Title: Fine Frequency Tuning in Monkey Auditory Cortex and Thalamus

Authors: Edward L. Bartlett1,2*, Srivatsun Sadagopan1,3,4* and Xiaoqin Wang1

* Both authors contributed equally to this work.

Affiliations:
1) Johns Hopkins University, Dept. of Biomedical Engineering, Baltimore, MD 21205, USA
2) Current address: Depts. of Biological Sciences and Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
3) Johns Hopkins University, Dept. of Neuroscience, Baltimore, MD 21205, USA
4) Current address: Dept. of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA

Running head: Fine frequency tuning in marmoset cortex and thalamus

Corresponding author:
Dr. Xiaoqin Wang
Dept. of Biomedical Engineering
Johns Hopkins University
720 Rutland Avenue, Traylor 410
Baltimore, MD 21205, USA
Email: xiaoqin.wang@jhu.edu, Tel. (410) 614-4547
Abstract

The frequency resolution of auditory neurons throughout the ascending auditory pathway is an important parameter for understanding how sounds are processed. It has been shown in previous animal studies that the frequency tuning widths are about 1/5 octave wide in auditory nerve fibers and much wider in auditory cortex neurons (Pickles, 1979; McLaughlin et al., 2008; see Table 1). Psychophysical studies show that humans are capable of discriminating far finer frequency differences (Oxenham and Shera 2003). A recent study suggested that this is perhaps attributable to fine frequency tuning of neurons in human auditory cortex (Bitterman et al. 2008), in contrast to wider frequency tunings in published animal studies. We investigated whether such fine frequency tuning was restricted to human auditory cortex by examining the frequency tuning width in a New World monkey species, the common marmoset, in the awake condition. We show that 27% of neurons in the primary auditory cortex of awake marmosets exhibit frequency tuning that is finer than the typical frequency tuning widths of the auditory nerve and substantially finer than previously reported cortical data obtained from anesthetized animals. We further show that such fine frequency tuning is also present in 76% of neurons of the auditory thalamus in awake marmosets, and therefore may be a feature preserved or enhanced by the thalamocortical circuit. Frequency tuning was narrower during the sustained response compared to the onset response in auditory cortex neurons but not in thalamic neurons, suggesting that thalamocortical or intracortical dynamics shape time-dependent frequency tuning in A1. These findings challenge the notion that the fine frequency tuning of auditory cortex is unique to human auditory cortex and that it is a de-novo cortical property, suggesting that broader
frequency tuning widths observed in previous animal studies may arise from the use of anesthesia during physiological recordings.

Keywords: auditory cortex, medial geniculate, frequency tuning, thalamocortical, bandwidth, marmoset
Introduction

Fine-grained representation of sound frequency is critical for sound segregation and recognition (Bregman et al. 1990, p. 58-68, 83-92, 642-654; Carlyon 1992; Micheyl and Oxenham 2010). The initial stages of auditory processing decompose sound signals into frequency bands that span approximately one-quarter to one-seventh of an octave in the auditory nerve near threshold (see Table 1), which is the effective resolution of the input into the central auditory system. Measurements of frequency tuning width (referred to as bandwidth hereafter) at intermediate stages of the ascending auditory pathway in a variety of species showed preservation or enlargement of frequency bandwidth in single neurons. In anesthetized cats, frequency bandwidths have been measured in most stages of the ascending pathway. It has been shown that average frequency bandwidths increase from about one-quarter octave in the auditory nerve to about 1 octave in primary auditory cortex (A1) (Pickles, 1979; Ramachandran et al., 1999; Miller et al., 2002; Moshitch et al., 2006). A similar trend was observed in a number of primate studies (see Table 1). One notable exception to this general trend of broadly tuned A1 neurons was the study by Recanzone et al., (2000) in awake macaque monkeys that showed sharp frequency tuning in a small number of sampled A1 neurons. A summary of previously reported bandwidths at various stages of the ascending auditory pathway in a variety of species is presented in Table 1. It is clear that in the vast majority of cases, A1 neurons were reported to have broad frequency tuning widths.

However, a recent study of the auditory cortex in awake human patients reported 'ultra-fine' frequency tuning (Bitterman et al. 2008). For the most sharply tuned neurons with best frequencies (BFs) ranging from a few hundred to about 2000 Hz, estimated bandwidths were
approximately one-twelfth of an octave, which is significantly narrower than that observed in auditory nerve of animals. Such narrow frequency tuning of auditory cortex neurons has not been observed previously in the auditory cortex of other mammals except in specialized species such as echo-locating bats (Suga 1965). Based on this comparison, Bitterman et al. (2008) suggested that the human auditory cortex is specialized for fine frequency discrimination and that this fine frequency tuning might have arisen as a specialization for enhanced speech comprehension.

In the present study, we examined two major implications derived from the hypothesis that human auditory cortex is specialized for fine frequency tuning. First, we measured the frequency tuning width of auditory cortex neurons of another highly vocal primate species (the common marmoset, *Callithrix jacchus*) and compared them with those found in humans and other animals from previous studies. Because most of previous studies of frequency tuning were conducted in anesthetized animals, a direct comparison between the neural responses of the auditory cortex of humans and non-human primates in the awake condition can shed light on whether there is indeed a specialization of human auditory cortex in frequency tuning. Second, we measured the frequency tuning properties of auditory thalamus neurons in awake marmosets to determine the extent to which the auditory cortex preserves, widens or sharpens frequency tuning from its inputs.

Based on single-unit recordings in awake marmosets, we found that neurons in both the medial geniculate body (MGB) and A1 exhibited fine frequency tuning comparable to that observed in the Bitterman et al. (2008) study of human auditory cortex, suggesting that fine
frequency tuning is not unique to human auditory cortex and is potentially generated at the level of the auditory thalamus or enhanced through a thalamus-cortex-thalamus loop.

Materials and Methods

Animal preparation, acoustic stimuli and single-unit recording procedures

All experiments conformed to protocols approved by the Johns Hopkins Institutional Animal Care and Use Committee (IACUC). Details of experimental procedures for electrophysiological recordings from marmosets have been previously reported (Lu et al., 2001; Bartlett and Wang, 2007). Briefly, marmosets were placed in a custom primate chair inside a double-walled soundproof booth (Industrial Acoustics, NY). The interior of the booth was covered by 3-in acoustic absorption foam (Sonex, Illbruck, IL). The animals passively listened to the acoustic stimuli, with their behavioral state being monitored by the experimenter via a closed circuit TV camera. The experimenter ensured that the animal’s eyes were open prior to the delivery of each stimulus set. Recordings were performed with single high impedance tungsten microelectrodes (2 – 4 MΩ) and unit isolation was established online using an 8-point template match and two additional adjustable amplitude-time windows when necessary (Alpha-Omega Engineering, Alpharetta, GA). Stimuli were generated digitally in MATLAB (MathWorks, Natick, MA) at a sampling rate of 97.7 kHz or 100 kHz using custom software, converted to analog signals (Tucker-Davies Technologies, Alachua, FL), power amplified (Crown Audio, Elkhart, IN), attenuated (Tucker-Davies Technologies), and presented from a loudspeaker (Fostex FT-28D, B&W-600S1 or B&W-600S3) situated ~70 cm (MGB recordings) or ~1m (AI
recordings) in front of the animal. The loudspeaker had a flat frequency response curve (+/- 5dB) across the range of frequencies of the stimuli used, with a calibrated level (at 1 kHz) of ~90 dB SPL at a set level of 0 dB attenuation. We recorded from the right auditory cortex of two awake marmosets, the left auditory thalamus of two awake marmosets, and the right auditory thalamus of one awake marmoset. For A1 recordings, stimuli used were 100-ms long pure tones with 5-ms cosine ramps, with frequencies that spanned 2 – 3 octaves around a manually determined center frequency in 0.1 octave steps (1/12 octave steps were used in some cases). The range of sound levels covered was 0 – 80 dB in 20 dB steps. The best sound level (BL) of a neuron was defined as the sound level that elicited the maximal firing rate, determined by a near BF tone over a 90 dB range in 5 or 10 dB steps. The BF of a neuron was defined as the centroid of the frequency tuning curve at BL. For MGB recordings, stimuli used were 200-ms long pure tones with 5-ms linear ramps, with frequencies that spanned 2 – 4 octaves around a manually determined center frequency in 0.1 octave steps at a manually determined best level. Using the tone frequency that evoked the maximum firing rate in the tuning curve, a rate-level curve was generated for sound levels from -10 to 80 dB in 10 dB steps. For many MGB neurons (n=85), a second, denser frequency tuning curve (15-24 tones/octave) was generated over a 1-2 octave range centered at the best frequency from the first tuning curve and at the best sound level determined from the rate-level curve. For both A1 and MGB, responses to the complete stimulus set were acquired one repetition at a time. Within each repetition of the stimulus set, stimuli were presented in random order.

Analysis of A1 responses
Proximity to the lateral sulcus, strong tone-responsiveness in the middle cortical layers and clear tonotopy with at least one tonotopic reversal were the criteria used to determine the location of the neurons within A1. We recorded from well-isolated single neurons mostly located in the upper and middle cortical layers. We sampled uniformly across a wide range of frequencies (0.5 – 16 KHz) and sound levels (0 – 80 dB SPL). We found that many neurons in the MGB and A1 were difficult to drive if we did not sample densely enough or were inhibited if the sound level was too high.

Analysis methods used were similar to those described in Sadagopan and Wang (2008). We first verified that at least one stimulus evoked a significant excitatory response within a 150 ms window beginning 15 ms after stimulus onset using the t test ($p < 0.05$) compared with mean spontaneous activity over the entire stimulus set. 348 of 460 sampled units met this criterion. Seventy-three units were excluded from additional analyses because they either responded only at the loudest level tested ($n = 34$) or their BF at one or more sound levels differed by more than two estimated bandwidths from the BF calculated at the BL ($n = 39$).

Frequency tuning curves (i.e., firing rate versus tone frequency) of the remaining 275 units were then computed at each level and thresholded at 20% of peak response. Threshold for a unit was therefore defined as the lowest sound intensity at which the evoked response was at least 20% of the maximum response. Tuning curves were interpolated and smoothed using a five-point moving window for display. We then fit an area-matched rectangle to a tuning curve at a given sound level by fixing its position at the centroid of the tuning curve and its height at maximum firing rate. The calculated width of the rectangles was then taken as measures of
bandwidth at that sound level. The rectangle fit method closely approximates the half-maximal width for perfectly Gaussian tuning curves, and takes into account long-tailed tuning curves, giving an upper bound for bandwidth estimates. The bandwidth of the unit was taken as the bandwidth at BL. These values were computed over the entire response duration and over the last 100 ms of the response window (sustained) in order to observe whether frequency tuning changes over the course of the response. To compute population tuning curves, individual tuning curves were normalized by the maximum driven rate (after subtracting spontaneous rate) and centered at the unit’s BF. We then interpolated each individual tuning curve in 0.1 octave steps to ± 1 octave to ensure uniformity across the population and then averaged all tuning curves at the BL or at 10 dB above threshold for each unit. The full-width at half maximum (FWHM) of the population tuning curve was taken to be its bandwidth. For comparison with previous studies, Q-values for each unit were calculated by dividing the BF of each unit (in kHz) by its bandwidth (in kHz) at the BL or at 10 dB above threshold. In cases where a 20 dB sampling resolution was used, the bandwidth at 10 dB above threshold was obtained by linearly interpolating between the bandwidths at threshold and 20 dB above threshold.

Analysis of MGB responses

The responses of 191 MGB units were recorded from 3 marmosets in response to 200 ms tone stimuli. A unit was considered to have a defined BF if it had a significant excitatory response (p<0.05, Wilcoxon ranksum vs. spontaneous activity) and the firing rate of the unit dropped to < 50% of the maximum firing rate on at least one side of the BF in the tuning curve. 159/191 units met these criteria, with BF ranges from 0.6 to 32.5 kHz. Among 159 units, 73
units that were located in the ventral division (MGV). The remaining 86 units were localized in non-MGV subdivisions (72 units) or were too close to borders between MGB subdivisions to classify their location (14 units).

Bandwidth for an MGB neuron was determined as the tuning width (expressed in octaves or kilohertz) at which the tuning curve fell below 50% of the firing rate maximum at BF, which is the same response threshold as that used for A1 responses. The 50% tuning width boundary was determined by linearly interpolating between adjacent MGB responses that were above and below 50%. Population tuning curves and Q_{BL} (Q value at BL) values were computed in the same way as for A1 units.

MGB anatomy

To confirm recording locations, electrolytic lesions were made in physiologically identified regions of MGB by passing 2-10 μA current through the recording electrode (6-10 s each polarity). MGB subdivisions were assigned based on parcellation schemes established in previous studies of the MGB in macaques (Molinari et al. 1995) and marmosets (Aitkin et al. 1988; de la Mothe et al. 2006). The locations of recorded neurons in the MGB were reconstructed based on the coordinates of the electrode tracks relative to the tracks in which lesions were made and the depths at which the recordings occurred.

Results

Distributions of tuning bandwidths in A1 and MGB

Data presented in this study are based on 275 tone-responsive single-units from A1, and 159 tone-responsive single-units from all subdivisions of the auditory thalamus (MGB). These units had significant excitatory responses to at least one pure tone in our stimulus set and a well-defined BF (see Methods). Bandwidths of all neurons were calculated as described, and the distributions of bandwidths for A1 and MGB neurons are plotted in Fig. 1A. Cumulative distributions of A1 and MGB bandwidths are plotted in Fig. 1B. The key observation from these data is that many A1 units (27%) and a large fraction of MGB units (76%) show frequency tuning bandwidths that are less than the frequency tuning bandwidths typically observed in auditory nerve fibers – which, in a variety of species, has been reported to be about 0.2 octaves (Evans 1972; Pickles 1979; Temchin et al. 2008; see Table 1). Such high numbers of finely tuned neurons in both cortex and thalamus have seldom been reported in earlier studies (see Table 1). These sharply tuned neurons have tuning bandwidths that are similar to that reported by a study in human auditory cortex (Bitterman et al., 2008), and are therefore of special interest. But this population also raises several questions: for example, are sharply tuned neurons a functionally specialized population? Are they restricted to any behaviorally relevant frequency range? Do they show different response dynamics? In order to study these properties in detail, and to investigate whether these neurons show any differences from the rest of the population, we divided the A1 and MGB populations into 'sharply tuned' (ST) and 'not sharply tuned' (NST) categories. For both A1 and MGB, we chose the typical auditory nerve bandwidth of 0.2 octaves as the boundary between these two classes (gray dashed line in Fig. 1). Note that the cutoff bandwidth used to categorize responses as ST or NST does not imply a-priori that there are distinct neuron classes or that there is an underlying bimodal distribution of bandwidths among
A1 or MGB neurons. Rather, this boundary is chosen merely to develop a better characterization of the ST neurons which are a behaviorally interesting subset. In the next sections, we analyze and compare the properties of ST and NST neurons in A1 and MGB in detail.

Auditory cortex frequency tuning properties

A1 neurons were divided into two groups: those with frequency bandwidth less than 0.2 octaves were referred to as 'sharply tuned' (ST group: 74/275, 27%) and the rest of the population were referred to as 'not sharply tuned' (NST group: 201/275, 73%). The proportion of neurons classified as ST or NST did not depend on the bandwidth metric used. Similar results were obtained using both the rectangle fits (27% ST, mean ST bandwidth = 0.125 oct.) and calculating bandwidth at half-maximal rate without accounting for long-tailed tuning curves (32% ST, mean ST bandwidth = 0.115 oct.), with no significant changes in the physiological properties of the ST or NST population. Therefore, all values for A1 neurons reported in this manuscript were derived using the more conservative rectangle-fit procedure (see Methods). We did not find any systematic dependencies of tuning widths on BF. However, two important differences were evident between ST and NST groups: 1) spontaneous firing rates of the ST group were significantly less than those of the NST group and 2) maximum driven rates of the ST group were significantly less than those of the NST group (**Table 2**).

Figure 2A – B shows the dot raster and frequency response area (FRA) of a typical ST neuron. In this example, significant responses to 50-ms pure tones were restricted to a single frequency bin (bin size = 1/10 oct.) and two sound level bins (bin size = 20 dB). The frequency response area (FRA) of this neuron shows typical ‘O’ shaped tuning to both frequency and
intensity with a well-defined BF and BL (Sadagopan and Wang 2008). We calculated the frequency bandwidths for the population of 275 A1 neurons (see Table 2). It should be emphasized that we measured the frequency bandwidth at the BL for all neurons, where response rate was strongest. Note that a large fraction of neurons in A1 of awake marmosets are tuned to sound level, with a median level-tuning width of 25 dB (Sadagopan and Wang 2008). Expressed in terms of a quality factor or Q-value, these bandwidths translate to Q_{BL} of 12.1 ± 4.8 for ST units and 3.7 ± 1.8 for NST units (Table 2). For comparison with previous data, we also evaluated Q-values at a sound level 10 dB above threshold. In this case, Q_{10} values were 14.3 ± 3.9 for ST units and 6.6 ± 4.8 for NST units (Table 2). These data show that on average, the bandwidth at 10dB above threshold is smaller than the bandwidth at BL. Further, for level-tuned units, bandwidth decreased at louder levels as well (Sadagopan and Wang, 2008). Therefore, bandwidth at BL typically corresponds to the broadest point in a given neuron's tuning curve and is a conservative estimate of a neuron's bandwidth.

In Fig. 2C, we computed the normalized population average frequency tuning curves for the entire A1 population of 275 units at BL. The population average frequency tuning curves were centered at BF and extended up to 1 octave above and below BF. Averages were computed for the entire response duration (ON+SUS, analysis window: [stimulus onset + 15 ms, stimulus offset + 50 ms]) and for the sustained response alone (SUS, analysis window: [stimulus onset + 50 ms, stimulus offset + 50 ms]), respectively. For the entire response duration, the bandwidth measured from the population average frequency tuning curve was 0.5 octaves. For the sustained portion of the response, the mean bandwidth was even narrower, 0.38 octaves. (Fig. 2C). When we repeated the same analyses for units in the ST group, the mean bandwidth was 0.125 octaves.
for the entire response duration, which reduced to <0.1 octaves (minimum sampling resolution) during the sustained portion of the response (Fig. 2D). It should also be noted that there was significant lateral off-BF suppression (depression of population response rate below spontaneous rate; Sadagopan and Wang, 2010) during the sustained response in the A1 responses, especially in the ST units (see red lines in Figs. 2C and 2D).

Auditory thalamus frequency tuning properties

Of the 191 MGB units recorded from 3 marmosets, 159 had significant excitatory responses and well-defined BFs (see Methods), including 73 MGV units. They had BFs ranging from 0.6-32.5 kHz. Using the same criterion as A1 units, MGB units were classified as 'sharply tuned' (ST) if their bandwidths were \leq 0.2 octaves. The rest units were classified as 'not sharply tuned' (NST). In the MGB, ST units constituted a majority of units in the auditory core MGV subdivision (81%, 59/73 units, see Table 2), and they constituted a majority of neurons in the remainder of the MGB (72%, 62/86 units). The spontaneous firing rates and driven rates of ST and NST MGB units were not significantly different (Table 2), in contrast to their counterparts in A1.

One example of an MGB ST unit is shown in Figs. 3A and 3B. For this unit, the frequency tuning curve was measured at BL using pure-tones at a high sampling density (24 tones per octave). Only tones at 9.4 and 9.71 kHz produced significantly driven responses, and these responses were sustained for the tone duration (Figs. 3A and 3B). The halfwidth of this unit was 0.083 octaves (1/12th octave). Significant suppression was evident, particularly on the low frequency side of the tuning curve at 8.6 kHz (Figs. 3A and 3B). Figure 3C shows another
unit where significant suppression was present on the low frequency side and high frequency side of the tuning peak. In this example, the suppression occurred at frequencies close to BF (0.05 octaves away on the low frequency side, 0.1 octaves away on the high frequency side) and was sharply tuned.

The distribution of bandwidths at BL in the MGB is plotted in Fig. 3D. For MGB neurons, the 25-75% range of best levels was 20-60 dB SPL, with a median of 40 dB. Most MGV units (Fig. 3D, black bars) were ST units (<0.2 octaves, left of dashed line). Surprisingly, we found that many units from non-MGV subdivisions (Fig. 3D, gray bars) were also sharply tuned. There did not appear to be two distinct populations for frequency tuning. Instead, the distribution of bandwidths peaked on the bin centered at 0.1 octave bandwidth, and then the number of units decreased as tuning bandwidth increased. Bandwidths >0.2 octaves were dominated by units from non-MGV subdivisions. For a subset of 25 MGB units whose BL was 10 dB above threshold, the tuning bandwidths (0.13±0.10 octaves), Q10 values (14.4 ± 7.5), and proportion of ST units (22/25=88%) were not significantly different than the values measured for the population at BL.

In Fig. 3E, the frequency tuning curves of all MGB units were normalized relative to the response at BF and averaged. Black and red lines indicate the normalized tuning curve over the entire response duration and the sustained response portion (100-200 ms after stimulus onset), respectively. The two population average tuning curves were quite similar. The mean bandwidth of all MGB units was approximately 0.14 octaves (Table 2). Such small bandwidths for the population reflect that most MGB neurons were ST units (76%). In Fig. 3F, the frequency tuning
curves of MGB ST units were normalized relative to the response at BF and averaged. The two population average tuning curves for the entire stimulus duration (black line) and the sustained portion (red line) were quite similar. The mean bandwidth of MGB ST units was 0.11 octaves (Table 2), with some bandwidths as small as 0.05 octaves, but there was no significant difference between the bandwidths of the total and sustained responses (Fig. 3F). Suppression at off-BF frequencies was common in the ST population, with 55/121 ST units having firing rates below spontaneous rates at -0.1 octaves away from BF and 56/121 ST units at +0.1 octaves away from BF. By definition, MGB NST units had significantly larger bandwidths (Table 2). There was again no significant difference between the bandwidths of the total and sustained responses of the MGB NST units. The lack of difference in the bandwidth between the total and sustained responses in MGB is in contrast to what was observed in A1 (Fig. 2C, D).

Dependence of frequency tuning measures on BF

We examined more closely the relationship between BF and measures of frequency tuning sharpness using a variety of measures to enable comparison with other studies. In A1, we found no significant differences in the BF distributions of ST and NST units (Fig. 4A; p = 0.43, Kolmogorov-Smirnoff test). The greatest proportion of ST units was encountered in the BF range of 4 – 8 kHz. Bandwidth (in kHz) increases approximately linearly with increasing BF for both ST and NST units and with similar slopes (Fig. 4B). When we plotted bandwidth (in oct.) and Q_{BL} as a function of BF, no observable differences were evident between the ST and NST units (Figs. 4C & 4D), indicating that ST and NST units were similarly tuned across the frequency range and reinforcing the observation that ST units were prevalent across the entire frequency range.
In the MGB, BFs of ST units were significantly higher than NST units (Fig. 4E; p < 0.002, Kolmogorov-Smirnoff test). MGB neurons were sampled throughout its extent, including MGV neurons that are part of the core auditory pathway and posterodorsal MGB neurons that are part of the belt pathway (de la Mothe et al. 2006), but not including neurons from the medial division of MGB or the suprageniculate nucleus. Across the MGB population, the units in the bottom quartile of the BF distribution (< 2.9 kHz, n=40) differed from the other units (n=119) in that they exhibited broader bandwidths (0.26 ± 0.19 oct. compared to 0.14 ± 0.10 oct. for units with BFs > 2.9 kHz, p<0.003, Kolmogorov-Smirnoff test) and a lower proportion of ST units (55% vs. 83% for units with BFs >2.9 kHz, p<0.001 χ^2 test). Fig. 4E shows the distribution of BFs for proportion of ST (black bars) and NST units (gray bars) where the distribution of BF has been separated into ½ octave bins. The bandwidths (in kHz) of ST and NST units increased approximately linearly with increasing BF with similar slopes (Fig. 4F). As BF increased, the bandwidths (in oct.) of ST units did not change, but the bandwidths of NST units decreased as BF increased up to about 4 kHz and stayed unchanged at higher BFs (Fig. 4G). Similarly, Q_{BL} of ST units did not change as a function of BF, but they did increase slowly with BF (to ~4 kHz) for NST units (Fig. 4H).

Discussion

By comparing frequency tuning properties between the marmoset MGB and A1, we drew the following conclusions: 1) A large population of neurons in both the MGB (76% overall) and A1 (27%) were sharply tuned, to the order of $1/7^{th}$ to $1/20^{th}$ of an octave (Table 2), significantly sharper than earlier reported animal data (Table 1) and comparable to recently reported human
data (Bitterman et al. 2008). This suggests that fine frequency tuning may not be a unique feature of human auditory cortex. 2) Sharpness of tuning in A1 may not be a de-novo cortical property, as many MGB neurons exhibited as sharp or sharper tuning than cortical neurons. 3) Sharpening of frequency tuning during the sustained response after the stimulus onset response was observed in A1 (Figs. 2C-D), but not MGB (Figs. 3E-F), suggesting that thalamocortical or intracortical dynamics restore the frequency selectivity of their MGB inputs after a less selective onset response. 4) Sharp frequency tuning was observed across the entire range of observed BFs in both A1 and MGB recordings (Figs. 4A & 4E), although ST units were less common in units whose BFs were < 3 kHz.

Until recently, sharp frequency tuning had not been clearly demonstrated in the auditory cortex and auditory thalamus of species other than bats (Suga 1965; Suga and Jen 1977; Suga et al. 1997). Data from a variety of species and recording preparations indicated that frequency tuning measurements in the auditory thalamus and auditory cortex were at least as broadly tuned as the auditory nerve (Calford 1983; Rauschecker et al. 1997; Edeline et al. 1999; Doron et al. 2002; Kajikawa et al. 2005; Qin et al. 2005). Table 1 summarizes results from a number of studies at different levels of the auditory pathway and in different species. Auditory nerve tuning is fairly similar across species, with Q_{10} values ranging from 3 to 10 (Table 1). This includes auditory nerve tuning in mustached bats at frequencies away from the hyperacute 61 kHz region, while the fibers tuned near 61 kHz have exceptionally sharp tuning (Q_{10} mean >80, Suga and Jen 1977). Rhode et al. (2010) concluded that frequency tuning in marmoset and squirrel monkey cochlear nucleus neurons was similar to the auditory nerve tuning found in other species. Earlier studies showed that frequency tuning inferior colliculus (IC) units was comparable to that...
observed in the auditory nerve in awake monkeys (Ryan and Miller 1978) or in cats
(Ramachandran et al. 1999; McLaughlin et al. 2008), but there may be slight sharpening in the
IC of bats (Pollak and Bodenhamer 1981; Haplea et al. 1994). Therefore, although we do not
have data on the tuning of marmoset IC neurons, the data from the cochlear nuclei of marmosets
and the IC of other species suggests that the fine frequency tuning observed in MGB and A1 may
originate in MGB.

The changes in frequency tuning width from auditory nerve to A1 differs widely between
reported studies, though nearly all studies in cats and rodents exhibit broader tuning in A1
responses, regardless of anesthetic state (Table 1). Studies from anesthetized marmoset and other
monkeys have demonstrated Q_{10} values < 7 (Table 1, Philibert et al. 2005), which is comparable
to auditory nerve responses in other studies. In one study, A1 units in owl monkeys trained in an
auditory discrimination task were found to exhibit higher Q_{10} values near the training frequencies
compared to untrained owl monkeys (Recanzone et al. 1993). Auditory cortex neurons in
mustached bats exhibit exquisite tuning in the 61 kHz region that is even sharper than auditory
nerve responses, with Q_{10} values reaching 200-300, but with little or no sharpening at other
frequencies (Suga and Tsuzuki 1985). Other than bats, the only evidence of fine frequency
tuning in A1 (defined in this study to be tuning width narrower than typical auditory nerve
tuning, ~ 0.2 oct.) was provided in a study by Recanzone et al. (2000) in awake macaque
monkeys, where a small number of A1 neurons had bandwidths (at 10 dB above threshold)
smaller than 0.2 octaves (see Fig. 12A of Recanzone et al. 2000). The mean bandwidth of the A1
population was 0.43 octaves at 10 dB above threshold as reported by Recanzone et al. (2000).
Fewer A1 neurons were classified as 'sharply tuned' (27%) compared to MGB neurons (76%) in the present study. Broader bandwidths in the population of A1 neurons (ST and NST combined) could arise from narrower feed-forward MGB inputs because of two possibilities that require further investigation: 1) A1 neurons might integrate inputs from sharply tuned MGB neurons that have nearby BFs, or 2) A1 neurons may receive inputs from MGB neurons at the same BF, but having different bandwidths. In our population of A1 neurons, a sharpening of frequency tuning developed over response duration that was not observed in MGB neurons, causing the frequency resolution of the A1 population to approach that of the MGB population. This sharpening could result from several mechanisms that need further investigation. First, late intracortical inhibition could suppress responses to off-BF frequencies. Second, the onset response in A1 might reflect convergence of many MGB inputs, whereas the sustained response might be representative of fewer thalamic inputs. Third, excitatory drive to cortical neurons might be reduced during the sustained response due to synaptic depression or spike rate adaptation at lower processing stages, resulting in an 'iceberg effect' that could lead to sharper tuning. Finally, feedback projections from A1 to MGB might also sharpen frequency tuning. Therefore, the relationship between A1 and MGB with respect to frequency selectivity can be summarized as follows. When measured over the entire response duration, fewer A1 neurons are sharply tuned compared to MGB neurons, and MGB-ST neurons show slightly higher selectivity compared to A1-ST neurons (Table 2). However, due to the differential sharpening of A1 tuning over response duration, some A1-ST neurons become more selective than MGB-ST neurons during the sustained response. Note that it is also likely that the fraction of sharply tuned A1 neurons increases during the sustained response. The various mechanisms that are active in shaping tuning curves is a question left open for future experiments.
The frequency tuning bandwidths reported in this study were measured at each unit's BL (unless specified), which ranged widely from unit to unit. The difference between BL and threshold was 16 ± 18 dB for MGB units ($n = 111$) and 19.4 ± 22 dB for A1 units ($n = 275$). Frequency tuning of most A1 neurons in awake marmosets does not widen substantially with increasing sound level (Sadagopan and Wang 2008), but does exhibit some widening within the range of sound levels a given neuron typically responds to (median 25 dB level tuning width). For the well-defined FRAs of the cortical neurons analyzed in this study, it is unlikely that the 20 dB intensity steps would substantially affect the interpolated Q10 values, even if level tuning is I-shaped or O-shaped because the width of the level tuning is greater than 20 dB for A1 units in awake marmosets (see Fig.4D of Sadagopan and Wang (2008)). If the true BL were 20 dB above threshold, then at worst the Q10 value would be as wide as the Q_{BL}. These values ($Q_{10}=14.3$, $Q_{BL}=12.1$) are slightly different but do not detract from the main point that there is a substantial population of A1 neurons whose bandwidths are much sharper than AN bandwidths. If the true BL were only 10 dB above threshold, such that $Q_{10}=Q_{BL}$, then it is possible that the Q values at 20 dB could be overestimated. However, the subset of MGB neurons whose BL was 10 dB above thresholds had Q values that were similar to the rest of the MGB population. We also reported earlier that $Q_{10,MB}$ was sharper than Q_{BL} for a large population of A1 units (Sadagopan and Wang 2008). For 'V' units that were tuned monotonically to sound level (loudest sound level was taken as BL for these units), bandwidth usually increased with increasing sound level, and was at its maximum at BL for most neurons. Therefore, bandwidths of the cortical population presented in this study are estimates at the broadest point of the neurons' tuning curves. Despite this important difference, data from our study are comparable to tuning bandwidths reported for single units in human A1 (Bitterman et al. 2008). In the study by Bitterman et al. (2008), sounds
were presented at moderate levels that were comfortable for the subjects, but were not referenced to each neuron’s preferred sound level. Another stimulus parameter that affects bandwidth measurement is stimulus density. For example, it has been reported that excitatory tuning width decreases and inhibitory tuning width increases with increasing spectral density (Blake and Merzenich 2002). This is attributable to the presence of energy within the lateral suppressive or inhibitory sidebands of cortical neurons (Wu et al. 2008). In the present study, we presented pure-tones one at a time, in contrast to simultaneously presented multiple tones (“chord” stimuli) in the study by Bitterman et al. (2008). It is quite likely that we would have observed even smaller bandwidths had we used stimuli of higher density such as random spectral stimuli (Barbour and Wang 2003) or random chord stimuli (Blake and Merzenich 2002; Bitterman et al. 2008).

An important factor that may further affect these results is the anesthetic state of the animal that modulates the underlying balance of excitatory and inhibitory inputs to a neuron, and therefore its tuning bandwidth. For example, changes to bandwidth as a function of anesthesia have been documented in rats (Gaese and Ostwald 2001). For marmosets, the bandwidths of auditory thalamus and cortex units (Figs. 2 and 3) are significantly narrower in awake condition (the present study) than in ketamine- or pentobarbital-anesthetized conditions (Philibert et al. 2005). Similarly, in awake macaque monkeys, Recanzone et al. (2000) observed finely-tuned A1 neurons with bandwidths smaller than or similar to that of the auditory nerve. It should be noted that fine frequency tuning reported in humans were measured when the subjects were awake and alert (Bitterman et al. 2008). Collectively, this evidence suggests that sharper frequency tuning in auditory cortex would be observed if measured in the awake state.
The effect of attention, or other behaviors, on the frequency tuning of individual A1 neurons is largely unclear. In owl monkeys trained on a frequency discrimination task, Recanzone et al. (1993) showed that in addition to an increase in cortical area at the trained frequency, neurons were also more sharply tuned within this frequency range compared to passively listening monkeys. Alternatively, another neural mechanism that can underlie improved behavioral frequency discrimination is the enhancement of spectral contrast by suppression of responses at the target frequency and enhancement at nearby frequencies, typically observed when aversive conditioning stimuli are used (Ohl and Scheich, 1996). In sharp contrast, Brown et al. (2004) reported that frequency discrimination training in cats did not affect the topography of primary auditory cortex, though the cats showed improved discrimination at the target frequencies. Rather than a sharpening of tuning curve at BF, Brown et al. (2004) study showed that tuning curves became broader at frequencies slightly higher than the target frequency. Therefore, depending on the type of task (detection vs. discrimination) and the type of reinforcement (positive vs. aversive), A1 neurons may sharpen, broaden or suppress responses at target frequencies. While the frequency tuning of A1 neurons appears to be amenable to top-down plasticity effects and behavioral modulation, only certain types of manipulations may result in further sharpening of A1 tuning curves.

Our results demonstrate that human auditory cortex is not alone in exhibiting sharp frequency tuning, and that sharp frequency tuning may not be of cortical origin. It remains to be seen whether the fine frequency tuning is limited to primate species or can also be found in other mammalian species besides bats. The lower spontaneous rates and lower driven rates of ST units may indicate that they are under a stronger tonic inhibitory influence. These data suggest that
cortical ST and NST groups may be at the ends of a continuum of neurons that exhibit a range of relative strengths of intra-cortical inhibition. The existence of finely tuned neurons does not imply that a fine-grained place-coding of frequency by such neurons directly underlies behavioral frequency discrimination. Many population-coding schema may be derived to explain the development of apparent hyper-acuity at the level of auditory cortex. However, these finely tuned neurons could only serve to sharpen frequency discrimination regardless of read-out mechanisms. For example, because of their sharp tuning aided by lateral suppression, these neurons also show steeper tuning curve slopes that may be used in a slope-based coding scheme to provide finer frequency-difference estimates. In conclusion, we have demonstrated that neurons in both A1 and MGB of awake marmosets show fine frequency tuning comparable to that observed by Bitterman et al. (2008) in alert humans. Although several experimental differences exist, we have provided a strong counter-example to the hypothesis that fine frequency tuning is a specialized property of human auditory cortex neurons.

Acknowledgements:

We thank Dr. Stewart Hendry and Ashley Pistorio for help with neuroanatomy, and Ashley Pistorio and Jenny Estes for assistance in animal care and surgical assistance.

This work was supported by the Deafness Research Foundation (EB) and NIH grants DC006357 (EB), DC003180 and DC005808 (XW).
References

Calford MB. The parcellation of the medial geniculate body of the cat defined by the auditory response properties of single units. *J Neurosci* 3: 2350 – 64, 1983.

<table>
<thead>
<tr>
<th>Study</th>
<th>Brain region</th>
<th>Species/anesthetics</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evans 1972</td>
<td>AN</td>
<td>Guinea pig/pentobarbital</td>
<td>Q₁₀, range 1-4 ≤ 2 kHz, 3-10>2 kHz, only 1/100 units >10</td>
</tr>
<tr>
<td>Temchin et al. 2008</td>
<td>AN</td>
<td>Chinchilla/pentobarbital</td>
<td>Q₁₀ = 6.0 ± 1.5 at 20 kHz, less for lower CF</td>
</tr>
<tr>
<td>Pickles 1979</td>
<td>AN</td>
<td>Cat/pentobarbital</td>
<td>Q₁₀ = 5 at 1 kHz, 6 Hz at 3 kHz, 10 at 10 kHz</td>
</tr>
<tr>
<td>McLaughlin et al. 2008</td>
<td>AN</td>
<td>Cat/pentobarbital</td>
<td>Q₁₀ = 5 at 1 kHz, 5.7 at 2 kHz</td>
</tr>
<tr>
<td>Harrison et al. 1981</td>
<td>AN</td>
<td>Guinea pig/awake/ketamine</td>
<td>All Q₁₀ < 12, only 2 units >10 for tones <10 kHz</td>
</tr>
<tr>
<td>Harrison et al. 1981</td>
<td>AN</td>
<td>Human/awake</td>
<td>Compound action potentials. Q₁₀ = 4.2 at 2 kHz, 6.5 at 4 kHz, and 8.5 at 8 kHz</td>
</tr>
<tr>
<td>Suga and Jen 1977</td>
<td>AN</td>
<td>Must. bat/pentobarbital</td>
<td>Q₁₀ mean=83-84 at 61 kHz, mean=9.0-9.3 at other freqs.</td>
</tr>
<tr>
<td>Davis et al. 2006</td>
<td>DNLL</td>
<td>Cat/decerebrate</td>
<td>All units Q₁₀ < 10, 54/62 units Q₁₀ <8</td>
</tr>
<tr>
<td>Zhang and Kelly 2006</td>
<td>VNLL</td>
<td>Rat/ketamine/xyazine</td>
<td>Q₁₀ = 7.1, 9/70 >10, mostly >10 kHz</td>
</tr>
<tr>
<td>Haplea et al. 1994</td>
<td>LL</td>
<td>Brown bat/Metofane/xylazine</td>
<td>Q₁₀ = 6/93 LL units >20, most <10-10-80 kHz</td>
</tr>
<tr>
<td>Egorova et al. 2001</td>
<td>IC</td>
<td>Mouse/ketamine/xyazine</td>
<td>Q₁₀, 17/114 units > 15, but only 2/17 had BF's < 20 kHz</td>
</tr>
<tr>
<td>Aitkin et al. 1975</td>
<td>IC</td>
<td>Cat/pentobarbital</td>
<td>Q₁₀ = 4/92 ICC units > 20, 8/92 >10 all near 10-20 kHz</td>
</tr>
<tr>
<td>Ramachandran et al. 1999</td>
<td>IC</td>
<td>Cat/decerebrate</td>
<td>Q₁₀ = All 134 units IC ≤ 10</td>
</tr>
<tr>
<td>Ryan and Miller 1978</td>
<td>IC</td>
<td>Awake monkey</td>
<td>Example units BW all > 0.25 octaves, no population data</td>
</tr>
<tr>
<td>Pollak and Bodenhamer 1981</td>
<td>IC</td>
<td>Must. bat/awake</td>
<td>Q₁₀ mean=122 at 61 kHz, mean=18 at other freqs.</td>
</tr>
<tr>
<td>Haplea et al. 1994</td>
<td>IC</td>
<td>Brown bat/Metofane/xylazine</td>
<td>Q₁₀ = 26/122 IC units > 20, mostly 20-30 kHz</td>
</tr>
<tr>
<td>Miller et al. 2002</td>
<td>MGB/A1</td>
<td>Cat/Ketamine/STRF</td>
<td>Avg. MGB Q₁₀ = 5.8, <5% units > 12 MGB, Avg. A1 = 5.4</td>
</tr>
<tr>
<td>Edeline et al. 1999</td>
<td>MGB</td>
<td>Guinea Pig/awake</td>
<td>Q₁₀ = MGV max. < 3, min. BW 300 Hz</td>
</tr>
<tr>
<td>Allison et al. 1981</td>
<td>MGB</td>
<td>Awake squirrel monkey</td>
<td>Q₁₀ avg. 0.76 ± 0.58 < 8 kHz, 3.4 ± 2.92 >8 kHz</td>
</tr>
<tr>
<td>Suga et al. 1997</td>
<td>MGB</td>
<td>Must. bat/awake</td>
<td>Q₁₀ range 50-200+ for BF = 61 kHz</td>
</tr>
<tr>
<td>Llano and Feng 1999</td>
<td>MGB</td>
<td>Little brown bat/awake</td>
<td>Q₁₀ = 7.2 ± 4.6 for 20-90 kHz tones</td>
</tr>
<tr>
<td>Sally and Kelly 1988</td>
<td>A1</td>
<td>Rat/Equithesin</td>
<td>Q₁₀, all BFs < 10 kHz were < 10, some > 15 at high BF</td>
</tr>
<tr>
<td>Polley et al. 2007</td>
<td>A1, non-A1</td>
<td>Cat/pentobarbital</td>
<td>Q₁₀, all mean + SE values ≤ 3</td>
</tr>
<tr>
<td>Gaese and Ostwald 2001</td>
<td>A1</td>
<td>Rat/awake</td>
<td>Q₁₀ 25-75% range, (19 units) 1.77-6.09</td>
</tr>
<tr>
<td>Linden et al. 2003</td>
<td>A1/AAF</td>
<td>Mouse/Domitor/ketamine</td>
<td>Q₁₀ avg. 1.14 ± 0.10, A1, 0.86 ± 0.08, AAF</td>
</tr>
<tr>
<td>Bizzell et al. 2005</td>
<td>A1, non-A1</td>
<td>Ferret/Domitor/ketamine</td>
<td>Q₁₀ range 0-10</td>
</tr>
<tr>
<td>Moschitch et al. 2006</td>
<td>A1</td>
<td>Cat/halothane</td>
<td>Mean BW of large sample of units > 1 octave</td>
</tr>
<tr>
<td>Qin et al. 2005</td>
<td>A1</td>
<td>Cat/awake</td>
<td>BW at half-max. rate, 0.45 ± 0.24 oct. for F0-sens. cells</td>
</tr>
<tr>
<td>Suga and Tsuzuki 1985</td>
<td>CF-CF area</td>
<td>Must. bat/awake</td>
<td>Q₁₀ 8-30 for 28-30 kHz, 50-300 for 61 kHz, 30-200 for 90 kHz</td>
</tr>
<tr>
<td>Philibert et al. 2005</td>
<td>A1</td>
<td>Marmoset/pentobarbital</td>
<td>Q₁₀ range 2-7</td>
</tr>
<tr>
<td>Kajikawa et al. 2005</td>
<td>A1, CM</td>
<td>Marmoset/ketamine</td>
<td>Only 5/38 sites < 5 octaves BW 10dB</td>
</tr>
<tr>
<td>Recanzone et al. 1993</td>
<td>A1</td>
<td>Owl monkey/Nembutal</td>
<td>Q₁₀ average ≤ 3 untrained, 4-7 trained. Nearly all <10 Q₁₀ behavior 25-42 for 3-8 kHz, ~100 for 2.5 kHz</td>
</tr>
<tr>
<td>Cheung et al. 2001</td>
<td>A1</td>
<td>Squirrel monkey/pentobarbital</td>
<td>Only 10/542 sites with Q₁₀ > 10, BF's all < 10 kHz</td>
</tr>
<tr>
<td>Pellegr-Toiba et al. 1989</td>
<td>A1</td>
<td>Squirrel monkey/awake</td>
<td>A1 mean BW < 0.4 oct.</td>
</tr>
<tr>
<td>Recanzone et al. 2000</td>
<td>A1,R,CML</td>
<td>Macaque/awake</td>
<td>A1 mean BW < 0.43, BW < 0.75. No early/late BW difference, mostly monotonic units.</td>
</tr>
<tr>
<td>Oxenham and Shera 2003</td>
<td>Psychophys.</td>
<td>Human/awake</td>
<td>Masking. Q₁₀ < 10 at 1 kHz, 20 at 8 kHz</td>
</tr>
<tr>
<td>Bitterman et al. 2008</td>
<td>Auditory cortex</td>
<td>Human/awake</td>
<td>Q₁₀ ~ 25 kHz. For units, 20 for average sharply tuned < 2 kHz</td>
</tr>
</tbody>
</table>

Table 1: Comparison of tuning widths reported in earlier studies of the ascending auditory system and auditory cortex.

auditory cortex, AAF – anterior auditory field, R – rostral division of auditory cortex, CM – caudomedial division of auditory cortex, L – lateral belt of auditory cortex
Table 2: Response properties of units with ST and NST groups in auditory thalamus and cortex

<table>
<thead>
<tr>
<th></th>
<th>A1 –ST (74/275, 27%)</th>
<th>A1 -NST (201/275, 73%)</th>
<th>MGV-ST (59/73, 81%)</th>
<th>MGV-NST (14/73, 19%)</th>
<th>Non-MGV-ST (62/86, 72%)</th>
<th>Non-MGV-NST (24/86, 28%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spont. Rate (sp/s)</td>
<td>2.7 ± 6.4b</td>
<td>7.5 ± 9.6</td>
<td>9.3 ± 7.3</td>
<td>9.4 ± 6.8</td>
<td>9.3 ± 5.8</td>
<td>8.1 ± 7.1</td>
</tr>
<tr>
<td>Max. Rate (sp/s)a</td>
<td>30.3 ± 27.8c</td>
<td>48.8 ± 42.5</td>
<td>31.4 ± 21.2</td>
<td>34.4 ± 37.3</td>
<td>24.8 ± 14.1</td>
<td>26.4 ± 22.6</td>
</tr>
<tr>
<td>Bandwidth (oct.)</td>
<td>0.125 ± 0.041**</td>
<td>0.54 ± 0.37c</td>
<td>0.11 ± 0.04</td>
<td>0.34 ± 0.15</td>
<td>0.12 ± 0.04</td>
<td>0.39 ± 0.14</td>
</tr>
<tr>
<td>Bandwidth (Hz)</td>
<td>716 ± 507</td>
<td>2593 ± 2888</td>
<td>680 ± 480</td>
<td>1021 ± 696</td>
<td>644 ± 690</td>
<td>1464 ± 1509</td>
</tr>
<tr>
<td>Q_{BL}</td>
<td>12.1 ± 4.8d</td>
<td>3.7 ± 1.8</td>
<td>15.9 ± 6.2</td>
<td>4.9 ± 1.8</td>
<td>14.2 ± 5.8</td>
<td>4.3 ± 1.5</td>
</tr>
<tr>
<td>Best Freq. (kHz)</td>
<td>7.7 ± 4.5</td>
<td>7.0 ± 5.0</td>
<td>9.7 ± 5.6f</td>
<td>5.5 ± 4.5</td>
<td>7.8 ± 6.6</td>
<td>6.3 ± 7.0</td>
</tr>
</tbody>
</table>

** A1-ST mean bandwidth sharpens to <0.1 oct. during the sustained response, comparable to MGB-ST units.

a) Maximum response rate (Max. Rate) was computed over the entire stimulus duration (spontaneous rate has been subtracted).

b) Significantly different than A1-NST, p<0.001, Wilcoxon ranksum test.

c) Significantly different than A1-NST, p<0.001, Wilcoxon ranksum test.

d) A1-ST and A1-NST Q_{10dB} values are 14.3 ± 3.9 and 6.6 ± 4.8 respectively.

e) A1-NST mean bandwidth sharpens to 0.35 oct. during the sustained response.

f) Significantly different than Non-MGV-ST, p<.02, Wilcoxon ranksum test.

All reported values are mean ± s.d.
Figure Legends

Figure 1: A1 and MGB tuning bandwidths. (A) Distributions of bandwidths (at BL) for all A1 units (n=275, black) and MGB units (n=159, blue). (B) Cumulative distributions of A1 (black) and MGB (blue) bandwidths. Gray dashed line indicates the typical bandwidth of auditory nerve fibers (0.2 oct.) that was used as a boundary to classify sharply tuned units from the rest of the population.

Figure 2: A1 single-neuron and population tuning properties. (A and B) Example spike raster and frequency response area of an A1 neuron. Shaded area in A is stimulus duration (50 ms pure tones in this case, both frequency and level were varied), black dots are spikes falling within analysis window and gray dots are spontaneous spikes. Frequency and sound level are interleaved on the ordinate. This neuron was tuned to a single frequency bin (0.1 oct. sampling resolution) and also tuned to sound level (B). (C) Population tuning curves for entire population of A1 neurons computed during entire response duration (ON+SUS, black lines) and during sustained response alone (SUS, red lines). Orange line indicates baseline, gray lines delineate frequency tuning bandwidth at 50% maximal response for the entire response duration. Sharpening of the tuning curve is evident during the sustained portion of the response. (D) Same as in C, but computed for the sharpest 27% of A1 neurons (ST units). For this population, mean tuning width was 0.125 oct. over the entire response duration and < 0.1 oct. during the sustained portion of the response. Significant lateral suppression also developed over response duration (red line). All plots are mean ± 1 s.e.m.
Figure 3: Auditory thalamus single-neuron and population tuning properties. (A and B) Example spike raster and frequency tuning curve of an MGV neuron (Unit M41OSU327.1). Sound level = 30 dB SPL. Shaded area in A is stimulus duration (200 ms pure tones). Black dots are spikes. Clear responses occur only in two frequency bins (1/24 oct. spacing), also apparent in the frequency tuning curve in B. C) Example frequency tuning curve of an MGV neuron with clear suppression on the low and high frequency sides of the tuning curve peak (Unit M41OSU150.1). Sound level = 10 dB SPL. (D) Distribution of frequency tuning bandwidth at best level for MGB neurons, separated into neurons from MGV (black bars) and MGB neurons from non-MGV subdivisions (gray bars). Gray dashed line at 0.2 octaves bandwidth separate units classified as ST or not sharply tuned (NST). (E) Population tuning curves for MGB neurons. Population tuning curves were computed over the entire response duration (ON+SUS, black line) or only during the sustained portion of the response, 100-200 ms post-stimulus onset (SUS, red line). Orange line indicates baseline. Gray dashed lines delineate the frequency tuning bandwidth at 50% maximal response for the entire response duration. (F) Same as in E, but computed for sharply tuned (ST) units whose tuning bandwidths were <0.2 octaves. All plots are mean ± 1 s.e.m.

Figure 4: A1 and MGB frequency tuning as a function of BF. (A) Normalized BF distributions for sharply tuned (ST; black bars) and not sharply tuned (NST; gray bars) units in A1. Binwidth = ½ octave. The distributions were not statistically significant (n.s.; p = 0.43, Kolmogorov-Smirnoff test). (B) Bandwidth in kilohertz at half-maximal rate as a function of BF. In B-D, black circles represent ST units, and gray triangles NST units. The mean and standard error are
plotted in $\frac{1}{2}$ octave intervals. (C) Bandwidth in octaves as a function of BF. Same format as B.

(D) QBL as a function of BF. Same format as B. (E) Normalized BF distributions for ST (black bars) and NST (gray bars) units in MGB. Binwidth = $\frac{1}{2}$ octave. The distributions were significantly different (p < 0.01, Kolmogorov-Smirnoff test). (F – H) Bandwidth measures as a function of BF for MGB units, same format as B – D.
Bartlett - Figure 1

A

% units vs. Bandwidth (oct.)

A1, n=275
MGB, n=159

B

Cumulative probability vs. Bandwidth (oct.)
A

M5Su075

![Graph showing frequency (kHz) vs. time (ms)](image)

B

Bartlett - Figure 2

![Heatmap showing sound level (dB) vs. frequency (kHz)](image)

C

A1 population

(n = 275 units)

![Graph showing normalized response vs. relative frequency (oct.)](image)

D

A1 - ST, sharpest population

(n = 74/275 units, 27%)

![Graph showing normalized response vs. relative frequency (oct.)](image)
A

M41OSU327.1, MGV

- Frequency (kHz) vs. Time (ms)

B

- Firing Rate (sp/s) vs. Frequency (kHz)

C

M41OSU150.1, MGV

- Firing Rate (sp/s) vs. Frequency (kHz)

D

- Number of units vs. Bandwidth (oct.)

E

MGB population
(n = 159 units)

- ON+SUS (200 ms), ~0.14 oct.
- SUS (>100 ms), ~0.14 oct.

F

MGB - ST population
(n = 121/159 units, 76%)

- ON+SUS (200 ms), ~0.11 oct.
- SUS (>100 ms), ~0.11 oct.