Taking into account latency, amplitude and morphology: improved estimation of single-trial ERPs by wavelet filtering and multiple linear regression

L. Hua,b,c, M. Liangb, A. Mourauxd, R.G. Wisee, Y. Huf, G.D. Iannettib

aKey Laboratory of Cognition and Personality (Ministry of Education) and School of Psychology, Southwest University, Chongqing, China;
bDepartment of Neuroscience, Physiology and Pharmacology, University College London, UK;
cDepartment of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China;
dInstitute of Neurosciences (IoNS), Université catholique de Louvain, Brussels, Belgium;
eCardiff University Brain Research Imaging Centre (CUBRIC), Cardiff, UK

Running Title (36 characters): Improved single-trial ERP estimation

Corresponding author:
Dr Giandomenico Iannetti
Department of Neuroscience, Physiology and Pharmacology, University College London
Medical Sciences Building, Gower Street, WC1E 6BT London
Tel: +44 20 7679 3759; Fax: +44 20 7679 7298
E-mail: g.iannetti@ucl.ac.uk
Abstract

Across-trial averaging is a widely-used approach to enhance the signal-to-noise ratio (SNR) of ERPs. However, across-trial variability of ERP latency and amplitude may contain physiologically-relevant information that is lost by across-trial averaging. Hence, we aimed to develop a novel method that uses (1) wavelet filtering (WF) to enhance the SNR of ERPs and (2) a multiple linear regression with a dispersion term (MLR\textsubscript{d}) that takes into account shape distortions to estimate the single-trial latency and amplitude of ERP peaks. Using simulated ERP datasets containing different levels of noise we provide evidence that, compared to other approaches, the proposed WF+MLR\textsubscript{d} method yields the most accurate estimate of single-trial ERP features. When applied to a real laser-evoked potential dataset, the WF+MLR\textsubscript{d} approach provides reliable estimation of single-trial latency and amplitude of ERPs, and, thereby, allows performing meaningful correlations at single-trial level. We obtained three main findings. First, WF significantly enhances the SNR of single-trial ERPs. Second, MLR\textsubscript{d} effectively captures and measures the variability in the morphology of single-trial ERPs, thus providing an accurate and unbiased estimate of their peak latency and amplitude. Third, intensity of pain perception significantly correlates with the single-trial estimates of N2 and P2 amplitude. These results indicate that WF+MLR\textsubscript{d} can be used to explore the dynamics between different ERP features, behavioural variables and other neuroimaging measures of brain activity, thus providing new insights into the functional significance of the different brain processes underlying the brain responses to sensory stimuli.

Keywords: Event-related potentials (ERPs); Laser-evoked potentials (LEPs); Single-trial analysis; Multiple linear regression with dispersion term (MLR\textsubscript{d}); Wavelet filtering.
Introduction

Event-related potentials (ERPs) are transient changes in the ongoing electroencephalogram (EEG) elicited by sensory, motor or cognitive events. ERPs largely reflect synchronous changes of slow postsynaptic potentials occurring within a large number of similarly oriented cortical pyramidal neurons (Nunez and Srinivasan 2006). As the magnitude of ERPs is often several factors smaller than the magnitude of the background EEG (Hu et al. 2010), their identification relies on signal processing methods for enhancing the signal-to-noise ratio (SNR). The most widely used approach to enhance SNR is the across-trial averaging in the time domain (Dawson 1951; 1954). The validity of this across-trial averaging approach relies on two basic assumptions (Spencer 2005): (1) that ERPs are stationary (i.e., the latency and morphology are invariant across trials); and (2) that ERPs are independent of the background EEG activity. However, ERPs are comprised of multiple waves whose latency and amplitude can greatly and independently vary from trial to trial (Spencer 2005), and there is convincing evidence that background EEG is often correlated with the ERP response (e.g. because of phase resetting of ongoing EEG oscillations; Makeig et al., 2002; Sauseng et al., 2007). For these reasons, the cost of the across-trial averaging approach is that all the information concerning across-trial variability of ERP latency and amplitude is lost (Mouraux and Iannetti 2008). Thus, across-trial averaging can heavily bias the representation of cortical activity elicited by a sensory stimulus, as across-trial variability often contains physiologically-relevant information, related, for example, to changes in stimulus parameters (duration, intensity, and location) and fluctuations in vigilance, expectation, attentional focus or task strategy.
Improved single-trial ERP estimation

(Lee et al. 2009; Legrain et al. 2003; Legrain et al. 2002). Therefore, the ability to obtain a reliable single-trial estimate of ERP latency and amplitude is highly desirable, as it would allow exploring the single-trial dynamics between ERP measures, behavioural variables (e.g. intensity of perception, reaction time) (Iannetti et al., 2005b), as well as measurements of brain activity obtained using different neuroimaging modalities (e.g. fMRI) (Mayhew et al., 2010).

Taking into account across-trial variability is of particular importance for long-latency ERPs, like the ERPs elicited by nociceptive laser stimuli (laser-evoked potentials, LEPs). LEPs are considered the best tool for assessing function of nociceptive pathways in physiological and clinical studies (Bromm and Treede 1991; Cruccu et al. 2008; Iannetti et al. 2001), because laser heat pulses excite selectively Aδ and C fibre free nerve endings in the superficial skin layers (i.e. without coactivating Aβ mechanoreceptors) (Bromm and Treede 1984; Carmon et al. 1976). LEPs have been shown to be related to the activation of slow-conducting type-II Aδ mechano-heat nociceptors (Treede et al. 1998) and spinothalamic neurons located in the anterolateral quadrant of the spinal cord (Iannetti et al. 2003; Treede et al. 2003). LEPs comprise a number of waves that are time locked to the onset of the stimulus. The largest response is a negative–positive vertex potential (N2 and P2 waves, peaking at approximately 200 and 350 ms when stimulating the hand dorsum) (Bromm and Treede 1984). The latency, amplitude and morphology of the N2 and P2 waves of LEPs exhibit especially high across-trial variability (Iannetti et al. 2005b; Purves and Boyd 1993), most probably due to a unique combination of peripheral (e.g.
Improved single-trial ERP estimation

time-dependent fluctuations in baseline skin temperature, variability in the number of
activated nociceptive fibres, variability in conduction velocity resulting in differences in the
spatial summation at central synapses) and cognitive factors (e.g. fluctuations in vigilance,
attentional focus and task strategy) (Lee et al. 2009; Legrain et al. 2003; Legrain et al.
2002). For all these reasons, a reliable single-trial estimate of LEP latency and amplitude is
highly desirable, and LEPs represent an ideal model to develop novel approaches to
analyse ERPs at single-trial level.

In a previous study, we described a method based on multiple linear regression (MLR) to
estimate automatically latency and amplitude of single-trial ERPs (Mayhew et al. 2006).
This method has been successfully applied to the single-trial detection of the N2 and P2
waves of LEPs (Mayhew et al. 2006) and the N1 and P2 waves of auditory-evoked
potentials (AEPs) (Mayhew et al. 2010). More recently we combined time-frequency
wavelet filtering and MLR to enhance the signal-to-noise ratio and thus achieve a more
robust single-trial estimate of ERP components, making it possible to explore the
single-trial dynamics of components having a very small signal-to-noise (SNR) ratio, such
as the N1 wave of LEPs (Hu et al. 2010). Such an MLR approach is a procedure commonly
used to analyze functional MRI data (Friston et al. 1998), where not only the canonical
haemodynamic response function (analogous to the average ERP in this case) but also its
temporal derivative (to account for the temporal variability of the haemodynamic
response) is fitted to the data in a general linear model (GLM) framework. Thus, the
inclusion of the temporal derivative in the regressors allows capturing not only the
Improved single-trial ERP estimation

amplitude, but also the latency jitter of the single-trial ERP responses. However, besides latency and amplitude, another factor that varies from trial-to-trial is the morphology of the ERP waveform (Casarotto et al. 2005; Jung et al. 2001; Mouraux and Iannetti 2008). In addition, the significant latency jitter may lead to an important distortion of the averaged ERPs, which will thus not constitute a faithful representation of the single-trial ERP response. This is relevant in clinical ERP studies, as many abnormal conditions (e.g. optic neuritis in multiple sclerosis) are characterized by the so-called "desynchronized" ERPs, i.e. ERPs with reduced amplitude, longer latency, and, importantly, increased width of their waves (Orssaud 2003; Pelosi et al. 1997). These variations in ERP morphology (i.e. wave width), could be an important parameter to be considered and quantified when using ERPs as a diagnostic tool in clinical studies. Therefore, to obtain a more accurate single-trial estimate of ERPs, it would be desirable to take into account not only the variability of the latency and amplitude (as in Mayhew et al. 2006 and Hu et al. 2010), but also the variability in morphology of the ERP waveform.

To address this need, and thereby provide an improved single-trial estimate of ERP components, we propose a novel single-trial detection method based on a multiple linear regression that includes a dispersion term (MLRd). In this method, a data-driven nonparametric approach based on principal component analysis (PCA) was used to identify the principal components that capture the variance of both latency and morphology of single-trial ERP waveforms. These principal components were then used to generate a set of regressors which were fitted to the single-trial ERP waveforms. In
addition, time-frequency wavelet filtering (WF), which has been proved effective to enhance the SNR of ERPs both in single trial and average waveforms (Hu et al. 2010), was used prior to the application of MLRd.

We compared the performance of this novel method (WF+MLRd) with previous versions of the MLR that do not take into account the variability in morphology to estimate single-trial ERP information (MLR, WF+MLR) on both simulated ERP datasets with variable levels of noise and on a real LEP dataset. Finally, we used this novel method to explore the relationship between the intensity of pain perception and the latency and amplitude of the N2 and P2 LEP waves at the level of single trials.
Materials and Methods

Single-trial analysis approaches

The wavelet filtering (WF) method is used for enhancing the SNR of ERPs in both single trials and averages (Hu et al. 2010). The methods based on multiple linear regression (MLR) and multiple linear regression with dispersion term (MLR$_d$) for estimating automatically the latency and amplitude of ERPs in single trials are summarized in Fig. 1. In this study we assessed the performance of MLR and MLR$_d$, with and without preceding WF, on a simulated dataset. The method with best performance was applied to extract single-trial values from a real LEP dataset. All these methods have been developed into user-friendly software running under the Matlab environment, and can be freely downloaded from http://iannettilab.webnode.com.

Multiple linear regression (MLR)

To estimate the latency and amplitude of single-trials ERP peaks in an unbiased fashion, we applied a linear regression method similar to the one we originally described in Mayhew et al. (2006) to both WF and non-WF simulated ERP data, within the 0-500 ms post-stimulus time-interval (Fig. 1, top panel). The MLR approach takes into account the variability of both latency and amplitude of ERP. This variability can be described as follows:

$$f(t) = k_N y_N(t + a_N) + k_P y_P(t + a_P)$$ (1)

where $f(t)$ is a single-trial ERP waveform that varies as a function of time t. $f(t)$ can be modeled by the sum of the varied version of N2 wave ($k_N y_N(t + a_N)$) and P2 wave
Improved single-trial ERP estimation

(\(k_N, k_P \)) are the weighted constants of N2 wave and P2 wave, while \(a_N \) and \(a_P \) are the latency shift values of the N2 wave and P2 wave respectively. Since the N2 and P2 peaks of the LEPs reflect the activity of different neural generators (Garcia-Larrea et al. 2003), and their amplitude can be differentially modulated by several experimental factors (e.g. spatial attention and probability of perception, Lee et al. 2009; Legrain et al. 2002), we modeled the N2 and P2 waves separately, thus avoiding the assumption that all generators contributing to the LEP responses covary linearly (Mayhew et al. 2006).

Using the Taylor expansion, the MLR model can be written as:

\[
\hat{f}(t) = k_N y_N(t) + a_N k_N y_N'(t) + k_P y_P(t) + a_P k_P y_P'(t)
\]

(2)

where \(y_N(t) \) and \(y_P(t) \) are the averages of N2 and P2 waves; \(y_N'(t) \) and \(y_P'(t) \) are the temporal derivatives of N2 and P2 waves respectively.

Thus, the single-trial ERP waveform is approximated using the sum of the weighted averages of the N2 and P2 waves and their respective temporal derivatives.

Based on the fitted waveform, latency and amplitude of the ERP response in each single trial were measured by finding: the most negative peak if \(k_N > 0 \) (positive fit) or the most positive peak if \(k_N < 0 \) (negative fit) for the N2 wave, and the most positive peak if \(k_P > 0 \) (positive fit) or the most negative peak if \(k_P < 0 \) (negative fit) for the P2 wave, within a 100-ms time window centered on the latency of the N2 and P2 peak identified in the average waveform of each subject. Single-trial latencies were finally calculated from
Improved single-trial ERP estimation

198 the latencies of the corresponding amplitude peaks.

199

200 *Multiple linear regression with dispersion term (MLR*$_d$)*

201 In order to obtain a more accurate single-trial estimate, it is desirable to take into account not only the variability of the latency and amplitude, but also the variability in morphology of the ERP waveform. For this reason, we included a dispersion coefficient (representing the variability of waveform morphology, see bottom panel of Fig. 1) into the MLR model, thus obtaining a dispersed version of it (MLR*$_d$):

202

203 \[f(t) = k_N y_N(s_N t + a_N) + k_P y_P(s_P t + a_P) \] \hspace{1cm} (3)

204

205 where \(s_N \) and \(s_P \) are the time dispersion coefficients that determine the compression ratios of the width of N2 and P2 waves of single trial ERP compared to those of the average ERP, respectively.

206

However, it is difficult to estimate these parameters (i.e. \(s_N, a_N \) and \(k_N \)) because the real function expressing single-trial LEP waveforms is unknown. For this reason, in the present study we employed a non-parametric (data-driven) method, Principal Component Analysis (PCA), to define a basis set in order to fit the N2 and P2 ERP waves. This method is similar to the procedure commonly used to model the haemodynamic response in some BOLD-fMRI studies (Friman et al. 2003; Hossein-Zadeh et al. 2003; Woolrich et al. 2004). PCA is a mathematical approach that can transform the ERP data into several uncorrelated variables (PCs) (Jolliffe 2002). Three PCs for each ERP wave, mainly representing (1) the average ERP wave across trials, (2) the variability of the latency, and (3) morphology of
Improved single-trial ERP estimation

single trial ERPs respectively\(^1\), will be identified and then used to model the N2 and P2 waves. Therefore, this method includes the variability of latency and morphology of each ERP wave as regressors in the linear model.

The whole MLRd procedure consists in the following five steps (Fig. 1, bottom panel).

(1) Generating the variability matrices (Fig. 1, step 1). A large number of plausible responses were generated by simultaneously shifting (from -50 ms to +50 ms around the peak latency, in steps of 5 ms, for a total of 21 possible latency shifts) and compressing (from 1 to 2 [this value represents the compression ratio between the width of average waveform and the width of single-trial responses], centred at the peak latency, in steps of 0.05, for a total of 21 width changes) the average response of each subject in an enumerative fashion, thus creating 441 (i.e. 21 * 21) possible ERP responses in these set ranges. All these plausible responses were arranged into a matrix that we called variability matrix (one matrix for each ERP peak). The sorting order of trials in the variability matrices is of no importance, as the order of the trials does not affect the PCA output. Note that the variability of ERP amplitude will be captured by the coefficients weighting the basis sets, and thus it is not included in the variability matrix.

(2) PCA separation (Fig. 1, step 2). The variability matrices were fed into PCA in order to obtain the PCs representing the linear subspace for the variability matrices. As the first few principal components capture most of the dataset variance (Hossein-Zadeh et al. 2003), additional evidence in support of the functional significance of each of the three PCs is provided in the Appendix available at http://iannettilab.webnode.com
and the variability matrix was generated by varying latency and morphology of the average ERP waveform, it is expected that the first few PCs would represent the average ERP wave and the variations of its latency and morphology.

(3) Basis set definition (Fig. 1, step 3). As the first three PCs always captured the properties of the average ERP wave and the variations of its latency and morphology, these were selected to constitute the basis sets for each ERP wave. It should be noted that basis sets with more regressors (PCs) would potentially provide a better fit of single-trial ERP waves, but also a better fit of the noise in each single-trial waveform. In contrast, basis sets with less regressors (PCs) would potentially provide a worse fit of single-trial ERP waves, but would also be less prone to fit the noise. In this study, the first three regressors (PCs) were selected since they mainly represent different physiological features of each ERP: its waveform, temporal jitter and variability in morphology, respectively.

(4) Single-trial fitting (Fig. 1, step 4). The obtained basis sets were regressed against the corresponding time window of each single ERP trial. The coefficient of each of the three regressors was estimated by the least squares approach, as described in Mayhew et al. (2006) and Hu et al. (2010). By multiplying these estimated coefficients with the corresponding regressors, the fitted single-trial waveforms were reconstructed.

(5) Single-trial latency and amplitude measurement. Finally, latency and amplitude of the ERP response in each single trial were measured by finding: the most negative peak if
Improved single-trial ERP estimation

$k_N > 0$ (positive fit) or the most positive peak if $k_N < 0$ (negative fit) for N2 wave, and
the most positive peak if $k_P > 0$ (positive fit) or the most negative peak if $k_P < 0$
(negative fit) for P2 wave, within a 100-ms time window centered on the latency of the N2
and P2 peak in the average of each subject. Single-trial latencies were calculated from the
latencies of the corresponding amplitude peaks.

Single-trial performance on simulated dataset

The performance of the novel method described in the present paper (i.e. combining WF
with MLR_d) was compared with that achieved by other methods available to estimate
single-trial ERP information (i.e. MLR, MLR_d, and WF+MLR). This comparison was
performed on simulated data. These simulated data were based on group-level ERP
waveforms obtained by averaging EEG data from 12 subjects (Fig. 2). This grand average
represents a typical ERP elicited by nociceptive laser stimulation, recorded at Cz and
consisting of a biphasic negative-positive (N2-P2) response (N2 peak: 207 ms, -22.4 μV; P2
peak: 364 ms, 12.9 μV). The epoch length was 1,500 ms (baseline corrected using the
prestimulus interval from -500 to 0 ms), and the sampling rate was 1,024 Hz.

Simulated data generation

The procedure to generate the simulated ERP data, which is summarized in Fig. 2, consists
of two steps: (1) modelling the across-trial variability of amplitude, latency and
morphology of ERP waveforms (Mouraux and Iannetti 2008; Spencer 2005), and (2) adding
different levels of background EEG noise (Dien et al. 2005; Dien et al. 2007).
(1) Modelling the across-trial variability. Similarly to a previous study (Spencer, 2005), the variability of single-trial ERP amplitude was modelled by multiplying the template with a positive coefficient (Gaussian distribution with 1.5 ± 0.5 [mean ±SD]). The variability of single-trial ERP latency was modelled by shifting the template along the time axis with a latency jitter of ±20 ms (SD) (Gaussian distribution centred at the peak latency of the group average). The variability of single-trial ERP morphology (Casarotto et al. 2005; Jung et al. 2001) was modelled by compressing the template along the time axis (Gaussian distribution with 1.5 ± 0.5 [mean ±SD]) centred at the zero-crossing point between the N2 and P2 waves. Each simulated dataset consisted of 30 trials. Twelve simulated datasets were generated by varying the amplitude, latency and morphology of the LEP template by repeating the above three steps (Fig. 2, left panel).

(2) Adding background noise. Real resting EEG data obtained from twelve subjects (30 epochs for each subject, epoch length 1,500 ms, baseline corrected using the prestimulus interval from -500 to 0 ms) were added to the simulated datasets (one noise trial for each simulated trial), to represent background noise. In order to assess the performance of the four single-trial methods at different noise level, the real resting EEG data were multiplied by 11 different weights (ranging from 0.5 to 1.5, with 0.1 as step size) before being added to the simulated datasets. Thus, this procedure yielded 11 subsets of data, containing all the different levels of noise for each of the 12 datasets (Fig. 2, right panel).

After adding different level of noise, the average SNR of the simulated datasets was estimated as follows (Iyer and Zouridakis 2007; Zouridakis et al. 1997):
Improved single-trial ERP estimation

\[SNR = \frac{1}{L} \sum_{i=1}^{L} \frac{\sigma_{ERP}^2}{\sigma_{EEG}^2} \] \hspace{1cm} (4)

where \(L \) is the number of trials, \(\sigma_{ERP}^2 \) is the variance of the simulated \(i \)th ERP signal resulting from the addition of amplitude, latency, and shape variation to the real ERP template (e.g. Fig. 2, third column), and \(\sigma_{EEG}^2 \) is the variance of the \(i \)th EEG noise (e.g. Fig. 2, fourth column), which has been merged into the \(i \)th ERP signal.

Comparison with other methods of single-trial estimation

The performance of the four methods (MLR, MLR\(_d\), WF+MLR and WF+MLR\(_d\)) was assessed by measuring the correlation coefficient between the original and the estimated single-trial parameters (i.e. the latency, amplitude and morphology of N2 and P2 of each single trial) (Jaskowski and Verleger 1999). For each level of noise, the correlation coefficients obtained with the four methods were compared using a two-way, repeated-measures analysis of variance (ANOVA), to explore the effect of ‘WF’ (two levels: ‘with WF’ and ‘without WF’) and ‘Dispersion’ (two levels: ‘MLR’ and ‘MLR\(_d\)’), as well as the possible interaction between these two factors (Fig. 3). In addition, in order to test the overall performance of the four methods (i.e. independently of noise level), we also performed the same two-way, repeated-measures ANOVA on the correlation coefficients averaged across the 11 noise levels. When significant, post hoc paired \(t \) tests were used to perform pairwise comparisons. All statistical analyses were carried out using SPSS 16.0 (SPSS Inc., Chicago, IL) (Fig. 3).

In order to investigate the reasons for possible significant effects of the two experimental
factors on the performance of the four applied single-trial approaches, we performed the following two additional analyses.

To explore the possible effect of ‘WF’, we estimated the SNR of ERPs using Equation (4). The SNR values of ERPs before and after WF were compared using the non-parametric Wilcoxon test, because of their non-normal distribution.

To explore if the possible effect of ‘Dispersion’ was simply due to the larger number of regressors used in the MLR\textsubscript{d} conditions, we performed an \textit{F} test, as described by Motulsky and Christopoulos (2004). Obviously, the MLR\textsubscript{d} model (which has two more basis sets than the MLR model) will always be able to fit the data at least as well as the MLR model (which has fewer parameters). Therefore, any method to compare a simple model with a more complex model has to balance the decrease in sum-of-squares with the increase in the number of parameters, and this can be achieved by using the \textit{F} test, which can determine whether the MLR\textsubscript{d} model gives a significantly better fit to the data than the MLR model.

Single-trial estimation of LEP data

The WF+MLR\textsubscript{d} approach, which proved to be the most accurate of the four explored approaches to identify ERP in single trials, was applied to a real LEP dataset, and compared with WF+MLR.

Subjects

EEG data were collected from twelve healthy volunteers (eight females and four males) aged from 23 to 42 years (29 ±5, mean ±SD). All participants gave written informed
Improved single-trial ERP estimation

consent, and the local ethics committee approved the procedures.

352 **Nociceptive stimulation**

Noxious radiant-heat stimuli were generated by an infrared neodymium yttrium aluminium perovskite (Nd:YAP) laser with a wavelength of 1.34 µm (Electronical Engineering, Italy). These laser pulses activate directly nociceptive terminals in the most superficial skin layers (Baumgartner et al. 2005; Iannetti et al. 2006). Laser pulses were directed to the dorsum of the right hand and a He-Ne laser pointed to the area to be stimulated. The laser pulse was transmitted via an optic fibre and focused by lenses to a spot diameter of approximately 8 mm (50 mm²) at the target site. The duration of the laser pulses was 4 ms and its energy 3.5 J. With these parameters laser pulses elicit a clear pinprick sensation, related to the activation of Aδ skin nociceptors (Iannetti et al. 2006).

After each stimulus, the laser beam target was shifted by approximately 20 mm in a random direction, to avoid nociceptor fatigue and sensitization. The laser beam was controlled by a computer that used two servo-motors (HS-422; Hitec RCD, USA; angular speed, 60°/160 ms) to orient it along two perpendicular axes (Lee et al. 2009).

Experimental paradigm and EEG recording

EEG data were collected in a single recording block. Participants were seated in a comfortable chair and wore protective goggles. They were asked to focus their attention on the stimuli, relax their muscles and keep their eyes open and gaze slightly downward. Acoustic isolation was ensured using earplugs and headphones. Both the laser beam and
the controlling motors were completely screened from the view of the participants. The experiment consisted of a single block of 30 trials, with an inter-stimulus interval ranging between 15 and 18 seconds. Participants were asked to rate verbally the intensity of the sensation evoked by each stimulus, using a scale ranging from 0 to 10, where 0 was “no pain” and 10 was “pain as bad as it could be” (Jensen 2001).

The EEG was recorded using 30 Ag-AgCl electrodes placed on the scalp according to the International 10-20 system, using the nose as reference. To monitor ocular movements and eye blinks, electro-oculographic (EOG) signals were simultaneously recorded from two surface electrodes, one placed over the lower eyelid, the other placed 1 cm lateral to the outer corner of the orbit. The electrocardiogram was recorded using two electrodes placed on the dorsal aspect of the left and right forearms. Signals were amplified and digitized using a sampling rate of 1,024 Hz and a precision of 12 bits, giving a resolution of $0.195 \mu V \text{ digit}^{-1}$ (System Plus; Micromed, Italy).

EEG data preprocessing

EEG data were imported and processed using EEGLAB (Delorme and Makeig 2004), an open source toolbox running under the MATLAB environment. Continuous EEG data were band-pass filtered between 1 and 30 Hz. EEG epochs were extracted using a window analysis time of 1,500 ms (500 ms pre-stimulus and 1,000 ms post-stimulus) and baseline corrected using the pre-stimulus time interval. In order to test the possible bias in the automated single-trial LEP detection method, the same number of trials of resting EEG (3,500 ms to 5,000 ms post-stimulus) were extracted from the dataset of each subject.
Trials contaminated by eye-blinks and movements were corrected using an Independent Component Analysis (ICA) algorithm (Delorme and Makeig 2004; Jung et al. 2001; Makeig et al. 1997). EEG epochs were then visually inspected and trials contaminated by artifacts due to gross movements were removed. In all datasets, individual eye movements, showing a large EOG channel contribution and a frontal scalp distribution, were clearly seen in the removed independent components.

After artifact rejection, 357 trials remained for the automated ERP detection, leading to a set of 357 epochs (segmented from -500 to +1000 ms after stimulus onset). A corresponding set of 357 “resting EEG epochs” were obtained by segmenting these same trials from 3500-5000 ms after stimulus onset, and used for testing a possible detection bias.

Enhancement of LEP signal-to-noise ratio (SNR).

The SNR of LEPs was estimated by dividing the N2 peak amplitude (absolute value) by the standard deviation of the average ERP waveform in the pre-stimulus interval (-500 to 0 ms) (Debener et al. 2007; Hu et al. 2010; Spencer 2005). Note that the choice of using two different methods to estimate the SNR of ERPs in simulated and real data was driven by the fact that the actual ERP response is known in the simulated data, but not known in the real data. Thus, Eq. (4) will provide an accurate estimation of the SNR in simulated data, but not in real data.

The SNR values of ERPs before and after WF were compared using the non-parametric
Improved single-trial ERP estimation

Wilcoxon test, because of their non-normal distribution.

Single-trial estimation and correlation analysis

By applying both the WF+MLR and WF+MLRd approaches on the real LEP dataset, we estimated single-trial N2 and P2 latencies and amplitudes, as detailed in the previous sections.

In addition, we assessed the distortion of the LEP morphology introduced by across-trial averaging of single-trial waveforms. The ‘distortion ratio’ of N2 and P2 waves was estimated as follows:

\[
N2\ ratio = \frac{w_{Na}}{w_{Ns}} \quad (5)
\]
\[
P2\ ratio = \frac{w_{Pa}}{w_{Ps}} \quad (6)
\]

where \(w_{Na} \) and \(w_{Pa} \) are the widths of the N2 and P2 waves at their half peak maximum in the average waveform, and \(w_{Ns} \) and \(w_{Ps} \) are the widths of N2 wave and P2 waves at their half peak maximum in the single-trial waveforms (Fig. 4). Note that the ‘distortion ratio’ of each ERP wave is proportional to the reciprocal of its width\(^2\).

Correlations were performed between (i) the estimated single-trial parameters (N2 and P2 latencies and amplitudes) and the corresponding parameters measured from the average waveforms, (ii) the estimated single-trial parameters (N2 and P2 latencies and amplitudes) and the corresponding single-trial N2 and P2 distortion ratios, and (iii) the estimated

\(^2\) Additional evidence in support of the accuracy of single-trial morphology estimation is provided in the Appendix available at http://iannettilab.webnode.com
single-trial parameters (N2 and P2 latencies, amplitudes and distortion ratios) and the corresponding single-trial ratings of perceived pain intensity, as follows.

(i) For each subject, single-trial latencies and amplitudes of both N2 and P2 waves were averaged across trials and compared to the corresponding values manually measured from the averaged waveforms. Correlation coefficients and their significance were calculated for each of these values. (ii) The correlations between single-trial parameters (N2 and P2 latencies and amplitudes) and the corresponding distortion ratios (i.e. N2 latencies vs. N2 ratios, N2 amplitudes vs. N2 ratios, P2 latencies vs. P2 ratios, P2 amplitudes vs. P2 ratios) were tested using the correlation coefficient for parametric data (Pearson R), for each subject (Iannetti et al. 2005b). The obtained correlation coefficients were transformed to Z values using the Fisher R-to-Z transformation. The Z values were finally compared against zero using a one sample t test. (iii) The same statistical approach was applied to assess the relationship between single-trial latencies, amplitudes, and distortion ratios of both N2 and P2 waves and the corresponding single-trial ratings of perceived pain intensity.

Detection bias

Finally, in order to rule out any possible bias in the estimation (i.e. the detection of a signal when there is none), the same WF+MLR₉ approach was applied to the resting EEG epochs obtained from the same subjects. This possible detection bias was tested by comparing the obtained N2 and P2 amplitude values against zero using a one sample t test (Mayhew et al., 2006; Hu et al., 2010).
Results

Single-trial analysis approaches

Multiple linear regression (MLR)

The top panel of Fig. 1 shows the N2 and P2 regressors obtained from a representative, WF-filtered LEP waveform, and a single-trial fitted example using MLR. Note that there are two regressors (average and the temporal derivative) for each ERP wave, and that the temporal derivatives allow modelling the variability of single-trial latency but not the variability of single-trial morphology.

Multiple linear regression with dispersion term (MLR_d)

The bottom panel of Fig. 1 shows the N2 and P2 regressors obtained from a representative, WF-filtered LEP waveform, and a single-trial fitted example using the MLR_d based on PCA. Note that the single-trial variability of both latency and morphology is now modelled. The first three PCs explained 98.3±0.3% and 98.6±0.2% of the variance of the variability matrices for the N2 and P2 waves, respectively. Thus, the ERP waves are modeled using three regressors (PC1, PC2 and PC3), and the variations of both latency and morphology are correctly represented by these regressors.

Single-trial estimation on simulated dataset

Comparison with other methods of single-trial estimation

Fig. 3 shows the performance of the four methods to estimate single-trial ERP parameters (MLR, MLR_d, WF+MLR and WF+MLR_d), quantitatively assessed by calculating the
correlation coefficient between the true and the estimated single-trial values. As expected, when the noise level increases, the correlation coefficients between the true and the estimated values become smaller (Fig. 3, top panel). The WF+MLRₜₜ approach yielded the highest correlation coefficients, for all the ERP parameters (latency, amplitude and morphology of N2 and P2). The bottom graphs in the top panel of Fig. 3 show the results of the two-way repeated-measures ANOVA for each noise level. At low SNRs there was a significant main effect of the factor ‘WF’ (p <0.05). In contrast, at high SNRs there was a significant main effect of the factor ‘Dispersion’ (p <0.05). In most cases there was no significant interaction between these two factors. When considering the performance of the four methods to estimate single-trial variability of ERP morphology, there was a significant main effect of the factor ‘Dispersion’ at virtually all SNR.

The bottom panel of Fig. 3 shows the correlation coefficients across all levels of noise. There were significant main effects on the factor ‘WF’ and the factor ‘Dispersion’ on the latency, amplitude and morphology of both the N2 and the P2 waves (p <0.001, for both factors and all ERP parameters). There was also a significant interaction between these two factors in modulating the P2 amplitude (p <0.001). Post hoc comparisons revealed that the correlation coefficients obtained using the WF+MLRₜₜ approach were significantly larger than those obtained using either the MLR or the MLRₜₜ approach, for all ERP parameters (p <0.001, two tailed paired t test), and also larger than those obtained using the WF+MLR approach on N2 latency, N2 amplitude, N2 morphology, P2 latency and P2 morphology (p <0.001, two tailed paired t test).
The SNRs of the simulated datasets, which were obtained by adding real resting EEG data with different levels of noise (ranging from 0.5 to 1.5, with 0.1 as step size) to the theoretical datasets, ranged between 0.45 ±0.22 and 4.0 ±2.0. At every level of noise the wavelet filtering significantly enhanced the SNR (p <0.005, Wilcoxon test).

The better performance of the MLR_d approach, as compared to the MLR approach, was not simply due to the larger number of regressors used in the MLR_d conditions, but to the fitting of biologically-relevant information (i.e. the trial-to-trial variability in LEP morphology). This was demonstrated by the significant result of the F test performed between the goodness of fit obtained with the two approaches, indicating that MLR_d provides a better fit to the single-trial data ($F(2, 505)=805$, p <0.0001).

Altogether, the assessment of the performance of the different approaches on the simulated data indicates that wavelet filtering strongly enhances the SNR of ERPs, and provides a more accurate and reliable single-trial estimation, especially when the level of noise is high (low SNR). On the other hand, MLR_d improves the performance of single-trial estimation especially when the level of noise is low (high SNR), while it would fit part of the noise when the SNR of the ERP is low. For these reasons, the WF+MLR_d approach provides the most accurate single-trial estimation, as compared to the other three approaches, and it was applied to explore the real LEP dataset.
Single-trial estimation of LEP data

Single-trial estimation and correlation analysis

The bidimensional plots in the middle panel of Fig. 5 show the effect of wavelet filtering on single-trial LEP waveforms and resting EEG. While in the LEP waveforms the wavelet filtering significantly enhanced the SNR of the phase-locked responses (from 7.3±3.3 to 21.2±10.4, p =0.002, Wilcoxon test), in the resting EEG the wavelet filtering only reduced the noise. The left panel of Fig. 5 shows that only the scalp topographies of the average LEP waveforms at the latency of the N2 and P2 peak show the expected central distribution maximal at the vertex (Bromm and Treede 1984; Lee et al. 2009; Mouraux and Iannetti 2008; 2009).

The resulting distortion ratios, estimated using Equations (5) and (6), were averaged across trials for each subject. The average distortion ratios were significantly >1 (N2 ratio: 1.28±0.15, p <0.001; P2 ratio: 1.45±0.25; p <0.001; one sample t test).

(i) Correlation between single trials and average waveforms. Fig. 6 shows the correlations between the single-trial LEP parameters and the corresponding parameters manually measured from the average waveforms. The averages of single-trial estimates of N2 latency, N2 amplitude, P2 latency and P2 amplitude values showed a strong correlation with the corresponding values measured in standard averaged waveforms (N2 latency: R=0.9835, p <0.0001; N2 amplitude: R=0.9913, p <0.0001; P2 latency: R=0.9834, p <0.0001; P2 amplitude: R=0.9491, p <0.0001). The N2 and P2 latency values were almost identical.
Improved single-trial ERP estimation

(N2 latency, single trials: 221 ±28 ms; N2 latency, standard average: 221 ±32 ms; p =0.86 two tailed t test. P2 latency, single trials: 345 ±56 ms; P2 latency, standard average: 350 ±60 ms; p =0.15 two tailed t test). In contrast, the N2 and P2 amplitude values were significantly greater in the single-trial estimates than in the standard averaged waveforms (N2 amplitude, single trials: -20.5 ±12.2 μV; N2 amplitude, standard average: -15.4 ±8.6 μV; +33±10% increase, p =0.0017 two tailed t test. P2 amplitude, single trials: 15.5 ±7.9 μV; P2 amplitude, standard average: 10.6 ±6.1 μV; +46±25% increase, p <0.001 two tailed t test).

(ii) Correlation between single trial parameters. Fig. 4 (bottom panel, 2nd and 3rd row) shows the correlations between single-trial parameters (N2 and P2 latencies and amplitudes) and the corresponding single-trial distortion ratios. The latency values and distortion ratios of N2 wave correlated significantly (mean R =-0.147, p =0.020), while those of P2 wave did not (mean R =-0.091, p =0.162). The amplitude values and distortion ratios of both waves displayed strong correlations (N2 wave: mean R =-0.295, p <0.001; P2 wave: mean R =-0.276, p <0.001).

(iii) Correlation between the single trial parameters and perceived pain. Fig. 4 (bottom panel, 1st row) shows the correlations between single-trial distortion ratios of each wave and the corresponding intensity of pain perception. The single-trial N2 distortion ratios showed a significant correlation with the intensity of pain perception (mean R =-0.191, p =0.029), while the single-trial P2 distortion ratio did not (mean R =-0.091, p =0.162). Fig. 7 shows the correlations between single-trial LEP parameters, estimated using both
WF+MLR and WF+MLR₃ approaches, and the corresponding intensity of pain perception.

Whereas the single-trial N2 and P2 latencies, estimated using both approaches, did not correlate with the intensity of pain perception (using WF+MLR, N2: mean R =-0.106, p =0.123; P2: mean R =-0.060, p =0.519; using WF+MLR₃, N2: mean R =0.038, p =0.611; P2: mean R =-0.107, p =0.067), both the single-trial N2 and P2 amplitudes significantly correlated with the intensity of pain perception. Notably, the single-trial correlations obtained using WF+MLR₃ (N2: mean R =0.377, p <0.001; P2: mean R =0.251, p =0.003) are notably better than those obtained using WF+MLR (N2: mean R =0.349, p =0.001; P2: mean R =0.228, p =0.021).

Detection bias

To test if the method used to estimate single-trial N2 amplitude and P2 amplitude introduced any detection bias, the same method was applied to an equal number of resting EEG epochs obtained from all subjects. The single-trial estimate of response amplitude from resting EEG epochs yielded a mean (±SD) amplitude value of -0.72 ±10.8 μV for the N2 fit, and of 0.36 ±8.3 μV for the P2 fit. These amplitude values were not significantly different from zero (N2 amplitude: p =0.25; P2 amplitude: p =0.47, one sample t test). A comparison of the single-trial estimates obtained in the LEP waveforms vs. the resting EEG epochs in a representative subject is shown in the right panel of Fig. 5. This result confirms that the described method provides an unbiased estimate of single-trial N2 and P2 amplitudes.
Comparison with WF+MLR approach

Fig. 8 shows the average of single-trial estimates of N2 latency, N2 amplitude, P2 latency and P2 amplitude values obtained using the WF+MLR_d and the WF+MLR approaches. As expected, the average of single-trial estimates of N2 and P2 latencies obtained with the two approaches were almost identical (N2 latency estimated with WF+MLR: 223 ±32 ms; N2 latency estimated with WF+MLR_d: 221 ±28 ms; \(p = 0.36 \), two tailed \(t \) test. P2 latency estimated with WF+MLR: 342 ±58 ms; P2 latency estimated with WF+MLR_d: 345±56 ms; \(p = 0.38 \), two tailed \(t \) test). In contrast, the N2 and P2 amplitude values were significantly greater when estimated using the WF+MLR_d approach (N2 amplitude estimated with WF+MLR: -19.5 ±11.6 μV; N2 amplitude estimated with WF+MLR_d: -20.5 ±12.2 μV; +5±5.8% increase, \(p = 0.0029 \), two tailed \(t \) test. P2 amplitude estimated with WF+MLR: 14 ±7.9 μV; P2 amplitude estimated with WF+MLR_d: 15.5 ±7.9 μV; +14±19% increase, \(p < 0.001 \), two tailed \(t \) test).
Discussion

Using simulated ERP datasets with varying levels of noise, we compared the performance of four approaches to estimate ERPs in single trials. We provide evidence that the WF+MLR\textsubscript{d} approach yielded the most accurate estimate of the peak latency and amplitude of the N2 and P2 waves of ERPs. The better performance of the WF+MLR\textsubscript{d} approach was due (1) to the wavelet filtering procedure, which enhances the SNR effectively, both in single-trial and average ERP waveforms; and (2) to the inclusion in the model of the information concerning the variability in single-trial ERP morphology. When applied to a real LEP dataset, the WF+MLR\textsubscript{d} approach provided reliable estimation of single-trial latency and amplitude of the N2 and P2 waves, allowing us to measure the distortion of LEP morphology caused by across-trial averaging, and to perform meaningful correlations at single-trial level, both between the different parameters of LEPs and the intensity of perceived pain, and within the different parameters of LEPs.

We observed a strong correlation between the intensity of pain perception and the N2 and P2 single-trial amplitudes; this was best detected when single-trial amplitudes were estimated using WF+MLR\textsubscript{d}. In addition, we observed a significant positive correlation between single-trial N2 amplitude and N2 width, between single-trial P2 amplitude and P2 width, and between single-trial N2 width and the intensity of pain perception.

Wavelet filtering (WF) to enhance the SNR of ERPs

Compared to the windowed Fourier Transform, the Continuous Wavelet Transform (CWT) offers an optimal compromise for time-frequency resolution and is therefore very suitable
Improved single-trial ERP estimation

for exploring ERPs with a wide frequency range (Chorlian et al. 2003; Effern et al. 2000; Mouraux and Iannetti 2008; Mouraux and Plaghki 2004; Quiroga and Garcia 2003; Tognola et al. 1998). Here, by thresholding the average of single-trial time-frequency representations of single-subject ERPs, we generated a wavelet filter that captures both the phase-locked and non-phase-locked responses, and provides a time-varying filter.

In the present study, we show that WF successfully enhanced the SNR of both simulated and real ERP datasets (Fig. 5, middle panel). Importantly, when the same filter was applied to resting EEG data, this procedure significantly reduced the contribution of noise, without generating spurious ERP responses (Fig. 5, middle panel). The lack of detection bias is consequent to the fact that WF preserves, in each single trial, the signal corresponding to the time-frequency representation of the ERP regardless of its phase (Hu et al. 2010). For this reason, when using both the MLR_d and the WF+MLR_d approaches the average amplitude of single-trial estimates of the ERP peaks was negligible (MLR_d: 0.67 ±13.7 μV for the N2 fit and -0.97 ±10.6 μV for the P2 fit, p =0.35 and p =0.16, respectively; WF+MLR_d: -0.72 ±10.8 μV for the N2 fit and 0.36 ±8.3 μV for the P2 fit, p =0.25 and p =0.47, respectively), but, crucially, the variances of these estimates were significantly smaller when using the WF+MLR_d approach than when using the MLR_d approach (p <0.001 for both N2 and P2, test of homogeneity of variances) (Fig. 5). This important difference is due to the fact that WF removes a large amount of noise, and thus reduces the power of resting EEG oscillation.

Multiple linear regression with dispersion term (MLR_d) to detect single-trial ERPs
We observed that a multiple linear regression with dispersion term using three basis sets on preliminarily wavelet-filtered data (i.e. the WF+MLRₜ approach) provides an improved estimate of the peak latency and amplitude of ERP waves (Fig. 3). The decision of selecting the first three outputs of the PCA performed on the variability matrices was based on the fact that the first three parameters were able to explain most of the variability of single trial ERPs, namely their latency, amplitude, and morphology (Spencer 2005). To capture the variability of these three parameters, a non-parametric approach, based on PCA decomposition, was used because the real function expression of single-trial EEG responses is unknown. When investigating the similar problem of response recognition in blood oxygen level-dependent fMRI data, Hossein-Zadeh et al. (2003) also observed that the first three PCs were able to capture the largest part of response variability. These first three PCs were compared with the three Taylor expansion series (i.e. a basic Gamma function, a derivative of the Gamma function with respect to time variability and a derivative of the Gamma function with respect to the shape variability), and were shown to be extremely similar, albeit not identical, to the Taylor expansion series (see Fig. 11 in Hossein-Zadeh et al. 2003). This comparison is important, as in fMRI the real function describing the response (e.g. a Gamma function) is known, while this is not the case for the ERP response (Boynton et al. 1996). Thus, it is likely that also the basis set with three regressors generated by PCA and used in the present study mainly captures the latency jitter and the variability in morphology of ERPs, while the variability in amplitude is captured by their coefficients of these basis sets. This results in a better single-trial estimate compared to the estimates obtained without including in the model the
variability in morphology (i.e. the MLR approach, Fig. 3).

In addition, we used the estimated single-trial LEP waveforms to show that the across-trial averaging procedure significantly distorts their morphology (N2 and P2 distortion ratios: 1.28±0.15, p <0.001; 1.45±0.25; p <0.001; one sample t test, respectively). This analysis, performed by calculating a distortion ratio for each single-trial, showed that N2 and P2 waves have a higher frequency in single trials than in averages, as indicated by the fact that the distortion ratios are >1 for both the N2 and the P2 waves. Thus, the change in frequency of the N2 and P2 waves caused by across-trial averaging is likely to be due to trial-to-trial latency-jitter, which results in a smoother average LEP waveform. Hence, including a dispersion term in the multiple linear regression analysis appears necessary, as it allows a more accurate fitting of higher-frequency, single-trial waveforms. In addition, the observation of a significant variability in the within-subject distortion ratios (widths) indicates that there is also a trial-to-trial variability in LEP morphology, thus indicating that the inclusion of a dispersion term in the multiple linear regression analysis would be desirable even in the absence of trial-to-trial latency jitter, to improve the single-trial fitting and thus obtain a better estimate of latency and amplitude of the N2 and P2 LEP peaks.

In addition, a significant positive correlation between the width of the N2 wave and the intensity of pain perception (as well as a trend of positive correlation between the width of the P2 wave and the intensity of pain perception) (N2 wave: R =-0.191, p =0.029; P2 wave: R =-0.091, p =0.162) indicated that the width of these ERP waves, is physiologically
meaningful. Thus, the inclusion of a dispersion term in the multiple linear regression analysis is important to capture the physiological information reflected in the variability of the morphology of each ERP wave. Accordingly, we observed a better correlation between the intensity of pain perception and the corresponding single-trial N2 and P2 amplitudes estimated using WF+MLR_d than those estimated using WF+MLR (Fig. 7).

We observed that including a factor capturing the variability in ERP morphology significantly improves the estimate of single-trial parameters when the level of noise in the data is low (Fig. 3). This observation makes sense, as introducing the variability in morphology as a fitting factor when processing noisy data might increase the amount of fitted noise, thus reducing both the sensitivity and the specificity of the MLR_d approach. Indeed, the performance of MLR_d and MLR in extracting single-trial amplitude values was very similar when processing data with a high level of noise (Fig. 3). This implies that the use of MLR_d is beneficial either (i) when the SNR of the raw data is high per se, or (ii) when the SNR of the data is effectively enhanced by preliminarily filtering the data (e.g. a simple bandpass filter, or the WF described in this paper). Thus, the combination of the WF with the MLR_d approach allows to broaden the applicability of an MLR_d-based single-trial estimation, even to responses whose SNR is typically low (e.g. when analyzing early-latency somatosensory ERPs like the N20 wave, or when analyzing simultaneously collected EEG/fMRI data, Debener et al. 2005, 2006; Iannetti et al. 2005a).

Note that the WF+MLR_d was only applied to one recorded channel (Cz) because (1) WF is computationally demanding and (2) Cz is the scalp channel at which the main LEP waves
Improved single-trial ERP estimation

display a maximal amplitude, and, consequently, N2 and P2 are recommended to be measured at Cz in both basic and clinical settings (Treede et al. 2003).

Crucially, the multiple linear regression method allows modeling the amplitude of each single trial regardless of its phase (i.e. regardless of its positive or negative polarity). Therefore, if a sufficient number of trials is considered, the contribution of non-event-related peaks in the signal will cancel out and tend towards zero. For this reason, when we applied the WF+MLR_d approach to the resting EEG data, although some positive and negative fittings were observed, the average peak amplitudes of the single-trial estimates of both N2 and P2 waves were negligible (-0.72 ±10.8 μV for the N2 fit, and of 0.36 ±8.3 μV for the P2 fit; N2 amplitude: p =0.25; P2 amplitude: p =0.47, one sample t test) (Fig. 5, right panel).

N2 and P2 peaks in single-trial LEPs

When applying the WF+MLR_d approach to real LEP data, the averages of estimated single-trial N2 and P2 latencies were almost identical to the N2 and P2 latencies measured in the across-trial average waveforms (N2 latency, single trials: 221 ±28 ms; standard average: 221 ±32 ms; p =0.86 two tailed t test. P2 latency, single trials: 345 ±56 ms; standard average: 350 ±60 ms; p =0.15 two tailed t test; Fig. 6, left panels). In contrast, the averages of estimated single-trial N2 and P2 amplitudes were significantly larger than those measured in the across-trial average waveforms (+33 ±10% and +46 ±25%, respectively) (Fig. 6, right panels).

The large difference in amplitude between the estimate of ERP amplitude at single-trial
level and the measure of ERP amplitude in the average ERP waveform is likely to be due to
the across-trial latency jitter, which results in averaging ERP waves with slightly different
phases, thus distorting their shape and reducing their peak amplitude. Importantly, the
increase in peak amplitude obtained by measuring the response in single trials was
significantly smaller ($p = 0.028$, two tailed t test) for the N2 wave than for the P2 wave (+33
±10% and +46 ±25%, respectively). This finding indicates that the latency jitter of the N2
wave may be significantly smaller than the latency jitter of the P2 waves of LEPs.

Considering that the N2 wave is more transient than the P2 waves (i.e. the N2 has higher
frequency content than the P2), across-trial averaging would distort it more than P2 waves.

Hence, if the latency jitter affecting the N2 and P2 waves was similar, the gain in amplitude
resulting from measuring the N2 wave in single trials should be greater than the gain in
amplitude resulting from measuring the P2 waves in single trials. Therefore, the fact that
the opposite was observed indicates that the N2 wave is affected by less latency jitter than
the later P2 wave. Accordingly, the across-trial variability (expressed as SD) of the peak
latency of the N2 wave (which is a direct measure of response jitter) was 28 ms, while that
for the P2 wave was 56 ms. Altogether, these findings indicate that the latency jitter of the
N2 wave is smaller than that of the P2 wave. This finding is similar to the results obtained
by Michalewski et al. (1986) showing that, in auditory-evoked potentials, the latency
variability of the N2 and P3 peaks is larger than the latency variability of the earlier N1 and
P2 peaks, consistently with the notion that early-latency, exogenous responses (like the N1
wave of LEPs, Lee et al., 2009) are less affected by latency jitter than longer latency,
endogenous responses (like the N2 and P2 waves of LEPs, Mouraux and Iannetti, 2009).
The notion that the shorter the peak latency, the smaller the latency jitter is also supported by an additional observation, that the peak amplitudes of the N2 and P2 waves in single trials were significantly larger when estimated by WF+MLR_d than when they were estimated by WF+MLR (+5 ±5.8% and +14 ±19% for N2 and P2 wave, respectively) (Fig. 8).

For the same line of reasoning reported above, the smaller underestimation of the N2 peak amplitude can be also explained by the smaller jitter of the N2 peak latency.

Correlation with the intensity of pain perception

Similarly to what was observed in previous single-trial LEP studies (Arendt-Nielsen 1994; Iannetti et al. 2005b), the peak amplitude of both the N2 and the P2 waves showed a strong positive correlation with the intensity of pain perception (Fig. 7, top panel).

The strong correlations observed between N2 and P2 peak amplitudes and the intensity of pain perception may have a peripheral explanation, i.e. it can be due to the fact that stronger inputs activate more cortical neurons synchronously, resulting in ERPs of larger amplitudes (Iannetti et al. 2005b). Indeed, despite the energy of the laser stimulation was kept constant, the intensity of the afferent input along peripheral and central nociceptive pathways is expected to vary significantly from trial to trial. This variability can be explained by changes in the number of nociceptors activated by each delivered laser pulse (as the irradiated skin spot must be changed after each stimulus) (Arendt-Nielsen and Chen 2003), but also by within-subject variations in receptor density and skin pigmentation (Plaghki and Mouraux 2003). This variability of the peripheral input can result in trial to trial variations in the intensity of pain perception and thus be reflected by
the trial to trial variations in peak amplitude of the N2 and P2 LEP waves.

In addition, the correlations between N2 and P2 peak amplitudes and the intensity of pain perception is likely to be also contributed by central factors, independent of the variability of the incoming sensory input. Indeed, we recently showed that the N2 and P2 waves represent a late stage of cortical processing related to the perceptual outcome of the nociceptive input (Lee et al. 2009). Thus, a wide range of cognitive factors, such as attention paid to the stimulus and vigilance, which are known to influence both pain perception and the magnitude of the N2 and P2 waves of LEPs (Legrain et al. 2002; Lorenz and Garcia-Larrea 2003) could have contributed to the observed correlation between N2 and P2 magnitude and the intensity of perception.
Conclusions and future directions

Using both simulated and real ERP datasets we show that WF significantly enhances the SNR of ERPs in single trials, and that MLRd effectively captures and measures the variability in the morphology of single-trial ERPs. Therefore, their combination (WF+MLRd) provides a reliable and unbiased estimate of single-trial ERP latency, amplitude, and morphology, and has thus the potential of yielding novel physiological information (e.g. estimating the latency jitter and the correlation with pain perception of different LEP waves). ICA, which is a blind source separation technique that works as a spatial filter and is capable to exploit the spatial information contained in multichannel EEG recordings (Makeig et al. 2004), has been demonstrated to be effective in isolating stimulus-related and ongoing components in single-trial EEG signals (Debener et al. 2006). Thus, WF+MLRd could also be applied on ICA-filtered EEG signal, or directly on stimulus-related ICs, to provide better single-trial estimation on higher SNR and spatial-distinct neural activities.

WF+MLRd can be also applied to estimate single-trial parameters of short-latency evoked potentials (e.g. SEPs, VEPs, and AEPs), and of stimulus-induced EEG responses in the time-frequency domain. Importantly, WF+MLRd can be applied to explore the dynamics between different features of ERPs, behavioural variables and measures of brain activity sampled using different neuroimaging techniques, and, hence, may provide new insights into the functional significance of the brain processes underlying the brain responses to sensory stimuli. Finally, this WF+MLRd approach is also useful in clinical practice. For example LEPs, which often display longer latency, reduced amplitude, and/or increased wave width in presence of lesions of the peripheral or of the central nervous system, are
highly recommended to evaluate the function of nociceptive pathways in patients (Treede et al. 2003). However, signals recorded from patients usually have lower SNR than those recorded from healthy subjects, thus suggesting the value of using WF+MLR\textsubscript{d} to increase the SNR of ERP waveforms, not only in average, but also in single trials. Furthermore, the possibility to quantify the variability of single-trial amplitude, latency, and morphology will allow a more complete use of the information contained in ERPs in clinical studies.
Acknowledgements

LH is supported by the Lee Wing Tat Medical Research Fund. RGW is supported by the Medical Research Council (MRC). GDI is University Research Fellow of The Royal Society, and acknowledges the support of the BBSRC.
Figure legends

Fig. 1. Flowcharts describing the procedures of multiple linear regression (MLR) and multiple linear regression with dispersion term (MLR$_d$) to estimate the single-trial latency and amplitude of ERP peaks.

Top panel: In MLR, two regressors (average and its temporal derivative) for each ERP peaks are calculated from the average ERP waveform within a given post-stimulus interval (in this case 0 to 0.5 s), for each subject. These regressors (four, in this case) are then applied against each single trial within the same post-stimulus interval, and used to model each single-trial ERP peak.

Bottom panel: In MLR$_d$, variability matrices that capture the variations of latency and morphology of each ERP peak are generated by simultaneously shifting and compressing the average ERP waveform (1). These variability matrices, whose order of trials (with the latency shifted and the morphology varied simultaneously) is of no importance, are fed to a Principal Component Analysis (PCA) (2). The resulting three main principal components are used to define three regressors for each peak within a given post-stimulus interval (in this case 0 to 0.5 s) (3). These regressors (six, in this case) are then applied against each single trial within the same post-stimulus interval, and used to model each single-trial ERP peak (4).

Note the difference in the fit of the same representative single trial obtained using MLR and MLR$_d$ (right, both panels), as adding a third regressor (MLR$_d$) allows modelling the variability in ERP morphology, which is not taken into account in non-dispersed MLR.
Fig. 2. Flowchart describing the generation of the simulated datasets with different level of noise. The ERP group average waveform recorded at Cz was used as template (first column). Variations in amplitude, latency and shape were randomly embodied in the ERP template, generating, for each subject, 30 ERP trials (represented by coloured waveforms) for each kind of variation (second column). The integration of all these variations into the ERP template generated the simulated ERP dataset, composed by 30 trials (third column). Eleven levels of noise were generated by multiplying a real resting EEG epoch from that subject by a range of factors (from 0.5 to 1.5, with 0.1 as step size) (fourth column). Finally, each of these 11 noise epochs was added to each of the 30 simulated datasets, thus generating 330 ERP epochs for each subject (fifth column). Consequently, each of the resulting simulated ERP dataset had different level of SNR.

Fig. 3. Performance evaluation of the four methods (MLR, MLR_d, WF+MLR and WF+MLR_d) to estimate single-trial ERP parameters. Top panel: The correlation coefficient between single-trial estimates and the corresponding single-trial true values at each of the 11 levels of noise (top row). The effect of ‘WF’ and ‘Dispersion’ factors was tested using two-way, repeated-measures ANOVA (bottom row). Note that there was a significant main effect of the factor ‘WF’ at low SNRs, and a significant main effect of the factor ‘Dispersion’ at high SNRs, as well as a significant main effect of the factor ‘Dispersion’ at virtually all SNRs when estimating the single-trial variability of ERP morphology.
Bottom panel: Statistical comparison of the overall correlation coefficients (i.e. across all level of noise) obtained with the four methods (MLR, MLR_d, WF+MLR and WF+MLR_d). The effect of ‘WF’ and ‘Dispersion’ factors was tested using two-way, repeated-measures ANOVA. Note that the overall correlation coefficients obtained using the WF+MLR_d approach were generally significantly larger than those obtained using the other three approaches.

Fig. 4. Estimation of distortion between single-trial and average ERP waveforms and the correlations between single-trial distortion ratio and other single-trial variables.

Top panel: The blue waveform represents the average ERP, and the red waveform represents a single trial ERP. The distortion was estimated by calculating the ratio between the widths at the half peak height (h_a/2 and h_s/2) of the average waveform (w_{Na} and w_{Pa}) and of each single trial (w_{Ns} and w_{Ps}). The average distortion ratios of the N2 wave (left panel) and of the P2 wave (right panel) were both significantly >1 (N2 ratio: 1.28±0.15, p <0.001; P2 ratio: 1.45±0.25; p <0.001; one sample t test).

Bottom panel: The single-trial N2 distortion ratios showed a significant negative correlation with the corresponding intensity of pain perception (mean R =-0.191, p =0.029), while the single-trial P2 distortion ratios did not (mean R =-0.091, p =0.162) (first row). Single-trial N2 distortion ratios showed a significant negative correlation with the corresponding N2 latencies (mean R=-0.147, p =0.020), whereas single trial P2 distortion ratios did not significantly correlated with the corresponding P2 latencies (mean R =0.009, p =0.876). Both the single-trial N2 and P2 distortion ratios significantly correlated with
their corresponding single-trial amplitudes (N2 wave: mean $R = -0.295$, $p < 0.001$; P2 wave: mean $R = -0.276$, $p < 0.001$).

Fig. 5. Unbiased automatic detection of single-trial LEPs using combined wavelet filtering and multiple linear regression with dispersion term ($WF+MLR_d$).

Left panel: Scalp topographies at N2 and P2 peak latencies of the average waveform obtained from LEP trials (top) and resting EEG trials (bottom). While the topographies of LEP trials are centrally-distributed and maximal at the vertex, the topographies of resting EEG trials are randomly distributed.

Middle panel: Comparison of the effect of wavelet filtering on LEP trials (top) and resting EEG trials (bottom). Note that the phase-locked responses in LEP trials are preserved, whereas the noise in both LEP trials and resting EEG trials is markedly reduced. The single trials are sorted according to the order of stimulus presentation.

Right panel: Single-trial N2 and P2 amplitudes (same data shown in the left and middle panel) estimated in LEP trials (red) and resting EEG trials (blue). The average N2 and P2 peak amplitudes are $-20.5 \pm 12.2 \mu V$ and $15.5 \pm 7.9 \mu V$ in LEP trials and $-0.72 \pm 10.8 \mu V$ and $0.36 \pm 8.3 \mu V$ in resting EEG trials. Note that the amplitude values obtained from the resting EEG trials were not significantly different from zero (N2 amplitude: $p = 0.25$; P2 amplitude: $p = 0.47$, one sample t test).
Fig. 6. Correlations between the average N2 and P2 latencies and amplitudes estimated using the WF+MLR_d approach and the average N2 and P2 latencies and amplitudes obtained manually from the averaged LEP waveforms.

Significant correlations were observed when examining all LEP parameters (N2 latency: $R=0.9835$, $p<0.0001$; N2 amplitude: $R=0.9913$, $p<0.0001$; P2 latency: $R=0.9834$, $p<0.0001$; P2 amplitude: $R=0.9491$, $p<0.0001$). Each point represents the data from one subject. Vertical error bars represent, for each subject, the variability across trials (expressed as SEM). Black dashed lines represent the identity lines, and red solid lines represent the best linear fit. Note that the N2 latency and P2 latency values obtained from the two measurements are almost identical (N2 latency: $p=0.86$; P2 latency: $p=0.15$, two tailed t test). In contrast, the N2 amplitude and P2 amplitude values are significantly greater in the single-trial estimates than in the standard averaged waveforms (N2 amplitude: +33% increase, $p=0.0017$; P2 amplitude: +46% increase, $p<0.001$, two tailed t test).

Fig. 7. Correlations between single-trial LEP parameters, estimated using both WF+MLR and WF+MLR_d, and intensity of pain perception.

Left panel: Correlations between single-trial LEP peak latencies, estimated using both WF+MLR and WF+MLR_d, and pain perception. Single-trial N2 latencies and P2 latencies do not correlate with the intensity of pain perception, whether estimated using WF+MLR (N2: mean $R=-0.106$, $p=0.123$; P2: mean $R=-0.060$, $p=0.519$) (left part), or using WF+MLR_d (N2: mean $R=0.038$, $p=0.611$; P2: mean $R=-0.107$, $p=0.067$) (right part).

Right panel: Correlations between single-trial LEP peak amplitudes, estimated using both
Improved single-trial ERP estimation

WF+MLR and WF+MLR₃, and pain perception. Estimated using WF+MLR, both the single-trial N2 amplitudes and P2 amplitudes significantly correlated with the corresponding intensity of pain perception (N2: mean R = 0.349, p = 0.001; P2: mean R = 0.228, p = 0.021) (left part). Estimated using WF+MLR₃, single-trial N2 amplitudes and P2 amplitudes correlated even more strongly with the corresponding intensity of pain perception (N2: mean R = 0.377, p < 0.001; P2: mean R = 0.251, p = 0.003) (right part).

Fig. 8. Comparison of single-trial estimates obtained using the WF+MLR (in green) and the WF+MLR₃ (in red) approaches.

The average of single-trial estimates of N2 and P2 latencies obtained with the two approaches were almost identical (N2: p = 0.36; P2: p = 0.38, two tailed t test). In contrast, the average of single-trial estimates of N2 and P2 amplitudes were significantly larger when using the WF+MLR₃ approach (N2: +5%, p = 0.0029; P2: +14%, p < 0.001, two tailed t test). Vertical error bars represent the variability across subjects (expressed as SD). Blue dashed lines represent the mean values of N2, P2 latencies or amplitudes measured manually from the across-trial average waveforms.
References

Improved single-trial ERP estimation

Improved single-trial ERP estimation

Trials
Latency (s)
10
20
30

Amplitude (μV)
-25
25

Simulated datasets

Template
Amplitude variation

Latency variation

Shape variation

Variations

Theoretical dataset

Resting EEG

Variation

Simulated datasets

Variation

Amplitude variation

Amplitude variation