Multiple Ca$^{2+}$-dependent mechanisms regulate L-type Ca$^{2+}$ current in retinal amacrine cells.

Merve Tekmen and Evanna Gleason
Department of Biological Sciences
Louisiana State University
Baton Rouge, LA 70803

Running Title: Regulation of Ca$^{2+}$ current in amacrine cells

Corresponding Author:
Evanna Gleason
Department of Biological Sciences
Louisiana State University
Baton Rouge, LA 70803
Tel: 225-578-1748
Email: egleaso@lsu.edu
ABSTRACT

Understanding the regulation of L-type voltage-gated Ca\(^{2+}\) current is an important component of elucidating the signaling capabilities of retinal amacrine cells. Here, we ask how the cytosolic Ca\(^{2+}\) environment and the balance of Ca\(^{2+}\)-dependent effectors shape native L-type Ca\(^{2+}\) channel function in these cells. To achieve this, whole cell voltage clamp recordings were made from cultured amacrine cells under conditions that address the contribution of mitochondrial Ca\(^{2+}\) uptake (MCU), Ca\(^{2+}\)/calmodulin (CaM)-dependent channel inactivation (CDI), protein kinase A (PKA), and Ca\(^{2+}\)-induced Ca\(^{2+}\) release (CICR). Under control conditions, repeated activation of the L-type channels produces a progressive enhancement of the current. Inhibition of MCU causes a reduction in the Ca\(^{2+}\) current amplitude that is dependent upon Ca\(^{2+}\) influx as well as cytosolic Ca\(^{2+}\) buffering, consistent with CDI. Including the Ca\(^{2+}\) buffer BAPTA internally, can shift the balance between enhancement and inhibition such that inhibition of MCU can enhance the current. Inhibition of PKA can remove the enhancing effect of BAPTA suggesting that cyclic AMP-dependent phosphorylation is involved. Inhibition of CaM suppresses CDI but spares the enhancement, consistent with the substantially higher sensitivity of the Ca\(^{2+}\)-sensitive adenylate cyclase 1 (AC1) to Ca\(^{2+}\)/CaM. Inhibition of the ryanodine receptor (RyR) reduces the current amplitude suggesting that CICR might normally amplify the activation of AC1 and stimulation of PKA activity. These experiments reveal that the amplitude of L-type Ca\(^{2+}\) currents in retinal amacrine cells are both positively and negatively regulated by Ca\(^{2+}\)-dependent mechanisms.
INTRODUCTION

Amacrine cells are retinal interneurons that signal extensively in the inner plexiform layer of the retina. The functions of amacrine cells are diverse but include shaping the response properties of ganglion cells, the output cells of the retina (Baccus 2007; Demb 2007; Zhou and Lee 2008). These key players in retinal signal processing often participate in serial (Dowling and Boycott 1966; Dubin 1970; Guiloff et al. 1988; Pollard and Eldred 1990; Zhang et al. 1997) and reciprocal synapses (Hartveit 1999; Shields and Lukasiewicz 2003; Vigh and von Gersdorff 2005), implying that local synaptic environments might be regulated independently of one another. It has been established for several classes of amacrine cells that L-type Ca\(^{2+}\) channels are employed at their synapses to control neurotransmitter release (Gleason et al. 1994; Habermann et al. 2003; Bieda and Copenhagen 2004; Vigh and Lasater 2004). Thus, the regulation of these channels can play a central role in visual signal processing.

The pore-forming region of the L-type channel is encoded by one of four genes: Ca\(_V\)1.1-1.4. Ca\(_V\) 1.1 is expressed in skeletal muscle, Ca\(_V\) 1.2 and 1.3 are the dominant L-type channels in the brain (Hell et al. 1993) and Ca\(_V\) 1.4 is expressed predominately at ribbon synapses in the retina (Strom et al. 1998). L-type Ca\(^{2+}\) channels are distinctive in that they can support fairly sustained levels of Ca\(^{2+}\) influx. This Ca\(^{2+}\) influx can have a variety of effects including regulation of the channel itself via Ca\(^{2+}\)/calmodulin (CaM)-dependent inactivation (CDI) that occurs for most Ca\(_V\)1 and 2 (non-L-type) Ca\(^{2+}\) channels (for review see, Halling et al. 2005).
The molecular players and details of this inactivation have been described by an elegant set of experiments on CaV1/2 channels (Dick et al. 2008; Tadross et al. 2008). The efficiency of the inactivation process is optimized by the pre-association of CaM to the channel (Erickson et al. 2001; Pitt et al. 2001). Ca$^{2+}$ entering through the channel binds CaM and inactivation is initiated. In CaV1.2/1.3 channels, the CaM sensors detect both local and global Ca$^{2+}$ (Dick et al. 2008). The local concentration of Ca$^{2+}$ eliciting this response is on the order of 100 µM which only exists within 100s of angstroms of the channel pore (Sherman et al. 1990; Neher 1998).

Another known regulator of L-type Ca$^{2+}$ channels is protein kinase A (PKA). Phosphorylation of L-type channels by PKA enhances the whole cell current amplitude by increasing the open time of the channels (Bean et al. 1984; Yue et al. 1990b). The level of PKA activity can be regulated by cell surface receptors linked to G proteins that either stimulate (G$_s$) or inhibit (G$_i$) adenylate cyclase (AC). There are nine membrane bound isoforms of AC, all of which can be stimulated by activated G$_s$ (for review see Willoughby and Cooper 2007). Alternatively, AC1 and AC8 can be directly activated by the Ca$^{2+}$/CaM complex with AC1 being about 5 times more sensitive to Ca$^{2+}$/CaM (Kd’s ~100 nM, AC1; ~500 nM, AC8; Fagan et al. 1996; Wu et al. 1993). We have previously reported that metabotropic glutamate receptor 5- and phospholipase C-dependent activation of PKA enhances the amplitude of L-type Ca$^{2+}$ currents in retinal amacrine cells, possibly via an AC1-dependent mechanism (Sosa and Gleason 2004). If these two Ca$^{2+}$-dependent Ca$^{2+}$ channel regulators (CDI and AC1/8) coexist in amacrine cells, then we would predict that mechanisms regulating cytosolic Ca$^{2+}$ will influence the outcome of L-type Ca$^{2+}$ channel regulation. It has been previously shown
that synaptic transmission between retinal amacrine cells is affected by mitochondrial
Ca$^{2+}$ uptake (MCU, Medler and Gleason 2002). This work led us to hypothesize that at
least part of the impact of MCU on synaptic transmission was in maintaining the L-type
Ca$^{2+}$ channels in a relatively non-inactivated state. Here, we test this hypothesis by
examining the effects of disrupting MCU on L-type Ca$^{2+}$ channel function.

Entry of Ca$^{2+}$ through L-type channels is known to elicit Ca$^{2+}$-induced Ca$^{2+}$
release (CICR) in amacrine cells (Mitra and Slaughter 2002; Warrier et al. 2005).
Because this amplification of the Ca$^{2+}$ signal has the potential to affect other Ca$^{2+}$-
dependent processes, we also test the role of ryanodine receptor (RyR) activity in the
Ca$^{2+}$-dependent regulation of these channels.

Using a primary cell culture system consisting of identified GABAergic amacrine
cells (Gleason et al. 1993), we have begun to clarify the physiological relationships
between L-type Ca$^{2+}$ channel inactivation, MCU, PKA activity and CICR. Although the
molecular details of CDI and PKA-dependent current enhancement have been worked
out, most of this work has been done in expression systems or in cardiac myocytes. It
remains to be determined how these factors interact in the native environment of retinal
amacrine cells; an interneuron critical to shaping the output of the retina. Given the
dependence of synaptic transmission on L-type Ca$^{2+}$ channel function in these cells
(Gleason et al. 1994), our aim is to investigate the balance of Ca$^{2+}$-dependent
mechanisms regulating L-type Ca$^{2+}$ channel functions in retinal amacrine cells.

MATERIALS AND METHODS

Cell culture
Primary cell cultures of chick retinal amacrine cells were used in our experiments. The chicken embryos (*Gallus gallus*, Animal Science Department, Louisiana State University, Baton Rouge, LA) were dissected on embryonic day 8, and retinal cells were dissociated and cultured as previously described (Hoffpauir and Gleason 2002). Cell cultures were maintained at 37°C under 5% CO2 atmosphere until they were ready for experiments, 8-14 days after plating. For electrophysiology experiments, amacrine cells were identified based on their morphology. Cells with large somas (10-15μm) with 2-5 primary processes have been previously identified as amacrine cells based on immunocytochemical and physiological criteria (Huba and Hofmann 1990; Huba and Hofmann 1991; Huba et al. 1992; Gleason et al. 1993).

Solutions

Unless otherwise indicated, all reagents were purchased from Sigma-Aldrich (St.Louis, MO). External solutions consist of the following (in mM): 116.7 NaCl, 20.0 TEACl, 3.0 CaCl2, 0.4 MgCl2, 5.6 glucose, and 10.0 HEPES. Voltage clamp experiments performed in the perforated-patch configuration employed the following internal solution (in mM): 135.00 CsAc, 10.0 CsCl, 1.0 NaCl, 2.0 MgCl2, 0.1 CaCl2, 1.1 EGTA, 10.0 HEPES, and 200μg/mL amphotericin B. Voltage clamp experiments performed in the ruptured-patch configuration used the following internal solution (in mM): 100.00 CsAc, 10.0 CsCl, 2.0 MgCl2, 0.1 CaCl2, 10.0 HEPES, 3.0 ATP (dipotassium), 1.0 ATP (disodium), 20.0 phosphocreatine, 2.0 GTP, and 50U/mL creatine phosphokinase. Solutions were adjusted to pH 7.4 with NaOH for external solutions, and with CsOH for internal solutions. Two different Ca²⁺ buffers were also included in internal solutions in ruptured-patch recordings: Ethylene glycol-bis (2-aminoethyl-ether)-N,N,N’,N’-tetraacetic acid (EGTA,
1.1 mM or 14 mM) and 1,2-bis-(o-Aminophenoxy) ethane-N,N,N’,N’-tetraacetic acid (BAPTA, 10 mM, Enzo Life Sciences, Plymouth Meeting, PA).

A pressurized gravity flow perfusion system (1.5-2 ml/min) was used to deliver the external solutions (AutoMate Scientific Inc., Berkeley, CA). Unless otherwise indicated, the following reagents were purchased from Enzo Life Sciences. Reagents added via the bath included the protonophore carbonylcyanide-4-(trifluoromethoxy)-phenylhydrazone (FCCP, 1 µM), a PKA inhibitor N-[2-(p-Bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide·2HCl (H89, 1 µM,), an adenylate cyclase (AC) inhibitor 9-(Tetrahydro-2-furanyl)-9H-purin-6-amine, (SQ 22,536, 200 µM) a general phosphodiesterase inhibitor 3-Isobutyl-1-methylxanthine (IBMX, 100 µM), a calcineurin inhibitor cyclosporine A (CsA, 1 µM), and a selective inhibitor of Ca²⁺/CaM-dependent phosphodiesterase (PDE 1) 8-Methoxymethyl-1-methyl-3-(2-methylpropyl) xanthine (8-M-IBMX, 100 µM), inhibitors of the RyR, ryanodine (14 µM) and dantrolene (20 µM, Sigma). CaM inhibitor calmidazolium chloride (CMZ, 10 µM) was added to the pipette solution. In all electrophysiology experiments, (-)-bicuculline methobromide (10 µM, Tocris Bioscience, Ellisville, MO) was included in external solutions to block GABA_A receptor-mediated autaptic currents (Gleason et al. 1993). Tetrodotoxin (TTX, 300 nM, Alomone Labs, Jerusalem, Israel) was included in external solutions to block voltage-gated Na⁺ currents.

Electrophysiology

Cell culture dishes were mounted on the stage of an Olympus IX70 inverted microscope. A reference Ag/AgCl pellet served to ground the bath. Patch electrodes were pulled from thick-walled borosilicate glass with a filament (O.D.: 1.5 mm, I.D.: 0.86 mm; Sutter)
Instrument, Novato, CA) using a Flaming-brown Micropipette Puller (Sutter Instruments). For electrophysiology experiments either ruptured- or perforated-patch whole cell recording was performed. For perforated-patch recordings, only cells with stable resistances (changes of <5 MΩ) were used in the experiments. Recordings were made using Axopatch 1D-patch clamp amplifier (Molecular Devices, Sunnyvale, CA). Data were recorded using Clampfit 9.2 and 10.0 software (Molecular Devices). Electrode resistance values were monitored and ranged from 3 to 8 MΩ. Junction potential corrections (-8 mV) were made for the data in Figure 2D and E.

Because we were concerned that some experimental manipulations might produce long term changes in the cells, experimental and control recordings were often done in separate groups of cells. We also used separate groups of cells for experiments with different internal solutions. When this sort of protocol was used, the different treatments (or internal solutions) were alternated from cell to cell. As such, comparisons were made between cells from the same culture and often from the same culture dish.

Western Blots

Chicken and Mouse brains were homogenized in non-denaturing lysis buffer containing a cocktail of protease inhibitors (PMSF (1 mM), leupeptin, (5 µg/mL) aprotinin (2.5 µg/mL), 1,10 ortho-phenantrolin (0.2 µg/mL) and pepstatin (0.7 µg/mL)). Samples were spun at 4,000 rpm for 20 min at 4°C. Protein content was determined using the BCA Protein Assay Kit from Pierce (Rockford, IL). Proteins (300 µg) were separated on a 7.5% SDS gel along with 10 µL Pageruler molecular weight markers (Fermata, Glenburnie, MD). Proteins were transferred to nitrocellulose membranes. Membranes were blocked overnight at 4°C in 4% milk, 0.1% Tween 20 in tris buffered saline. The
polyclonal antibody raised against human AC1 (Abcam, Cambridge, MA) was diluted 1:500 in PBS with 1% BSA. Goat anti-rabbit secondary antibody conjugated on horseradish peroxidase (Pierce, Rockford, IL) was diluted to 1:1000 in PBS with 1% milk. Membranes were incubated in primary and secondary antibodies for 1.5 hr each, at room temperature. Proteins were visualized using the Supersignal Western Pico Reagent (Pierce).

Immunocytochemistry

Adult White Leghorn chickens were sacrificed by intraperitoneal injection of sodium pentobarbital (500 mg/kg, Sigma-Adrich) followed by decapitation. These methods were approved by the Institutional Animal Care and Use Committee, Louisiana State University. The eyes were enucleated and hemisected. After removing the vitreous, 4% paraformaldehyde was added to the eye cups and kept at 4°C for 1 hr. Following fixation, eye cups were washed in PBS + 1% glycine. Retinae were then dissected from eye cups and incubated in 15% sucrose for 30 min, 20% sucrose for 1 hr, and 30% sucrose solution overnight at 4°C. Retinae were embedded in O.C.T. compound (Sakura Finetek, Torrence, CA) by freezing in dry ice and isopentane. Sections (12-16 µm) were cut on a Leica CM1850 cryostat (Wetzlar, Germany) and mounted on pre-subbed slides (Southern Biotech, Birmingham, AL).

Cells grown on glass coverslips were fixed in 2% paraformaldehyde for 30 min at 4°C after 8 days in culture. Fixed cells and retinal sections were pre-incubated for 1 hr at room temperature in a blocking solutions consisting of dilution solution (see below) with 10% normal goat serum. Primary polyclonal antibodies raised against human AC1 were diluted at 1:100 in dilution solution (PBS, 1% bovine serum albumin, 0.5% saponin) and
applied to either retinal sections or cells for 1 hr at room temperature then washed in PBS. Secondary goat-anti-rabbit antibodies conjugated to Cy3 were obtained from Millipore (Temecula, CA) and were diluted 1:1000 in dilution solution. Cells were incubated in secondary antibodies for 1 hr at room temperature. After washing, coverslips and slides were mounted in a medium containing 70% glycerol, 28% PBS and 2% n-propy gallate. Cells and retinal sections were viewed on an Olympus 1X70 microscope equipped with epifluorescence and images were captured using Slidebook software and hardware (Intelligent Imaging Innovations, Denver, CO).

Data Analysis

The Origin 7.5 and 8.0 (OriginLab, Northampton, MA) software package was used to analyze and plot the data. Images in Figure 8 were adjusted for brightness and contrast in Adobe Photoshop (San Jose, CA). Equivalent adjustments were made for experimental and control images. Figures were assembled in Adobe Illustrator. Statistical analyses were done using the t-test and data are presented as means ± SEMs. Maximum p value for significance was 0.05.

RESULTS

The Ca\(^{2+}\) current amplitude increases with repeated depolarizations.

Whole cell recordings were made from single isolated amacrine cells in the perforated-patch configuration. It has been previously established that these cells express L-type, but not N or P-type Ca\(^{2+}\) channels (Gleason et al. 1993). To examine the normal variability in current amplitude over time, Ca\(^{2+}\) currents were elicited by depolarizing amacrine cells from -70 mV to 0 mV either for 1000 ms, every 60 s, or for 100 ms every 30 s (Fig. 1A and 1C, respectively). It is evident, especially for the longer voltage steps
(Fig. 1A), that inactivation of the current occurs over the duration of the step. It was also observed that the timecourse and degree of inactivation could vary from cell to cell. The physiological basis for these differences are not known but could feasibly be due to different expression levels of calmodulin or other effectors (see Discussion). The tail currents after the voltage step (observable in Fig. 1C as well as in subsequent figures) are primarily due to the activity of the plasma membrane Na/Ca exchanger transporting Ca\(^{2+}\) back out of the cell. Our ability to identify and to measure electrogenic Na/Ca exchange activity has been firmly established for these cells (Gleason et al. 1994; 1995; Medler and Gleason 2002; Hurtado et al. 2002).

Although inactivation occurred during the voltage step, the peak current amplitudes tended to increase over time, implying that multiple levels of regulation are occurring. Figure 1B and 1D, show the peak current amplitude for steps (1 s and 100 ms) delivered every 60 s and 30 s (respectively) from separate populations of amacrine cells. A progressive increase in the current amplitude was typically observed with both protocols. This increase is not due to changes in series resistance because only cells with stable series resistances (see Methods) were included in the analysis. The rate of the increase in current amplitude was inherently variable among cells as indicated by the substantial error bars that tended to increase over the duration of the recording. Because the only “treatment” that the cells received in these recordings was the history of voltage steps and the resulting Ca\(^{2+}\) influx, we predicted that the primary sources of enhancement were Ca\(^{2+}\)-dependent. Perhaps then, variability in current amplitude enhancement was related to the Ca\(^{2+}\) current density in each amacrine cell. To determine whether the rate of increase in current amplitude was linked to Ca\(^{2+}\) current density, these quantities were
plotted for a population of cells that had been recorded under the same conditions (step to 0 mV for 100 ms, every 30 s, Fig. 1E). Regression analysis revealed an R^2 value of 0.02 (Fig. 1E) and does not indicate a dependence on current density. This implied that the regulation under these stimulus protocols is not a simple transform based on the amount of Ca$^{2+}$ influx. Instead, it suggested that the regulation of these channels has multiple Ca$^{2+}$-dependent components that vary intrinsically among cells. This suggestion is borne out by much of the data presented in subsequent sections.

Disruption of mitochondrial Ca$^{2+}$ uptake (MCU) inhibits the Ca$^{2+}$ current.

To test the hypothesis that L-type Ca$^{2+}$ channel inactivation in amacrine cells is regulated by MCU (Medler and Gleason 2002), we used the protonophore FCCP to temporarily collapse the proton gradient across the inner mitochondrial membrane and disrupt MCU via the Ca$^{2+}$ uniporter (Werth and Thayer 1994; Herrington et al. 1996; White and Reynolds 1997). Whole cell current recordings were made in the perforated-patch configuration. Amacrine cells were depolarized from -70 mV to 0 mV for 1 s, every 60 s. Disrupting MCU had two effects: an increase in the inward current amplitude recorded at -70 mV (before and after the voltage step to 0 mV) and a decrease in the Ca$^{2+}$ current amplitude recorded during the step to 0 mV. We have previously shown that the relatively time-invariant increase in inward current at -70 mV (Figure 2A, arrow) is due to a persistent FCCP-dependent increase in cytosolic Ca$^{2+}$ that activates the electrogenic plasma membrane Na/Ca exchanger (Medler and Gleason 2002). Furthermore, it has been established that the FCCP-dependent Ca$^{2+}$ increase driving this exchanger activity is due to the RyR-dependent leakage of Ca$^{2+}$ from stores that is normally sequestered by mitochondria via the uniporter (Sen et al. 2007). Importantly, we have also previously
demonstrated that Na/Ca exchange activity is negligible at 0 mV and thus does not contribute significantly to the current recorded during the voltage step to 0 mV (Gleason et al. 1995). To simplify the appearance of the data, the FCCP-dependent Na/Ca exchange current at -70 mV has been subtracted from subsequent data (as in Fig. 2B). However, we show this current in insets (Figs. 5 and 6) to confirm that this FCCP-dependent Ca$^{2+}$ elevation and exchanger activity persists under some key experimental conditions.

More directly relating to our hypothesis, disrupting MCU also caused a reversible decrease in the Ca$^{2+}$ current amplitude (Fig. 2A and 2B, gray trace). Under these conditions, disrupting MCU significantly reduced the Ca$^{2+}$ current amplitude by 35±7% (n=7, p=0.03, Fig 2C). A series of control experiments previously established that the effects of FCCP on depolarization-induced Ca$^{2+}$ elevations in these cells are not due to ATP depletion (Medler and Gleason 2002; also see Discussion) or changes in pH (Sen et al. 2007). Another possibility was that the decrease in current amplitude was due to an FCCP-dependent shift in the activation range of the channels. To address this, currents were elicited by steps over a range of voltages from -80 mV to +10 mV in 5 mV increments to reveal the voltage of activation. These experiments were done in ruptured-patch because the voltage of activation can be better resolved with the relatively low series resistance recordings achieved in this configuration. These recordings were made with two different internal Ca$^{2+}$ buffering conditions (1.1 mM EGTA, 10 mM BAPTA). Although we observed a difference in the effects of FCCP on Ca$^{2+}$ current amplitude in 10 mM BAPTA (see below), no FCCP-dependent shift in activation range was observed under either Ca$^{2+}$ buffering condition (Figs. 2D and 2E, respectively). These data are
consistent with a role for MCU in limiting the degree of Ca\(^{2+}\)/CaM-dependent
inactivation for these channels.

**The effects of disrupting MCU are dependent upon the duration and frequency of
the voltage step.**

To examine whether increases in Ca\(^{2+}\) influx enhanced the effects of disrupting
MCU, we first altered the duration of the voltage steps. Ca\(^{2+}\) currents were recorded in
response to voltage steps lasting either 50 ms or 3 s (Figs. 3A and 3B, respectively).

Currents from 50 ms steps were reduced by 35±4% (n=7) whereas currents from 3 s steps
were reduced by 60±5% in the presence of FCCP (n=6, Fig. 3C). The significantly
(p=0.002) larger effect of FCCP for longer voltage steps supports the possibility that
Ca\(^{2+}\)-dependent inactivation was being altered by disrupting MCU.

If the level of FCCP-dependent inhibition of L-type channel current increased
with prolonged voltage steps, and this was due to the greater Ca\(^{2+}\) influx during longer
steps, we would also predict that increasing the frequency of depolarization would
intensify the effects of inhibiting MCU. To test this, single amacrine cells were
depolarized from -70 mV to 0 mV, for 100 ms, and voltage steps were delivered either
every 60 s (Fig. 3D) or every 5 s (Fig. 3E). Disrupting MCU caused a reduction in the
Ca\(^{2+}\) current amplitude under both recording conditions, however the FCCP-dependent
reduction in current amplitude was significantly larger for higher frequency
depolarizations (61±4% reduction for every 5 s (n=6), and 35±4% reduction for every 60
s (n=7), p=0.001, Fig. 3F). These results further support the possibility that inhibition of
the Ca\(^{2+}\) current amplitude is dependent upon cytosolic Ca\(^{2+}\) levels.

The effects of MCU are not dependent on calcineurin
The established role of PKA-dependent channel phosphorylation in L-type current enhancement raises the possibility that the effect of inhibiting MCU is to reduce channel phosphorylation. The most likely candidate for such an activity under these conditions would be the Ca\(^{2+}\)/CaM-dependent phosphatase, calcineurin. To test for the involvement of calcineurin, we asked whether the potent (IC\(_{50}=7\) nM, Fruman et al. 1992) calcineurin inhibitor cyclosporin A (CsA, for review see Kunz and Hall 1993) would block the effects of FCCP. Recordings were made using 100 ms steps from -70 mV to 0 mV, every 30 s. Cells were pre-incubated for 10-20 min in CsA (1 µM) before FCCP was applied. The inhibitory effect of FCCP persisted in the presence of CsA (Fig. 4A and B) and CsA alone had no consistent effect on the current (Fig. 4C). Negative results require cautious interpretation but it is important to note that with similar exposure times (10-20 min) and concentrations (0.1-1 µM), CsA has been demonstrated to be effective in inhibiting calcineurin in intact neurons (Xu and Krukoff 2007) and smooth muscle cells (Schuhmann et al. 1997). These data therefore suggest that calcineurin activity is not mediating the FCCP-dependent inhibition of the current and may not be a major regulator of L-type Ca\(^{2+}\) channel activity in these amacrine cells.

The effects of MCU are Ca\(^{2+}\) influx-dependent.

Were the effects of disrupting MCU on the current amplitude due to an excess of Ca\(^{2+}\) originating from channel entry or were they due to the FCCP-dependent elevation in cytosolic Ca\(^{2+}\) as revealed by the increase in the activity of the Na/Ca exchanger (Fig. 2A)? To distinguish between these two possibilities, we replaced external Ca\(^{2+}\) with Ba\(^{2+}\). Ba\(^{2+}\) is known to carry the current through L-type channels but is a poor substitute for Ca\(^{2+}\) with respect to inactivation (Brehm and Eckert 1978; Tillotson 1979; Chad and
Eckert 1986; Yue et al. 1990a; Zuhlke et al. 1999). Perforated-patch recordings were made in amacrine cells bathed with either normal external (3 mM Ca2+, Fig. 5A) or external solution with equimolar Ba2+ replacing Ca2+ (Fig. 5B). Cells were stepped from -70 mV to 0 mV for 1 s. The currents recorded in Ba2+ inactivated relatively little over the course of the 1 s depolarization consistent with minimal Ca2+-dependent inactivation. With Ba2+ as the charge carrier, the effect of disrupting MCU was significantly reduced (18±3% reduction with Ba2+, n=7; 44±7% reduction with Ca2+, n=7; p=0.007) indicating that the primary source of the inhibition was from Ca2+ crossing the plasma membrane (Fig. 5C). The relatively small inhibitory effect of FCCP on Ba2+ current amplitude that was observed may be due to either the low level of CaM activation known to occur with Ba2+ (Dick et al. 2008) and/or the FCCP-dependent Ca2+ elevation (Medler and Gleason 2002; Set et al. 2007). The persistence of the FCCP-dependent Ca2+ elevation in external Ba2+ is demonstrated by the presence of the FCCP-dependent Na/Ca exchange current shown in the inset of Fig. 5B. The relatively small effect of inhibiting MCU on Ba2+ current amplitude is consistent with the hypothesis that MCU normally sequesters Ca2+

Increasing cytosolic Ca2+ buffering alters the effects of inhibiting MCU.

Different levels of internal Ca2+ buffering are known to alter CDI (Brehm and Eckert 1978; Kalman et al. 1988; Kohr and Mody 1991; Dick et al. 2008; Tadross et al. 2008). To further explore the role of CDI in the effects of blocking MCU, experiments were repeated under different Ca2+ buffering conditions. Either EGTA (1.1 mM or 14 mM), or the faster buffer BAPTA (10 mM, Adler et al. 1991) were included in recording pipette. For these experiments, Ca2+ currents were recorded in the ruptured-patch
configuration. Currents were recorded before (Figs. 6A-C, black traces) and during application of FCCP (gray traces). First, it should be noted that the different buffering environments differentially affect the two components of the Na/Ca exchange current. The FCCP-dependent component of the exchange current occurs (~35 pA in each cell) under all three Ca\(^{2+}\) buffering conditions (Fig. 6A-C, insets) indicating that Ca\(^{2+}\) elevations can persist under these buffering conditions. The Ca\(^{2+}\) current-dependent component of the Na/Ca exchange current (visible as tail currents after the voltage step) is more sensitive to Ca\(^{2+}\) buffering conditions with the current nearly eliminated in 10 mM BAPTA. With 1.1 mM EGTA the effect of FCCP was not significantly different from perforated-patch recordings (perforated 45±4% reduction, n=6; 1.1 mM EGTA 36±6% reduction, n=6, p=0.23, Fig. 6A, D and E) suggesting that this level of artificial Ca\(^{2+}\) buffering approximates that found in intact amacrine cells. However, with 14 mM EGTA, the effects of disrupting MCU were significantly suppressed (13±6% reduction vs. 36±6%, n=6, p=0.02) and delayed (no Ca\(^{2+}\) current reduction observed until a minute of FCCP exposure) when compared to 1.1 mM EGTA (Fig. 6B, D and E). Hence, more EGTA minimized but did not eliminate the effect of MCU on the Ca\(^{2+}\) current amplitude, consistent with the idea that stronger buffering reduces CDI. Overall, blocking MCU in the presence of 10 mM BAPTA produced a 12±5% (n=22) enhancement in the Ca\(^{2+}\) current that was significantly different from the results in 1.1 mM EGTA (p=0.0002, Fig. 6E). The sign of the effect varied from cell to cell with current enhancement in 12/22 cells (31±6% enhancement) or small reductions in the current in 10/22 cells (0.7±2%, Fig. 6C, D and E). These data indicated that strong Ca\(^{2+}\) buffering reduced the impact of MCU on channel inactivation. We hypothesize that in
BAPTA, CDI is reduced. In some cells, this reveals another Ca\(^{2+}\)-dependent process that enhances current amplitude.

Inhibition of PKA and AC decreases the Ca\(^{2+}\) current amplitude.

It is well known that PKA-dependent phosphorylation can enhance L-type Ca\(^{2+}\) currents by increasing the open time of the channels (Bean et al. 1984; Yue et al. 1990b). In amacrine cells, we have previously demonstrated that metabotropic glutamate receptor 5 activation leads to a PKA-dependent enhancement of the L-type current that does not result from changes in voltage sensitivity (Sosa and Gleason 2004). To test for the involvement of PKA in the FCCP-dependent enhancement of the Ca\(^{2+}\) current in BAPTA, we examined the effects of the PKA inhibitor, H89 (1 µM) with BAPTA (10 mM) internal. H89 has been shown to be specific for PKA when used at concentrations less than 10 µM (Chijiwa et al. 1990). For these experiments, different cells were used for the different treatments to avoid complications due to previous drug exposures (see Methods). On average, BAPTA-loaded cells tested with FCCP showed enhancement of the Ca\(^{2+}\) current (12±5%, n=22, Fig. 6E). Inhibition of PKA with H89 reduced the Ca\(^{2+}\) current amplitude in all cells tested indicating basal PKA activity (41±5%, n=4, Fig. 7A, C). When used in combination (H89 + FCCP), the effect on the Ca\(^{2+}\) current was generally larger but the difference was not statistically significant (58±8% reduction, n=6, p=0.17, Fig. 7B, C) than with either reagent alone indicating that with reduced PKA activity, inhibition of MCU still contributes to inactivation. Our interpretation of the target of H89 (PKA) is consistent with our previous observation that 8-bromo cAMP enhances the Ca\(^{2+}\) current in these cells (Sosa and Gleason 2004).
PKA is activated by cAMP which is generated by the enzymatic activity of adenylate cyclase (AC). To confirm the involvement of this classical pathway, we asked whether inhibition of AC would have the same effects on the Ca\(^{2+}\) current as inhibition of PKA. The general AC inhibitor SQ 22,536 (200 µM) was used to inhibit AC (Fabbri et al. 1991). In all cells tested (84±4% reduction, n=7), SQ 22,536 exposure reduced the amplitude of the Ca\(^{2+}\) current (Fig. 7D and E), consistent with basal AC activity producing cAMP and driving basal PKA activity.

Expression of AC1.

Because the PKA activity appeared to be independent of cell surface receptor activation in these experiments, we postulated that the enzyme is stimulated by cAMP that has been generated through the activity of the Ca\(^{2+}\)/CaM-dependent adenylate cyclase AC1. The Kd of AC1 for Ca\(^{2+}\) 100 nM, Wu et al. 1993; Fagan et al. 1996) is near resting cytosolic Ca\(^{2+}\) levels in these cells (50-100 nM, Hurtado et al. 2002) making this enzyme a good candidate for mediating both basal PKA activity as well as enhanced activity due to Ca\(^{2+}\) influx via L-type V-gated Ca\(^{2+}\) channels. We have previously demonstrated AC1-like immunoreactivity in cultured amacrine cells (Sosa and Gleason 2004). Here, we further examine the expression of AC1 using a different, and more fully characterized, polyclonal antibody raised against human AC1. The specificity of this antibody was confirmed in Western blots using homogenates of both chicken and mouse brain (Fig. 8A). Single bands near the predicted molecular weight of AC1 (130 kDa) were detected for both chicken and mouse brain homogenates indicating that the antibody recognizes the avian form of AC1. On sections of chicken retina the anti-AC1 antibody labeled photoreceptors most strongly (Fig. 8C) but labeling was also strong in cell bodies...
in the ganglion cell layer. Cells at the inner border of the inner nuclear layer (most likely amacrine cells) were also labeled in a distinctly punctate pattern. Processes could be observed extending from these cells down into the inner plexiform layer where amacrine cell synapses form (Fig. 8D). In culture, cone photoreceptors were usually the most strongly labeled cells. The intensity of anti-AC1 labeling was variable among amacrine cells but all amacrine cells showed some level of AC1 expression (Fig. 8F). Punctate AC1 expression was detected both in cell bodies and processes of amacrine cells in culture (Fig. 8G). It is important to note that the AC inhibitor SQ 22,536 (Fig. 7) has been demonstrated to be an effective inhibitor of AC1 in neurons at the concentration used in our experiments (Liauw et al. 2005). These results support the hypothesis that AC1 can be involved in L-type Ca\(^{2+}\) channel regulation in retinal amacrine cells.

Inhibition of CaM primarily affects inactivation.

From the results presented thus far, a scenario emerges where at least two Ca\(^{2+}\)/CaM-dependent mechanisms might collaborate to regulate the function of L-type Ca\(^{2+}\) channels in retinal amacrine cells: first, the Ca\(^{2+}\)/CaM-dependent inactivation that is sensitive to Ca\(^{2+}\) from 5 to 100 µM (Tadross et al. 2008) and second, the Ca\(^{2+}\)/CaM-dependent activity of AC1 which is more Ca\(^{2+}\)-sensitive (Kd~100 nM). If these suggestions are valid, then we would predict that inhibition of CaM activity would be least effective in blocking the effects of AC1 activity. To test this, we looked at the effects of the calmodulin inhibitor calmidazolium (CMZ, 10 µM, Weiss et al. 1982) on the FCCP-dependent alterations in current amplitude. Ruptured-patch recordings were made with either EGTA (1.1 mM) and CMZ in the pipet (Fig. 9A) or BAPTA (10 mM) and CMZ in the pipet (Fig. 9B) and then tested the effects of blocking MCU with FCCP.
With inhibition of CaM, suppression of MCU produced an enhancement of the Ca\(^{2+}\) current under either buffering condition (EGTA + CMZ 36±12% enhancement, n=6, p=0.0003; BAPTA + CMZ 19±9% enhancement, n=6, p=0.5; Fig. 9C, D). Recall that in the absence of CMZ, inhibition of MCU caused a decrease in current amplitude (presumably due to increased CDI) with 1.1 mM EGTA internally (EGTA 36±6% reduction, n=6, Fig. 6A). The switch in the sign of the response to FCCP when calmodulin is partially inhibited is consistent with a shift in the balance towards AC1 activation. The enhancement tended to be larger in EGTA than BAPTA however this difference was not statistically significant.

Phosphodiesterases play a role in regulating Ca\(^{2+}\) current amplitude.

If the enhancement is due to the generation of cAMP via AC1 and subsequent activation of PKA, then phosphodiesterase (PDE) activity could affect the current amplitude. To test the involvement of PDEs we employed the general PDE inhibitor IBMX (100 µM, Beavo et al. 1970). Ca\(^{2+}\) current recordings were made in the perforated-patch configuration. At the outset we reasoned that if we boosted cAMP levels by inhibiting its degradative enzyme, then the current amplitude should be enhanced. Our results, however, did not conform to expectations in that the effect of IBMX on the current amplitude varied from cell to cell. Twenty six percent (Fig. 10A and B) of amacrine cells tested (n=23) responded with the expected increase in current amplitude (75±29% enhancement p=0.04). However, IBMX produced a decrease in the current amplitude in 26% of cells (Fig. 10C and D, 13±2% reduction, p=0.00002) and no change (<±5%) in 48% of cells (Fig. 10E and F). Some of the variability in responses could be due to the diversity of PDEs that can be inhibited by IBMX. To address this possibility...
we used 8-methoxymethyl-IBMX (8-M-IBMX, 100µM) an inhibitor that is specific for PDE1 a Ca^{2+}/CaM-dependent phosphodiesterase (Fig. 10G, Wells and Miller 1988). All cells (n=12) tested responded to 8-M-IBMX with small, consistent decrease in the current amplitude (4±1% reduction, p=0.004, Fig. 10H). These results imply that relatively high levels of cAMP generated in an environment with reduced PDE activity can have an inhibitory effect on the L-type channels (Ishikawa et al. 1993).

Ca^{2+} - induced Ca^{2+} release functions to enhance the L-type calcium channel current.

Thus far our data suggest that influx of Ca^{2+} can regulate L-type channels in at least two ways: by activating Ca^{2+}/CaM-dependent inactivation and by activating AC1 and ultimately PKA. Ca^{2+} released from internal stores might also have regulatory effects on L-type channels. It is established that in amacrine cells, activation of L-type Ca^{2+} channels leads to Ca^{2+} -induced- Ca^{2+} -release (CICR, Mitra and Slaughter 2002; Warrier et al. 2005). To examine the role of CICR, we looked at the effects of inhibiting the RyRs using a blocking concentration of ryanodine (14 µM, Meissner 1986) and the RyR inhibitor dantrolene (20 µM, Nelson et al. 1996). If CICR normally contributes to channel inactivation, then blocking CICR should enhance the current. If CICR normally contributes to activation of AC1 and ultimately stimulation of PKA, then inhibition of RyRs would cause a decrease in current amplitude. We found that inhibition of the RyRs with either ryanodine (Fig.11A) or dantrolene (Fig. 11B) consistently produced suppression of the Ca^{2+} current (ryanodine 25±4%, n=3, p=0.002, Fig. 11C; dantrolene 11±3%, n=7, p=0.0002, Fig. 11D). These results were consistent with the hypothesis that CICR normally functions to enhance the L-type Ca^{2+} current, possibly by increasing the activation of AC1. Interestingly, 8-M-IBMX tended to block the effects of these RYRs
inhibitors although this effect was not statistically significant for dantrolene (ryanodine + 8-M-IBMX p=0.002; dantrolene + 8-M-IBMX p=0.2). This observation implied that in the absence of PDE activity, increased cAMP levels can compensate for the lower level of AC1 activation during CICR suppression.

DISCUSSION

We find that in retinal amacrine cells, L-type Ca$^{2+}$ channels are regulated by multiple Ca$^{2+}$-dependent processes (Fig. 12). Under control conditions, Ca$^{2+}$ currents tend to increase in current amplitude over time under our recording conditions. This increase in amplitude may represent the balance of PKA-dependent enhancement via Ca$^{2+}$/CaM-dependent AC1 activity and CDI, which is largely mediated by Ca$^{2+}$ entering through the Ca$^{2+}$ channels. Interestingly, we observe an enhanced rate of Ba$^{2+}$ current amplitude increase before FCCP application for cells recorded in external Ba$^{2+}$ (Fig. 5C, first 3 data points). This enhanced rate of increase might represent the smaller contribution from CDI relative to basal AC1 activity. Disruption of MCU reduces the Ca$^{2+}$ current amplitude in a Ca$^{2+}$-dependent manner suggesting that under normal conditions, mitochondria function to limit CDI and thus maximize the availability of L-type Ca$^{2+}$ channels for signaling. We provide evidence that the reduction of the inhibitory effects of blocking MCU in BAPTA reveals the enhancing effect of PKA activity that is most likely due to the Ca$^{2+}$/CaM-dependent activation of AC1. Inhibition of RyRs reduces the Ca$^{2+}$ current amplitude suggesting that internal Ca$^{2+}$ stores normally contribute to Ca$^{2+}$ current enhancement. We propose that the link between the PKA-dependent enhancement of the Ca$^{2+}$ current and the enhancing effects of CICR might also
be the activity of AC1. Together, these studies indicate that L-type Ca\(^{2+}\) channels in amacrine cells are regulated by Ca\(^{2+}\) via complex and interacting mechanisms.

Variability in cultured GABAergic amacrine cells.

Throughout this work there is variability observable in our data. One example appears in Figure 1B and D. Under control conditions the current amplitude increases over time but as indicated by the large error bars, different levels of this effect in different cells becomes apparent over time. The origin of this variability is not known but if the enhancement is due to AC1 activity (as we have suggested), it is perhaps relevant that our AC1 antibody labeling intensity varies among amacrine cells in culture implying differing AC1 expression levels among these cells (Fig. 8F). Another example of variability would be in the time course of inactivation during the voltage steps. We have not yet investigated the source of this variability except to confirm that cells that are different in this regard to not have distinctive response properties in our experiments. These examples of variability (and others) raise the question of whether some of the variability is the representation of the multiple amacrine cell types known to exist in the vertebrate retina. It is important to consider, however, that our culture conditions have apparently narrowed the range of possible amacrine cells fates. In the retina, different classes of amacrine cells can release GABA, glycine, acetylcholine or dopamine at their synapses. In our cultures, however, we have only observed GABAergic synaptic transmission from these cells. We have viewed this as a benefit of the system that allows us to study a specific subset of amacrine cells that represent a substantial fraction of amacrine cells in the retina. Amacrine cells in the vertebrate retina can be further categorized by their morphology including their lamination pattern in the inner plexiform
layer (MacNeil and Masland, 1998). In culture, however, this information is lost. There appear to be a few morphological groups of amacrine cells identifiable in the two dimensions of the culture dish but we have not made a systematic attempt to relate these morphological groups to those found in the intact retina. We considered the possibility that different levels of AC1 expression might correspond to different morphological types of amacrine cell in culture. Upon examination, this seemed unlikely because it was clear that cells with similar morphologies had different levels of AC1 antibody labeling.

L-type Ca\(^{2+}\) channels expressed by amacrine cells.

The molecular identity of the L-type Ca\(^{2+}\) channels expressed by amacrine cells is not fully determined. However, it has been established that Ca\(_{\alpha}1.3\) mRNA is expressed by AII amacrine cells in the mouse retina (Habermann et al. 2003). In the chicken retina, an immunohistochemistry study demonstrated amacrine cell expression of Ca\(_{\alpha}1.3\) and possibly Ca\(_{\alpha}1.4\), but not Ca\(_{\alpha}1.2\) (Firth et al. 2001). In cultures of chick retinal neurons enriched for photoreceptors, other neuronal cells (presumably including amacrine cells) are reported to also express Ca\(_{\alpha}1.3\) (Ko et al. 2007). Interestingly the characteristics of CDI differ between Ca\(_{\alpha}1.3\) and Ca\(_{\alpha}1.4\) in that Ca\(_{\alpha}1.3\) contains sequence bestowing local as well as global Ca\(^{2+}\) sensing whereas Ca\(_{\alpha}1.4\) should only sense global Ca\(^{2+}\) levels (Dick et al. 2008). This combination would be consistent with our data showing that 10 mM BAPTA removes a variable fraction of CDI, but not all of it.

Effects of FCCP in amacrine cells.

Our interpretation of the results in FCCP are based on the assumption that the primary effect of FCCP in amacrine cells is to reduce the proton gradient across the inner mitochondrial membrane and thus inhibit Ca\(^{2+}\) uptake via the uniporter. Several pieces
of evidence from our previous work indicate that this is a fair assumption. It is well
known that in the absence of a proton gradient, the ATP synthase can consume ATP. We
have previously established, however, that at the same FCCP concentration (1µM) and
time frame of exposure used here (1 min), the interruption of ATP synthesis does not
alter the amplitude or time course of depolarization-dependent Ca2+ elevations (Medler
and Gleason 2002). This is consistent with reports from other neuronal cell types
indicating that the glycolytic pathway can maintain ATP levels for ten’s of minutes
(Kauppinen and Nicholls 1986; Werth and Thayer 1994; White and Reynolds 1995; Peng
1998). Another potential complication would be if FCCP (as a protonophore) altered
cytosolic pH. However, using SNARF-1 pH imaging we have established that under
similar conditions, cytosolic pH is unperturbed by FCCP in amacrine cells (Sen et al.
2007). Furthermore, we have demonstrated that the effects of FCCP on cytosolic Ca2+ in
amacrine cells are localized to within ~10 µm of a mitochondrion indicating that the
effects of FCCP are mitochondria-associated (Sen et al. 2007).

Mitochondrial Ca2+ uptake regulates Ca2+-dependent inactivation.

We know that the inhibition of uniporter activity causes an increase in basal (un-
stimulated) cytosolic Ca2+ levels. This Ca2+ elevation is independent of extracellular Ca2+
(Medler and Gleason 2002) but is dependent on internal Ca2+ stores (Sen et al. 2007). As
such, we cannot rule out the possibility that some fraction of the effects we see in FCCP
are due to the increase in basal Ca2+ levels. Nonetheless, we propose that when the
uniporter is inhibited, the primary effect is that normally sequestered Ca2+ now initiates
additional CDI. What is our evidence that CDI is being enhanced when the uniporter is
inhibited? The activity-dependence of the effect of FCCP is consistent with a Ca2+-
dependent inhibition of the current such as CDI in that both increasing the duration of the
voltage steps and the frequency of the voltage steps intensified the effects of FCCP.
Furthermore, replacement of extracellular Ca\(^{2+}\) with Ba\(^{2+}\) reduces the effects of FCCP
and Ba\(^{2+}\) is known to substitute poorly for Ca\(^{2+}\) in calmodulin binding and activation
(Dick et al. 2008).

Interestingly, the sign of the effect of FCCP on the Ca\(^{2+}\) current amplitude is often
inverted when BAPTA is present internally. Because BAPTA is estimated to bind Ca\(^{2+}\)
about 400 times faster than EGTA (Adler et al. 1991), the differential effects of the two
Ca\(^{2+}\) buffers can provide information about the spatial relationships between sources of
Ca\(^{2+}\) and Ca\(^{2+}\) targets. The greater effectiveness of BAPTA over EGTA in reducing
MCU-sensitive CDI suggests that mitochondria are in close proximity to the L-type Ca\(^{2+}\)
channels, on the order of 10’s of nm (Burrone et al. 2002).

L-type Ca\(^{2+}\) channel CDI has also been shown to be regulated by MCU in
chromaffin cells (Hernandez-Guijo et al. 2001). In these cells, however, 14 mM EGTA
internally eliminated the inhibitory effect of disrupting MCU on CDI. In amacrine cells,
FCCP-dependent effects on CDI were clearly observed in 14 mM EGTA suggesting a
more intimate association between mitochondria and L-type Ca\(^{2+}\) channels in amacrine
cells than in chromaffin cells. Ca\(^{2+}\)-dependent inactivation has also been demonstrated
for store-operated CRAC channels (Parekh 1998; Zweifach and Lewis 1995) and this
inactivation is also minimized by MCU in T lymphocytes and basophilic leukemia cells
(Gilabert and Parekh 2000; Hoth et al. 2000; for review see Gilabert and Parekh 2000).
These related observations in a neuron, a secretory cell and cells of the immune system
suggests that a widely expressed function of mitochondria is their ability to maintain the availability of Ca\(^{2+}\) influx pathways.

PKA-dependent regulation of L-type Ca\(^{2+}\) channels.

PKA is known to phosphorylate L-type Ca\(^{2+}\) channels and to increase their open time (Bean et al. 1984; Yue et al. 1990b). PKA and the Ca\(^{2+}/\)CaM-activated phosphatase calcineurin are known to be localized to Cav1.2 channels by the anchoring protein AKAP79/150 in neurons (Oliveria et al. 2007) for review see (Dai et al. 2009). Our evidence that calcineurin is not a major regulator of L-type Ca\(^{2+}\) current in amacrine cells is consistent with the report that amacrine cells do not express Cav1.2 (Firth et al. 2001). Comparatively little is known about the regulation of Cav1.3 but consistent with our observations, it has been demonstrated that PKA-dependent phosphorylation of Cav1.3 leads to current enhancement (Liang and Tavalin 2007; Qu et al. 2005). Current enhancement for Cav1.4 is apparently voltage-dependent rather than phosphorylation-dependent (Kourennyi and Barnes 2000).

AC1 in the retina.

Intriguingly, expression of AC1 mRNA is enriched in the retina in comparison to brain and spinal cord (Xia et al. 1993). In the developing mouse retina, an *in situ* hybridization study demonstrated AC1 mRNA in photoreceptors and ganglion cells (Nicol et al. 2006). An immunocytochemistry study in the mouse retina found AC1 expression in the inner nuclear layer. In the chicken retina, we find AC1 protein strongly expressed in photoreceptors, in nearly all cells in the ganglion cell layer and in amacrine cells. This labeling pattern is consistent with what we find in culture where AC1 expression was detected in amacrine cells and quite strongly in cone photoreceptors. AC1 expression
was not determined for cultured ganglion cells because they do not persist under our culture conditions (Hyndman and Adler 1982).

Ca\(^2+\)-dependent AC activation.

It has been established that AC1 and AC8 can be activated by Ca\(^2+\) entering the cell across the plasma membrane. The strongest evidence for influx-dependent AC1/8 activation is for capacitative Ca\(^2+\) entry (CCE) but it is clear that entry via voltage-gated Ca\(^2+\) channels is effective as well (for review see, Willoughby and Cooper 2007). In rat cerebellar granule cells, depolarization-dependent Ca\(^2+\) influx was shown to promote cAMP accumulation (Cooper et al. 1998). An expression study with AC8 in a pituitary cell line has demonstrated that both CCE and voltage-gated Ca\(^2+\) channel activity were effective in stimulating the enzyme (Fagan et al. 2000). Interestingly, although release of Ca\(^2+\) from stores was substantial in this preparation, it was not effective in stimulating AC8 activity. In immortalized gonadotropin–releasing hormone neurons derived from the rat hypothalamus it was also demonstrated that AC1 was activated by voltage-dependent Ca\(^2+\) influx but not by release of Ca\(^2+\) from stores (Krsmanovic et al. 2001). Here we provide evidence that in amacrine cells, both Ca\(^2+\) influx and release from stores enhances the L-type Ca\(^2+\) current amplitude and we propose that the effect of store release could be due to further stimulation of AC1. It might be that the structure and organization of amacrine cells differ from the cells discussed above such that release of Ca\(^2+\) from stores has an impact on AC1 activity. The spatial relationship between RyRs, L-type Ca\(^2+\) channels and AC1 is not known. The resistance of AC1 activity to 10 mM BAPTA could imply that AC1 is intimately associated with both channel types. The importance of localization is also made relevant in light of our previous work showing
that the metabotropic glutamate receptor 5 (coupled to the IP3 pathway)–dependent
enhancement of this same Ca\(^{2+}\) current can be suppressed by 5 mM BAPTA internally.
This receptor-mediated enhancement of the current is also thought to involve AC1 but the
source of the activating Ca\(^{2+}\) here is presumably IP3 receptors rather than RyRs (Sosa and
Gleason 2004). An additional consideration is the high affinity of AC1 for Ca\(^{2+}\) which is
about 5 times that of BAPTA (100 nM AC1, Fagan et al. 1996; Wu et al. 1993 vs. 500
nM BAPTA, Adler et al. 1991

It has been shown in amacrine cells that RyR-mediated CICR can activate Ca\(^{2+}\)-
sensitive K\(^{+}\) currents (Mitra and Slaughter 2002). A previous study on cultured amacrine
cells demonstrated a role of CICR in enhancing synaptic GABA release, but IP3 receptors
rather than RyRs were involved (Warrier et al. 2005). Although RyRs and IP3 receptors
are expressed throughout the cell bodies and dendrites of cultured amacrine cells (Warrier
et al. 2005; Sen et al. 2007), they might be differentially regulated in the two regions. If
this is case, then non-synaptic L-type Ca\(^{2+}\) channels might be the primary target of the
regulatory mechanism involving CICR and RyR demonstrated here.

In the retina, bipolar cells can support sustained release of glutamate (for review
see, Heidelberger et al. 2005) and amacrine cells are one of their postsynaptic targets.
Although some amacrine cells are known to feedback onto bipolar cells; limiting the
duration of excitation (Hartveit 1999; Dong and Hare 2003; Singer and Diamond 2003;
Chavez et al. 2006), others may be subjected to prolonged depolarization and potentially
significant elevations in cytosolic Ca\(^{2+}\). On the whole, the mechanisms described here
(MCU, PKA activity and the CICR-dependent enhancement) tend to promote and
preserve the activity of the L-type channels in amacrine cells. This may be important in
maintaining signaling capabilities of amacrine cells at their cell bodies or at their synapses or, in some cases, both.
ACKNOWLEDGMENTS

We would like to thank Dr. Jackie Stephens and Dr. Ursula White for their advice, assistance and expertise and Dr. Emily McMains for her careful reading of the manuscript. We would also like to thank Sujitha Prasad for her technical assistance.

GRANTS

This work was supported by N.I.H. grant R01EY012204 to E.G.

DISCLOSURES

There are no disclosures to be made.
REFERENCES

Hoffpauir BK, and Gleason EL. Activation of mGluR5 modulates GABA(A) receptor function in retinal amacrine cells. *J Neurophysiol* 88: 1766-1776, 2002.

Nicol X, Bennis M, Ishikawa Y, Chan GC, Reperant J, Storm DR, and Gaspar P.

Qu Y, Baroudi G, Yue Y, El-Sherif N, and Boutjdir M. Localization and modulation of \(\alpha_1 \)D (Cav1.3) L-type Ca channel by protein kinase A. *Am J Physiol Heart Circ Physiol* 288: H2123-2130, 2005.

Sosa R, and Gleason E. Activation of mGluR5 modulates Ca\(^{2+} \) currents in retinal amacrine cells from the chick. *Vis Neurosci* 21: 807-816, 2004.

FIGURE LEGENDS

Figure 1. The Ca$^{2+}$ current amplitude increases over time in control conditions. A and C, Perforated-patch recordings are shown from two different amacrine cells. Cells were depolarized from -70 mV to 0 mV for either 1 s, every 60 s (A, B) or for 100 ms, every 30 s (C, D). Current traces are shown from the time points indicated in B and D. Pairs of traces were selected to show that currents recorded a minute apart are only slightly different in amplitude (A and C, left). These traces were also selected for comparison because traces from similar time points are depicted in subsequent figures. Traces collected further apart in time show that the differences in amplitude are augmented over a longer time frame (A and C, right). B and D, Each data point is the mean normalized peak current amplitude elicited by the two protocols and plotted over time (30 s n=6; 60 s n=4). E, Current density (pA/pF) for the current elicited by the first voltage step is plotted against its rate of current amplitude increase for each cell. The rate was estimated by drawing a line (fit by eye) through the data at the first three time points for each cell, then calculating the slopes of those lines. The measurements from all cells depolarized from -70 mV to 0 mV for 100 ms, every 30 s were included in this analysis. Regression analysis does not reveal a correlation between these two quantities ($R^2=0.02$).

Figure 2. Inhibition of MCU reduces the Ca$^{2+}$ current amplitude without altering the voltage of activation. A and B, Perforated-patch recordings from an amacrine cell in the absence (black trace) and presence of FCCP (gray trace). Amacrine cells were depolarized from -70 mV to 0 mV for 1 s, every 60 s. Representative current traces are from the third and fourth voltage steps. The sustained FCCP-dependent inward current at
-70 mV (A, arrow) is due to Na/Ca exchanger activity and has been subtracted from subsequent data. This current is negligible at 0 mV so no subtraction was done for the data collected during the voltage step (B). C, Normalized mean peak current amplitude is plotted over time (n=7). D and E, Activation range of the channels was revealed by eliciting currents by steps over a range of voltages (-80 mV to +10 mV, in 5 mV increments). Two different internal Ca\(^{2+}\) buffering conditions were used (1.1 mM EGTA n=5, or 10 mM BAPTA n=4) in ruptured-patch configuration. No FCCP-dependent shift in activation range was observed under either condition in any of the cells tested.

Figure 3. The effect of inhibiting MCU is dependent upon the duration and frequency of depolarization. A and B, Perforated-patch recordings from representative amacrine cells depolarized from -70 mV to 0 mV for either 50 ms (A) or 3 s (B). Steps were delivered every 60 s. Recordings were made in the absence (black traces) and presence (gray traces) of FCCP. C, Mean normalized peak current amplitudes are plotted against step number for both step durations (50 ms, n=7; 3 s, n=6). D and E, Perforated-patch recordings from individual amacrine cells stepped from -70 mV to 0 mV for 100 ms. Voltage steps were delivered either every 60 s (D) or 5 s. (E). Currents were recorded in the absence (black traces) and presence (gray traces) of FCCP. F, Normalized mean peak current amplitude plotted over time for each depolarization frequency (5 s, n=6; 60 s, n=7).

Figure 4. Calcineurin is not a major regulator of the Ca\(^{2+}\) current. A, A representative recording from an amacrine cell showing the Ca\(^{2+}\) current recorded in cyclosporin A
(CsA, 1 µM) just prior to the addition of FCCP (black trace) and after one minute of FCCP exposure (gray trace). Cells were depolarized from -70 mV to 0 mV for 100 ms once every 30 s. **B**, The time course of normalized Ca\(^{2+}\) current amplitude is plotted for 6 cells treated with CsA. **C**, Under the same recording conditions as in **A** and **B**, CsA alone had no consistent effect on the Ca\(^{2+}\) current (n=5).

Figure 5. The effects of inhibiting MCU are dependent upon Ca\(^{2+}\) influx. **A** and **B**, Voltage steps were delivered from –70 mV to 0 mV for 1 s, every 60 s in perforated-patch recordings. Recordings were made in external solutions containing either 3 mM Ca\(^{2+}\) or 3 mM Ba\(^{2+}\). Currents are shown from the third (black traces) and fourth voltage steps (in FCCP, gray traces). **B inset**, unsubtracted current at -70 mV just prior to the voltage step to 0 mV reveals that the FCCP-dependent Na/Ca exchange current (and thus the FCCP-dependent Ca\(^{2+}\) elevation) persists in external Ba\(^{2+}\). Inset scale bar is 20 pA. **C**, Mean normalized peak current amplitudes are plotted over time for data collected in both Ca\(^{2+}\) and Ba\(^{2+}\) (n=7 for each).

Figure 6. Increasing cytosolic Ca\(^{2+}\) buffering alters the effects of inhibiting MCU. **A-C**, representative Ca\(^{2+}\) currents recorded in the ruptured-patch configuration with internal solution containing either 1.1 mM EGTA (**A**), 14 mM EGTA (**B**), or 10 mM BAPTA (**C**). Dashed lines (**A-C**) define the zero current level and the end of the voltage step so that tail currents can be compared under the three buffering conditions. Currents were elicited by 100 ms voltage steps from -70 mV to 0 mV delivered every 30 s. Currents shown are from the second voltage step (black traces) or the fourth voltage step (in...
FCCP, gray traces). **A**, **B** and **C**, insets show the un-subtracted current recorded at -70 mV (Na/Ca exchange current) demonstrating the presence of the FCCP-dependent Ca$^{2+}$ elevation under all three Ca$^{2+}$ buffering conditions. *Inset* scale bar is 20 pA. **D**, Mean normalized peak current amplitude is plotted over time for the three buffering conditions. **E**, FCCP-dependent changes in current amplitude (comparing data points 2 and 4) are plotted for each buffering condition. Single asterisk indicates p<0.05; triple asterisks indicate p<0.001.

Figure 7. *PKA and AC are both involved in regulating the Ca$^{2+}$ current amplitude.* **A** and **B**, Representative Ca$^{2+}$ currents recorded in the ruptured-patch configuration with internal solution containing 10 mM BAPTA. Current records are from 2 different cells. Currents were elicited by 100 ms voltage steps from -70 mV to 0 mV delivered every 30s. Currents shown were elicited from the second (black trace) and fourth (during the treatment, gray trace) voltage steps. Cells were exposed to either the PKA inhibitor H89 (**A**) or H89 + FCCP (**B**) for one minute. **C**, Normalized peak current amplitude data are plotted over time. The vertical gray bar indicates the time frame of the three treatments. FCCP data from Fig. 6D are re-plotted here for comparison. **D**, A representative recording from an amacrine cell showing the inhibitory effect of SQ 22,536 on the Ca$^{2+}$ current amplitude. **E**, Normalized peak current amplitude data are plotted over time.

Figure 8. *AC1 is expressed in the retina and in cultured retinal cells.* **A**, Image of a Western blot showing that the anti-AC1 antibody binds a band at the predicted molecular weight (130 kDa) in both chicken and mouse brain tissue. **B-D**, Fluorescent images of
frozen sections of chicken retina treated with Cy3-conjugated secondary antibodies only (B) and the anti-AC1 primary antibody plus the secondary antibody (C and D). The secondary-only controls show low non-specific binding of the secondary antibody. In C, strong AC1 immunoreactivity is observed in the photoreceptor layer. Also labeled are cells at the inner border of the inner nuclear layer (INL) and in the ganglion cell layer. The labeling pattern is punctate and is most prominent in cell bodies. D, Higher magnification view of two cells at the inner border of the INL shows that labeling is found on processes extending down into the inner plexiform layer (arrowheads). E-G, Fluorescent images of retinal neurons in culture. E, A field of cells labeled with the Cy3-conjugated secondary antibody only shows low non-specific binding of the secondary antibody. F, A field of retinal neurons is shown, most of which are amacrine cells (arrows, for example). A strongly labeled cone photoreceptor is also shown (arrowhead). G, A higher magnification image of three amacrine cells. As in retinal sections, the labeling pattern of the anti-AC1 antibodies is punctate and appears in cell bodies and processes. All scale bars are 10 µm.

Figure 9. The effects of inhibition of calmodulin depend on the Ca\(^{2+}\) buffering environment. A and B, Representative ruptured-patch recordings from amacrine cells loaded with CMZ via the patch pipet. Recordings were made with either 1.1 mM EGTA+CMZ (A), or 10 mM BAPTA+CMZ (B) in the pipet. Current are shown from the third voltage step (black trace) and the fifth voltage step (in FCCP, gray trace). C, Mean normalized peak current amplitudes are plotted over time for both recording conditions. D, Percent change in Ca\(^{2+}\) current amplitude was determined by comparing the current
from the voltage step delivered just before FCCP to that elicited by the voltage step
delivered one minute later (in FCCP). CMZ-free data are re-plotted from Fig 6E for
comparison purposes. Triple asterisks indicate p<0.001. Other pair-wise comparisons
were not statistically different.

Figure 10. *Phosphodiesterase activity can regulate the Ca\(^{2+}\) current amplitude.* A, C, E
and G, representative perforated-patch recordings from 100 ms voltage steps from -70
mV to 0mV delivered every 30 s. Both pairs of recordings in each panel (A, C, E and
G) were made from the same amacrine cell. Control traces on the left were obtained from
the first (black) and second voltage steps (gray). On the right, the control current (black)
was recorded just prior to the application of IBMX (second voltage step, A,C,E) or 8-M-
IBMX (G). IBMX or 8-M-IBMX traces (gray) were recorded after 30 s of exposure to
the reagent (third voltage step). Cells were separated into three groups based on the effect
of IBMX on the Ca\(^{2+}\) current amplitude: cells exhibiting current amplitude increases (A
and B, n=6), cells exhibiting current amplitude decreases (C and D, n=6) and cells whose
Ca\(^{2+}\) current was unaffected (±<5% change) by IBMX (E and F, n=11). G,
representative recordings from a single amacrine cell using the same protocol as for A, C
and E but with the PDE1 selective inhibitor 8-M-IBMX. 8-M-IBMX produced a small
inhibition in all cells examined (n=12 G and H). B, D, F and H, Mean percent changes
in Ca\(^{2+}\) current amplitude are plotted for each group of cells (comparing time points
depicted in A, C, E and G). Single asterisk indicates p<0.05, double asterisks indicate
p<0.01 and triple asterisks indicate p<0.001.
Figure 11. CICR normally contributes to \(\text{Ca}^{2+} \) current enhancement. A and B, the perforated-patch configuration was used to record \(\text{Ca}^{2+} \) current from individual amacrine cells with a similar voltage protocol as in Fig. 10. The three pairs of traces in each panel (A and B) are all from the same amacrine cell. Control traces were recorded 30 s apart (A and B, left). Either ryanodine (14 µM, A, middle) or dantrolene (20 µM, B, middle) was used to inhibit activation of the ryanodine receptor. Co-application ryanodine and 8-M-IBMX (A, right) and dantrolene and 8-M-IBMX (B, right) are also shown. C and D, Mean percent change in current amplitude (comparing time points depicted in A and B) is plotted for both inhibitors (ryanodine n=3, dantrolene n=5). Single asterisk indicates p<0.05; triple asterisks indicate p<0.001.

Figure 12. Working model of the \(\text{Ca}^{2+} \)-dependent regulation of L-type \(\text{Ca}^{2+} \) channels in amacrine cells. A. When the cell is depolarized, L-type voltage-gated \(\text{Ca}^{2+} \) channels are opened and \(\text{Ca}^{2+} \) influx occurs. B, Some fraction of entering \(\text{Ca}^{2+} \) is rapidly moved into nearby mitochondria via the uniporter. C, Another fraction of the entering \(\text{Ca}^{2+} \) binds the channel-associated calmodulin and CDI is initiated. D, \(\text{Ca}^{2+} \) may also bind non-channel-associated calmodulin that can activate AC1 leading to PKA activity and current amplitude enhancement. E, Another target of \(\text{Ca}^{2+} \) is the ryanodine receptor which can lead to CICR and possibly contribute to the \(\text{Ca}^{2+} \)/CaM-dependent activation of AC1.
Time (s)

- Every 30 s
- Every 60 s

Rate of Current Increase (pA/min)

- Current Density (pA/pF)

Normalized Peak Current Amplitude

- 100 ms, every 30 s
- 1 s, every 60 s

R²: 0.02
Normalized Peak Current Amplitude

Step Number

Normalized Peak Current Amplitude

Time (s)

Every 5 s

Every 60 s

FCCP

50 ms 3 s

50 pA

50 ms

25 ms

50 pA

Every 5 s

Every 60 s

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Normalized Peak Current Amplitude

Time (s)

FCCP

50 ms 300 ms

50 pA

0 1 2 3 4 5 6 7 8 9 10
Calcium Barium

Normalized Peak Current Amplitude

Time (min)

A

B

C

Normalized Peak Current Amplitude

Time (min)

Calcium

Barium

FCCP
A B APTA Internal FCCP

BAPTA Internal

C

SQ 22,536

E BAPTA Internal

Normalized Peak Current Amplitude

Time (s)
A B

C FCCP

D

EGTA + CMZ BAPTA + CMZ

Normalized Peak Current Amplitude

Time (s)

Percent Change in Current Amplitude

EGTA + CMZ

BAPTA + CMZ

0 60 120 180 240 300 360 420

0.8 1.0 1.2 1.4 1.6 1.8

BAPTA FCCP CMZ BAPTA FCCP

EGTA FCCP CMZ EGTA FCCP CMZ BAPTA FCCP

Percent Change in Current Amplitude

0 25 50 -25 -50
