = tactile orientation. Error bars represent SEM.

BOLD RESULTS

Figures 4-6 shows group averages of sighted, blind, and blind – sighted responses to each cross-modal task vs. the key-press task. Data are masked by the occipital ROI shown in yellow on the inset to each figure. In Figures 4 and 5 warm colors represent greater BOLD responses to the given task than to the key-press task in blind and sighted subjects. In Figure 6 warm colors represent greater BOLD responses to the given task than to the key-press task in blind than in sighted subjects. Across all conditions there was a 'hole' in activation near the occipital pole. Analysis of activation within the foveal confluence ROI in individual subjects
(Table 3 and Supplementary Data) suggests that this 'hole' in activation is due to small misalignments across subjects near the occipital pole rather than being a genuine lack of response within the foveal confluence.

Figure 4: Sighted BOLD responses for each cross-modal task vs. the key-press task. Lateral views are presented in the center, whereas views from behind occipital pole are presented on the sides. LH = left hemisphere, RH = right hemisphere. Insets show the anatomically defined ROIs that were used to mask the data. Warm colors represent greater BOLD response in the auditory/tactile task than the key-press condition. Data are thresholded at q(FDR)<0.05. (Patterns of activation were similar in magnitude for much higher thresholds such as q(FDR)<0.003, data not shown). (A) Auditory letters (AL) vs. key-press task, (B) Auditory motion (AM) vs. key-press task. (C) Auditory frequency (AF) vs. key-press task, (D) Tactile letters (TL) vs. key-press task, (E) Tactile animals (TA) vs. key-press task. (F) Tactile orientation (TO) vs. key-press task.

Figure 5: Blind BOLD responses for each cross-modal task vs. the key-press task. Lateral views are presented in the center, whereas views from behind occipital pole are presented on the sides. LH = left hemisphere, RH = right hemisphere. Insets show the anatomically defined ROIs that were used to mask the data. Warm colors represent greater BOLD response in the auditory/tactile task than the key-press condition. Data are thresholded at q(FDR)<0.05. (Patterns of activation were similar in magnitude for much higher thresholds such as q(FDR)<0.003, data not shown). (A) Auditory letters (AL) vs. key-press task, (B) Auditory motion (AM) vs. key-press task. (C) Auditory frequency (AF) vs. key-press task, (D) Tactile letters (TL) vs. key-press task, (E) Tactile animals (TA) vs. key-press task. (F) Tactile orientation (TO) vs. key-press task.

Figure 6: Blind – Sighted group averages of cross-modal BOLD response for each cross-modal task vs. the key-press task. Lateral views are presented in the center, whereas views from behind occipital pole are presented on the sides. LH = left hemisphere, RH = right hemisphere. Insets show the anatomically defined ROIs that were used to mask the data. Warm colors represent greater BOLD response in blind than sighted subjects (cross-modal plasticity), cool colors represent greater BOLD response in sighted than blind subjects. Data are thresholded at q(FDR)<0.05. (Patterns of cross-modal activation were similar in magnitude for much stricter thresholds such as q(FDR)<0.003, data not shown). (A) Auditory letters (AL) vs. key-press task, (B) Auditory motion (AM) vs. key-press task. (C) Auditory frequency (AF) vs. key-press task, (D) Tactile letters (TL) vs. key-press task, (E) Tactile animals (TA) vs. key-press task. (F) Tactile orientation (TO) vs. key-press task.

Table 3: Summary of BOLD responses within anatomical Regions of Interest (ROIs). A Wilcoxon signed-rank test was used to test whether Sighted and Blind responses were significantly different from zero. A Wilcoxon rank sum test was used to test whether Sighted and Blind responses were significantly different. *p<0.05, ** p<0.01, *** p<0.001. BOLD underlining represents significantly negative responses. Because there was no significant difference in BOLD responses across hemispheres for any ROI (2 factor ANOVA, hemisphere x task), data were collated across left and right hemispheres. See Supplementary Data for corresponding bar graphs.

<table>
<thead>
<tr>
<th>ROI</th>
<th>AL</th>
<th>AM</th>
<th>AF</th>
<th>TL</th>
<th>TA</th>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occipital</td>
<td>Sighted</td>
<td>**</td>
<td>***</td>
<td>**</td>
<td>***</td>
<td>**</td>
</tr>
<tr>
<td>Blind</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blind-Sighted</td>
<td>*</td>
<td>**</td>
<td>***</td>
<td>*</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>Foveal</td>
<td>Sighted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In sighted subjects (Figure 4, Table 3, Supplementary Data), as has been described previously (Merabet, Swisher et al. 2007), we saw a combination of positive and negative BOLD activation across the full occipital ROI. An ROI analysis found no significant overall BOLD response across the full occipital ROI for any task. Significantly positive BOLD responses were seen within the foveal confluence for the auditory letters and auditory frequency task and within peripheral early visual areas for the tactile animals task. Significantly negative BOLD activity was seen within the dorsal/parietal ROI for the auditory motion task, and within both dorsal/parietal and ventral ROIs for the tactile orientation task. Bar graphs showing left and right hemisphere responses for each task within each ROI are shown in Supplementary Data.

Blind subjects (Figure 5) showed extensive positive activation with very little negative activation across most of the occipital ROI. ROI analyses showed significantly

<table>
<thead>
<tr>
<th></th>
<th>Blind</th>
<th>*</th>
<th>***</th>
<th>**</th>
<th>**</th>
<th>**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Blind-Sighted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral early visual areas</td>
<td>Sighted</td>
<td></td>
<td></td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>Blind</td>
<td>**</td>
<td>***</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>Blind-Sighted</td>
<td>**</td>
<td>**</td>
<td>*</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Dorsal/parietal</td>
<td>Sighted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blind</td>
<td></td>
<td>**</td>
<td>**</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>Blind-Sighted</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>Ventral</td>
<td>Sighted</td>
<td></td>
<td></td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>Blind</td>
<td>**</td>
<td>**</td>
<td>*</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>Blind-Sighted</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Lateral</td>
<td>Sighted</td>
<td></td>
<td></td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>Blind</td>
<td>***</td>
<td>***</td>
<td>*</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>Blind-Sighted</td>
<td>***</td>
<td>**</td>
<td>*</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>
positive BOLD activity for ROIs for all tasks with the exception of the tactile orientation task within the foveal confluence and the auditory letters task within the lateral ROI.

Significant cross-modal plasticity (blind - sighted activation, Figure 6) was also observed across much of occipital cortex: the occipital ROI showed cross-modal plasticity for all tasks. The foveal confluence showed significant cross-modal plasticity for auditory motion and tactile orientation tasks (note that this was a relatively small ROI, which may have limited the power of this analysis). Peripheral visual areas showed cross-modal plasticity for four of the six tasks: auditory motion, auditory frequency, tactile letters and tactile orientation. Dorsal/parietal and lateral ROIs showed cross-modal plasticity for all tasks except auditory letters and the ventral ROI showed cross-modal plasticity for all tasks except auditory frequency.

It is noticeable that there were strong similarities in the pattern of cross-modal responses across all tasks within both hemispheres for sighted, blind and blind - sighted responses. As can be seen in Figure 6, it was even the case that the pattern of cross-modal plasticity found for tactile tasks was remarkably similar to that found for auditory tasks. Indeed subtraction analyses between tasks (e.g. auditory motion - auditory frequency) resulted in remarkably few areas that showed significant differences between tasks compared to the overall level of cross-modal plasticity. To quantify this similarity across tasks, we calculated the correlation coefficient \(r \) between responses for each task across all the vertices in our occipital ROI (collapsed across both left and right hemispheres, since
cross-correlation results for each hemisphere were very similar) for blind subjects, sighted
subjects, and blind-sighted responses.

If responses across the cortical surface were identical across a pair of tasks, the
cross-correlation would be one. Conversely, if there were little correlation across tasks, and
our failure to find task-specific activation was simply due to low signal-to-noise, we would
expect correlation values to be near zero. Note that these correlation values place equal
weight on every vertex within the occipital cortex, while the activity maps of Figure 4-6 only
include those vertices that show a strong positive or negative response. As a result these
correlation values are somewhat more susceptible to noise than the corresponding activity
maps.

As shown in Figure 7, within the occipital ROI for sighted subjects correlations ranged
between 0.06 - 0.68, for blind subjects correlations ranged between 0.19 - 0.74, and for blind
– sighted subjects correlations ranged between 0.03 - 0.66. Correlations between most tasks
were strongly positive, and correlations were significantly larger than zero (p<0.001 for blind,
sighted and blind-sighted comparisons, two-sided Wilcoxon signed-rank test). These results
quantify our previous observation that a significant proportion of cross-modal plasticity is
relatively unselective for task or modality. Similar high cross-correlations were found for all
sub-region ROIs, as shown in Supplementary Data.

Figure 7: Cross-correlations between cross-modal BOLD percent signal change across the six
different cross-modal tasks across the occipital cortical surface for (A) sighted subject responses, (B)
blind subject responses, (C) cross-modal plasticity (blind-sighted) responses.
Our next goal was to compare blind and sighted subjects' cross-modal responses within occipital cortex. Figure 8 shows an illustrative scatter plot comparing the mean responses across all sighted subjects to mean responses in blind subjects for the auditory motion task in the left hemisphere within the left hemisphere occipital ROI. The red line shows the best fitting regression slope and the green line shows the best fitting non-attenuated regression slope.

A normal regression slope (θ) between x and y is calculated as the correlation between them, multiplied by the ratio of their standard deviations, $\theta = r_{xy} \frac{S_y}{S_x}$ [3]. As a consequence any noise within the measurement of x “attenuates” the estimated regression slope towards zero. The “non-attenuated” correlation relating x and y, \hat{r}_{xy}, is calculated as follows:

$$\hat{r}_{xy} = r_{xy} \sqrt{\frac{1}{r_{xx} r_{yy}}}$$

[4]

where r_{xy} is the correlation between x and y, and r_{xx} and r_{yy} are the reliabilities of x and y measurements. This “non-attenuated” regression can be substituted into equation [3] to obtain an estimate of slope unbiased by measurement error in x (or y). We estimated the reliabilities of our measurements of blind and sighted responses using Chronbach’s alpha, whereby the lower bound of reliability of mean blind and sighted responses (averaged across all subjects) was estimated as:

$$\alpha = N \times \hat{r} \frac{\sqrt{\alpha}}{1 + \hat{r}(N-1)}$$

[5]
where \bar{r} is the mean inter-subject correlation within blind or sighted groups (calculated across all possible subject pairings), and N is the number of subjects (7 blind, 6 sighted).

An advantage of Cronbach’s alpha is that it provides an explicit measurement of the reliability of measurements that includes the effects of both inter-subject variability and the number of subjects included in the measurement. Intuitively it can be thought of as an estimate of the expected mean correlation across voxels/vertices across two experiments with N subjects. Within the occipital ROI for cross-modal responses $\alpha_{\text{blind}} = 0.45$ and $\alpha_{\text{sighted}} = 0.37$. In contrast, for visual responses in sighted subjects $\alpha_{\text{sighted}} = 0.78$.

These results imply significant higher inter-subject variability (within both blind and sighted subjects) for cross-modal responses in the occipital lobe than was found for visual responses in sighted subjects.

Figure 8: Scatter plot comparing mean responses across all sighted subjects to mean responses across all blind subjects for the auditory motion task in the occipital ROI in the left hemisphere. Each data point represents a single vertex. The black dashed lines show $x=0$, $y=0$, representing positive BOLD responses or suppression compared to the key-press task. The solid black line represents $y=x$: if blind and sighted subjects showed identical responses the data should fall along that line. The red line shows the best fitting regression slope and the green line shows the best fitting slope corrected for attenuation.

As described in the Introduction, according to a simple “unmasking” hypothesis, the greatest enhancement of cross-modal responses as a result of blindness would be predicted to occur within those regions that show stronger cross-modal responses within sighted subjects. In that case we might expect the correlation between blind and sighted responses
to be fit by a line with slope greater than one (multiplicative scaling). If either “suppression
unmasking” or “homeostatic scaling of sensitivity” were occurring we would expect the
opposite: divisive scaling, with a slope less than one along with an additive shift. If cross-
modal responses in blind subjects were unrelated to cross-modal responses in sighted
subjects we would expect an additive shift and a non-attenuated slope of zero. Finally, if
enhancements of response in early blind subjects were unrelated to cross-modal responses
in sighted subjects, then we would expect an additive shift and a slope of one. In this
particular example the best fitting non-attenuated regression slope had a slope of 1.2 and an
intercept of 0.25.

Figure 9 shows histograms representing non-attenuated slope and intercept values
for the linear fits describing the relationship between cross-modal responses in sighted and
blind subjects within the full occipital ROI within both hemispheres and all six conditions
(histograms are therefore based on 12 values in total).

Figure 9: Slope and intercept values for the linear fits describing the relationship between
cross-modal responses in sighted subjects and cross-modal responses in blind subjects for all six
tasks and both hemispheres.

As in the illustrative example, intercepts tend to be significantly greater than zero
(mean 𝑖=0.28, 𝑝<0.00, 𝑝<0.001 Wilcoxon signed-rank test). This additive shift was relatively
large: almost half the mean response to high contrast visual stimuli such as images of
animals, gratings or moving dots within the occipital ROI within sighted subjects (0.53
percent signal change, data not shown). Similar additive shifts were also seen within sub-region ROIs, see Supplementary Data.

Mean non-attenuated slopes within the occipital ROI were significantly greater than zero ($p<0.001$) and were not significantly different from one ($s=0.95$, $p=0.47$, two-sided Wilcoxon signed-rank test). While vertices that showed strong cross-modal responses in sighted subjects tended to show similarly high cross-modal responses in blind subjects, the enhancement of cross-modal responses due to blindness was not correlated either positively or negatively with the strength of cross-modal responses in sighted subjects. Similar slopes were seen within those sub-region ROIs for which attenuated slopes could be measured, see Supplementary Data.

DISCUSSION

Consistent with a large number of earlier studies (see Introduction) we found evidence for cross-modal plasticity across a wide range of tasks and stimuli. It should be noted that these effects of cross-modal plasticity (the difference between blind and sighted subjects’ responses) are unlikely to be due to general attention/arousal given that task performance was similar for blind and sighted subjects for all tasks except the tactile letters condition.

The tactile letters task was surprisingly difficult for our sighted subjects (see Behavioral Performance in Results). It is of course a confound for this task that blind subjects were so much superior that sighted subjects, even when sighted subjects were given an
easier task, and it is likely that very different strategies were used by the two groups. However it is likely that this would have been the case even if training had been used to minimize differences in performance. While it has previously been shown that training (especially when blindfolded) on complex tactile tasks does improve performance and increase BOLD responses, the effects of brief training are relatively weak compared to the differences in performance we observed between our blind and sighted subjects (Kauffman, Theoret et al. 2002; Merabet, Hamilton et al. 2008).

Much of occipital cortex demonstrated cross-modal plasticity, with a larger extent of plasticity than has often been observed (though see Burton 2003). There are likely to be three reasons for this: first, we collected a large amount of data, including a very large number of “off blocks,” on a high-quality scanner. Second, our study had high signal-to-noise as a result of using a sparse pulse sequence that avoided auditory masking. As noted above, the long delay between acquisitions (which allows for more time to restore magnetic equilibrium) results in a higher signal-to-noise ratio for each individual acquisition, which partially compensates for the reduced number of acquisitions (Hall, Haggard et al. 1999). Most importantly, we compared a task + stimulus (e.g. auditory frequency discrimination) to a simple key-pressing control, as opposed to using a subtraction paradigm that compares activation patterns across two tasks. Such subtraction comparisons obscure the high baseline amount of unselective cross-modal plasticity revealed by our paradigm.

More surprisingly (though see Burton 2003), the pattern of cross-modal activity showed strong similarities across all tasks within both hemispheres. It was even the case that
the pattern of cross-modal activity found for tactile tasks was remarkably similar to that found for auditory tasks. Indeed subtraction analyses between tasks (e.g. *auditory motion* - *auditory frequency*) analogous to many previous experiments examining cross-modal plasticity e.g. (Sadato, Pascual-Leone et al. 1998; Amedi, Raz et al. 2003; Saenz, Lewis et al. 2008) resulted in remarkably few areas that showed significant differences between tasks compared to the overall level of non-task specific cross-modal plasticity across much of occipital cortex. It seems that a relatively small amount of task-specific modulation of cross-modal plasticity lies on top of a large baseline response.

This finding of an unselective response component is consistent with PET studies showing that while early blind subjects exhibit similar oxygen-to-glucose metabolic ratios as sighted subjects (De Volder, Bol et al. 1997), primary and extrastriate visual cortical areas exhibit greater levels of glucose metabolism and regional cerebral blood flow than sighted subjects both while performing auditory or tactile tasks, and even during rest (Wanet-Defalque, Veraart et al. 1988; Veraart, De Volder et al. 1990; Uhl, Franzen et al. 1993; De Volder, Bol et al. 1997).

It is not clear what, if any, relationship there is between these non-selective enhancements of BOLD responses and superior tactile/auditory skills in early blind individuals, given that skill-enhancements as a result of early blindness have tended to be relatively specific in nature (Lessard, Pare et al. 1998; Sterr, Muller et al. 1998; Roder, Teder-Salejarvi et al. 1999; Van Boven, Hamilton et al. 2000; Gougoux, Lepore et al. 2004).
As well as being unselective for task, these enhancements of cross-modal responses as a result of early blindness were best modeled as an additive shift. This result suggests that enhancements of cross-modal responses within early blind subjects do not originate from either a scaling or unmasking of cross-modal responsivities found in sighted subjects. This was true even within ROIs that included regions where earlier studies have suggested a congruence between sighted and early blind cross-modal responses, such as our lateral (Poirier, Collignon et al. 2005; Poirier, Collignon et al. 2006) and ventral (Mahon, Anzellotti et al. 2009) ROIs (see Introduction). While it remains possible that within small sub-regions of occipital cortex cross-modal plasticity is influenced by sighted cross-modal responses, on a larger scale cross-modal plasticity within blind subjects seems to originate neither from a scaling nor an unmasking of sighted cross-modal responsivities.

It should be noted that our demonstration of the existence of a relatively unselective BOLD response to any kind of auditory or tactile stimulation across much of occipital cortex as a result of early blindness does not necessarily imply a lack of neural selectivity. Indeed, in normally sighted individuals almost all visual areas show a response to any visual stimulus: stimulus selectivity within specialized areas lies on top of strong generic visual response. Our results suggest that cross-modal responses in those blinded early in life may show a similar organization: as a consequence studies using subtraction (rather than our on-off paradigm) paradigms that do not measure this non-selective component might be considered to underestimate the extent of reorganization caused by early blindness.
ACKNOWLEDGEMENTS

Many thanks to Geoffrey Boynton, Vivian Ciaramitaro, Karen Dobkins, Scott Murray and Virginie van Wassenhove for technical support and comments on this manuscript.

GRANTS

This work was supported by the National Institute of Health [grant number NEI-01645 to I.F.]; and a Dana Foundation Award [to I.F.].

DISCLOSURES

None
REFERENCES

Figure 1: The arrangement of trials in a 10 s stimulation period for each task. Gray shading represents the response period.

Figure 2: Anatomical landmarks on the target anatomy. ROIs were drawn by hand using anatomical landmarks, as described in the text. CaS – Calcarine sulcus; CS – Collateral sulcus; FuG – Fusiform gyrus; IPS - Intraparietal sulcus; ITG Inferior temporal gyrus; LG - Lingual gyrus; LOS – Lateral occipital sulcus; POS – Parieto-occipital sulcus.

Figure 3: Behavioral performance for blind and sighted subjects including and excluding late/lost trials. AL = auditory letters, AM = auditory motion, AF = auditory frequency, TL = tactile letters, TA = tactile animals, TO = tactile orientation. Error bars represent SEM.

Figure 4: Sighted BOLD responses for each cross-modal task vs. the key-press task. Lateral views are presented in the center, whereas views from behind occipital pole are presented on the sides. LH = left hemisphere, RH = right hemisphere. Insets show the anatomically defined ROIs that were used to mask the data. Warm colors represent greater BOLD response in the auditory/tactile task than the key-press condition. Data are thresholded at q(FDR)<0.05. (Patterns of activation were similar in magnitude for much higher thresholds such as q(FDR)<0.003, data not shown). (A) Auditory letters (AL) vs. key-press task, (B) Auditory motion (AM) vs. key-press task, (C) Auditory frequency (AF) vs. key-press task, (D) Tactile letters (TL) vs. key-press task, (E) Tactile animals (TA) vs. key-press task, (F) Tactile orientation (TO) vs. key-press task.

Figure 5: Blind BOLD responses for each cross-modal task vs. the key-press task. Lateral views are presented in the center, whereas views from behind occipital pole are presented on the sides. LH = left hemisphere, RH = right hemisphere. Insets show the anatomically defined ROIs that were used to mask the data. Warm colors represent greater BOLD response in the auditory/tactile task than the key-press condition. Data are thresholded at q(FDR)<0.05. (Patterns of activation were similar in magnitude for much higher thresholds such as q(FDR)<0.003, data not shown). (A) Auditory letters (AL) vs. key-press task, (B) Auditory motion (AM) vs. key-press task, (C) Auditory frequency (AF) vs. key-press task, (D) Tactile letters (TL) vs. key-press task, (E) Tactile animals (TA) vs. key-press task, (F) Tactile orientation (TO) vs. key-press task.

Figure 6: Blind – Sighted group averages of cross-modal BOLD response for each cross-modal task vs. the key-press task. Lateral views are presented in the center, whereas views from behind occipital pole are presented on the sides. LH = left hemisphere, RH = right hemisphere. Insets show the anatomically defined ROIs that were used to mask the data. Warm colors represent greater BOLD response in blind than sighted subjects (cross-modal plasticity), cool colors represent greater BOLD response in sighted than blind subjects. Data are thresholded at q(FDR)<0.05. (Patterns of cross-modal activation were similar in magnitude for much stricter thresholds such as q(FDR)<0.003, data not shown). (A) Auditory letters (AL) vs. key-press task, (B) Auditory motion (AM) vs. key-press task, (C) Auditory frequency (AF) vs. key-press task, (D) Tactile letters (TL) vs. key-press task, (E) Tactile animals (TA) vs. key-press task, (F) Tactile orientation (TO) vs. key-press task.
Figure 7: Cross-correlations between cross-modal BOLD percent signal change across the six different cross-modal tasks across the occipital cortical surface for (A) sighted subject responses, (B) blind subject responses, (C) cross-modal plasticity (blind - sighted) responses.

Figure 8: Scatter plot comparing mean responses across all sighted subjects to mean responses across all blind subjects for the auditory motion task in the occipital ROI in the left hemisphere. Each data point represents a single vertex. The black dashed lines show x=0, y=0, representing positive BOLD responses or suppression compared to the key-press task. The solid black line represents y=x: if blind and sighted subjects showed identical responses the data should fall along that line. The red line shows the best fitting regression slope and the green line shows the best fitting slope corrected for attenuation.

Figure 9: Slope and intercept values for the linear fits describing the relationship between cross-modal responses in sighted subjects and cross-modal responses in blind subjects for all six tasks and both hemispheres.

Supplementary Data Figure 1: Occipital ROI. Top row: Mean percent signal change BOLD response within the Occipital ROI. Middle row (also in main text): Cross-correlations between cross-modal BOLD percent signal change across the six different cross-modal tasks across the occipital cortical surface for blind, sighted, and blind – sighted responses. Bottom row (also in main text): Histograms showing slope and intercept values for the linear fits describing the relationship between cross-modal responses in sighted subjects and cross-modal responses in blind subjects for all six tasks and both hemispheres. As described in the main text the mean slope was significantly larger than 0 (p<0.01) and was not significantly different from 1. The mean intercept was significantly larger than 0 (p<0.001).

Supplementary Data Figure 2: Foveal ROI. Top row: Mean percent signal change BOLD response within the Foveal ROI. Middle: Cross-correlations between cross-modal BOLD percent signal change across the six different cross-modal tasks across the Foveal ROI for blind, sighted, and blind – sighted responses. Bottom row: Histograms showing slope and intercept values for the linear fits describing the relationship between cross-modal responses in sighted subjects and cross-modal responses in blind subjects for all six tasks and both hemispheres. The mean intercept was significantly larger than 0 (p<0.001).

Supplementary Data Figure 3: Peripheral ROI. Top row: Mean percent signal change BOLD response within the Peripheral ROI. Middle: Cross-correlations between cross-modal BOLD percent signal change across the six different cross-modal tasks across the Peripheral ROI for blind, sighted, and blind – sighted responses. Bottom row: Histograms showing slope and intercept values for the linear fits describing the relationship between cross-modal responses in sighted subjects and cross-modal responses in blind subjects for all six tasks and both hemispheres. The mean intercept was significantly larger than 0 (p<0.001).

Supplementary Data Figure 4: Dorsal ROI. Top row: Mean percent signal change BOLD response within the Dorsal ROI. Middle: Cross-correlations between cross-modal BOLD percent signal change across the six different cross-modal tasks across the Dorsal ROI for blind, sighted, and blind – sighted responses. Bottom row: Histograms showing slope and intercept values for the linear fits describing the relationship between cross-modal responses in sighted subjects and cross-modal responses in blind subjects for all six tasks and both hemispheres.
tasks and both hemispheres. The mean slope was significantly larger than 0 ($p<0.05$) and was not significantly different from 1. The mean intercept was significantly larger than 0 ($p<0.001$).

Supplementary Data Figure 5: Ventral ROI. Top row: Mean percent signal change BOLD response within the Ventral ROI. **Middle row:** Cross-correlations between cross-modal BOLD percent signal change across the six different cross-modal tasks across the Ventral ROI for blind, sighted, and blind – sighted responses. **Bottom row:** Histograms showing slope and intercept values for the linear fits describing the relationship between cross-modal responses in sighted subjects and cross-modal responses in blind subjects for all six tasks and both hemispheres. The mean slope was significantly larger than 0 ($p<0.05$) and was not significantly different from 1. The mean intercept was significantly larger than 0 ($p<0.001$).
Auditory

- **Auditory letters (AL)**
 - Which interval contains ‘o’?

- **Auditory motion (AM)**
 - Same or different direction?

- **Auditory frequency (AF)**
 - Same or different pitch?

Tactile

- **Tactile letters (TL)**
 - Which interval contains ‘o’?

- **Tactile animals (TA)**
 - Which category (mammal vs. non-mammal)?

- **Tactile orientation (TO)**
 - Vertical or horizontal?
1. CaS
2. CS
3. FuG
4. IPS
5. ITG
6. LG
7. LOS
8. POS

ROIs
- Occipital
- Foveal confluence
- Peripheral early visual areas
- Dorsal/parietal
- Ventral
- Lateral
A. AL

B. AM

C. AF

D. TL

E. TA

F. TO
A. AL
B. AM
C. AF
D. TL
E. TA
F. TO
Blind % signal change, AM task LH vs Sighted % signal change, AM task LH
The non-attenuated slope could not be calculated because within the voxels of the Foveal ROI correlations between blind subjects were not positive.
The non-attenuated slope could not be calculated because within the voxels of the Peripheral ROI correlations between sighted subjects were not positive.