D₂-like Dopamine Receptors Differentially Regulate Unitary IPSCs Depending on Presynaptic GABAergic Neuron Subtypes in Rat Nucleus Accumbens Shell

Shuntaro Kohnomi, Noriaki Koshikawa, and Masayuki Kobayashi

Department of Pharmacology and Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo; and RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan

Corresponding Author: Masayuki Kobayashi, D.D.S., Ph.D.
Department of Pharmacology
Nihon University School of Dentistry
1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
Phone: +81-3-3219-8126
Fax: +81-3-3219-8136
e-mail: kobayashi-ms@dent.nihon-u.ac.jp

Running head: D₂-like receptor modulation of unitary IPSCs (44 characters)

Numbers of pages, tables and figures: 30 pages, 2 tables, 7 figures
Total number of words: (i) Whole, 7,823; (ii) Abstract, 239

Copyright © 2011 by the American Physiological Society.
ABSTRACT

In the nucleus accumbens (NAc), a medium spiny (MS) neuron receives GABAergic inputs from two major sources: fast spiking (FS) neurons and other, adjacent MS neurons. These two types of inhibitory synapses are considered to play different roles in output activities, i.e. FS\rightarrowMS connections suppress output from the NAc whereas MS\rightarrowMS connections contribute to lateral inhibition. In the present study, we focused on the electrophysiological properties of unitary inhibitory postsynaptic currents (uIPSCs) obtained from MS\rightarrowMS connections and FS\rightarrowMS connections, and examined the effects of quinpirole, a dopamine D$_2$-like receptor agonist, on uIPSCs using multiple whole-cell patch-clamp recording. Application of quinpirole (1 μM) reliably suppressed the amplitude of uIPSCs by 29.6% in MS\rightarrowMS connections with increases in paired-pulse ratio and failure rate. The suppressive effects of quinpirole on uIPSCs were mimicked by 1 μM of PD128907, a D$_{2/3}$ receptor agonist, whereas quinpirole-induced suppression of uISPCs was blocked by pre-application of 1 μM sulpiride or 10 μM nafadotride, both D$_{2/3}$ receptor antagonists. On the other hand, quinpirole (1 μM) had divergent effects on FS\rightarrowMS connections; i.e. quinpirole increased uIPSC amplitude in 38.1% of FS\rightarrowMS connections and 23.8% of FS\rightarrowMS connections were suppressed by quinpirole. Analysis of coefficient of variation in uIPSC amplitude implied the involvement of presynaptic mechanisms in quinpirole-induced effects on uIPSCs. These results suggest that activation of D$_2$-like receptors facilitates outputs from MS neurons in the NAc by reducing lateral inhibition during a dormant period of FS neuron activities. (239 words)

Key words: medium spiny neuron, fast spiking neuron, quinpirole, whole-cell patch clamp
INTRODUCTION

The nucleus accumbens (NAc), a rostroventromedial extension of the striatum, plays a critical role in reward-related behaviors, drug abuse, psychosis, learning and motor control (Cools et al. 1995; Di Chiara 2002; Koshikawa et al. 1990; Nicola 2007; Sharp et al. 1987). Such physiological and pathological functions are considered to be regulated by dopamine released from dopaminergic terminals located in the ventral tegmental area (Morgane et al. 2005). Indeed, the NAc contains dopamine D1-like (D1 and D5) and D2-like (D2, D3 and D4) receptors (Lu et al. 1998; Sibley et al. 1993). This area is also known to receive glutamatergic projections from a variety of limbic areas such as the prefrontal cortex, hippocampus and basolateral amygdala (Groenewegen et al. 1991; Pennartz et al. 1994; Shinonaga et al. 1994). In vitro whole-cell patch-clamp recordings from medium spiny (MS) neurons have demonstrated that dopamine suppresses these excitatory synaptic inputs to MS neurons via presynaptic mechanisms, and that these suppressive dopaminergic effects of dopamine are mediated by D1-like receptors (Nicola et al. 1996; Nicola and Malenka 1997; Pennartz et al. 1992).

The striatum includes abundant GABAergic neurons such as MS, fast spiking (FS) and persistent and low-threshold spike (PLTS) neurons in addition to cholinergic neurons (Kawaguchi et al. 1995). Similar to the striatum, principal cells in the NAc are MS neurons, which constitute the majority (90-95%) population and send their axons to the ventral pallidum and midbrain dopaminergic cell areas, including the ventral tegmental area, substantia nigra pars compacta and retrorubral field (Groenewegen et al. 1991). MS neurons receive inhibitory GABAergic inputs from at least two sources. Parvalbumin-immunopositive cells, which receive powerful glutamatergic inputs from the cerebral cortex, are the main inhibitory interneurons projecting to MS neurons (Kawaguchi et al. 1995). Anatomical features of parvalbumin-immunopositive cells are their dense
arborization of local axon collaterals innervating NAc neurons, including MS cells. Parvalbumin-immunopositive cells are classified physiologically into FS neurons characterized by their extremely high frequency of repetitive spike firing without adaptation, short spike duration and lower input resistance (Kawaguchi 1993; Taverna et al. 2007). Considering these morphological and physiological features, FS neurons potently suppress MS neuron activity in the NAc. Another neuron subtype projecting to MS neurons is the MS neuron itself. MS neurons are functionally connected each other and form lateral inhibition network in the NAc (Pennartz and Kitai 1991; Taverna et al. 2004), as well as striatum (Czubayko and Plenz 2002; Guzmán et al. 2003; Koós and Tepper 1999; Tepper et al. 2004, 2008). Interestingly, recurrent collateral connections in the striatum were reported to be disrupted in rodent models of Parkinson’s disease (Taverna et al. 2008), indicating that these MS-MS connections are functionally important.

In the NAc, several patch-clamp studies have revealed that dopamine suppresses extracellular stimulation-induced IPSPs/IPSCs, which are likely to originate from axon collaterals of MS neurons (Pennartz and Kitai 1991; Taverna et al. 2004), and these suppressive effects of dopamine are presumed to be mediated through D₁-like receptors (Hjelmstad 2004; Nicola and Malenka 1997; Taverna et al. 2005). Although D₂-like receptor antagonists are often used clinically to treat neuropsychiatric diseases such as schizophrenia, which indicates the critical importance of D₂-like receptors in higher brain functions, mechanisms of their precise regulation of IPSCs elicited by specific GABAergic neuron subtypes (e.g. FS→MS connections) are still an open issue.

To clarify comprehensively the dopaminergic regulation of inhibitory synaptic transmission in the NAc, it is necessary to discriminate the source of GABAergic inputs. The NAc is divided into core and shell with respect to anatomy (Heimer et al. 1991; Jongen-Rêlo et al. 1994; Zahm and Brog 1992), receptor density (Deutcht and Cameron 1992)
and electrophysiology (Pennartz et al. 1992). Abundant data on D₂ receptors have been accumulated in reports that emphasise the importance of the shell, but not the core, in dyskinesia (Cools et al. 1995; Koshikawa et al. 1996; Prinssen et al. 1994). We therefore focused on the roles of D₂-like receptors in inhibitory synaptic transmission from FS to MS (FS→MS) and MS to MS (MS→MS) neurons by multiple whole-cell patch-clamp recordings in the NAc shell.

MATERIALS and METHODS

All experiments were performed in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals and approved by Institutional Animal Care and Use Committee of Nihon University School of Dentistry. All efforts were made to minimize the number of animals used and their suffering.

Slice preparations

The techniques for preparing and maintaining rat brain slices in vitro were similar to those described previously (Koyanagi et al. 2010; Yamamoto et al. 2010). Briefly, Wistar rats of either sex aged from postnatal day 20-30 were used for brain slice preparations. Rats were deeply anesthetized with sodium pentobarbital (75 mg/kg, intraperitoneal) and decapitated. Tissue blocks including the NAc were rapidly removed and stored for 2 min in ice-cold modified artificial cerebrospinal fluid (ACSF) (in mM): 230 sucrose, 2.5 KCl, 10 MgSO₄, 1.25 NaH₂PO₄, 26 NaHCO₃, 0.5 CaCl₂, and 10 D-glucose. Coronal slices were cut at 350 μm thickness using a microslicer (Linearslicer Pro 7, Dosaka EM, Kyoto, Japan). Slices were incubated at 32°C for 20 min in a submersion-type holding chamber which contained 50% modified ACSF and 50% normal ACSF (pH 7.35-7.40). Normal ACSF contained (in mM): 126 NaCl, 3 KCl, 2 MgSO₄, 1.25 NaH₂PO₄, 26 NaHCO₃, 2.0 CaCl₂, and
10 D-glucose. Modified and normal ACSF was continuously aerated with a mixture of 95% O₂ / 5% CO₂. Slices were then placed in normal ACSF at 32°C for 1 h, and thereafter maintained at room temperature until used for recording.

Cell identification and paired whole-cell patch clamp recording

The slices were transferred to a recording chamber which was perfused continuously with normal ACSF at a rate of 1.5-2.0 ml/min. Dual, triple or quadruple whole-cell patch-clamp recordings were obtained from MS neurons and/or FS cells identified in the shell of NAc by a microscope equipped with Nomarski optics (x 40, Olympus BX51, Tokyo, Japan) and an infrared-sensitive video camera (Hamamatsu Photonics, Hamamatsu, Japan). The distance between MS/FS cells was < 50 μm. Electrical signals were recorded by amplifiers (Axoclamp 200B, 900A, and 700B, Axon Instruments, Foster City, CA, USA), digitized (Digidata 1440A, Axon Instruments), observed on-line and stored on a computer hard disk using software (Clampex 10, Axon Instruments). Membrane currents and potentials were low-pass filtered at 5-10 kHz and digitized at 20 kHz.

The composition of the pipette solution for recordings from MS and FS neurons was (in mM): 70 potassium gluconate, 70 KCl, 10 HEPES, 15 biocytin, 0.5 EGTA, 2 MgCl₂, 2 magnesium ATP, and 0.3 sodium GTP. The pipette solution had a pH of 7.3 and osmolarity of 300 mOsm. The liquid junction potential for current-clamp and voltage-clamp recordings were -9 mV, and voltage was corrected accordingly. Thin-wall borosilicate patch electrodes (4-5 MΩ) were pulled on a Flaming-Brown micropipette puller (P-97, Sutter Instruments, Novato, CA, USA).

Recordings were obtained at 30-31°C. Seal resistance was > 5 GΩ and only data obtained from electrodes with access resistance of 6-20 MΩ and < 20% change during recordings were included in this study. Before uIPSC recordings, voltage responses of
presynaptic and postsynaptic cells were recorded by application of long hyperpolarizing and
depolarizing current pulse (300-400 ms) injections to examine basic electrophysiological
properties, including input resistance, single spike kinetics, voltage-current relationship and
repetitive firing pattern and frequency. Short depolarizing double pulses (2 ms, 0.8-1.5 nA
or 80 mV) with 25-50 ms inter-pulse interval were applied to presynaptic cells to induce
action potentials/currents. In dual whole-cell patch-clamp recordings, presynaptic cells were
recorded under current clamp condition except for the case that two neurons mutually
connected. In triple or quadruple whole-cell patch-clamp recordings, all cells were recorded
under voltage clamp condition, because a presynaptic cell possibly received projections from
another cell. In voltage clamp recordings, all neurons were held at -80 mV. Voltage step
pulses from -80 mV to 0 mV induced unclamped action potentials in presynaptic cells. To
eliminate the excitatory glutamate inputs, the AMPA glutamate receptor antagonist,
6,7-dinitroquinoxaline-2,3-dione (DNQX, 20 μM, Research Biochemicals International,
Natick, MA, USA) was added during uIPSC recording.

The following drugs were used in this study; bicuculline methiodide (Tocris Cookson,
Bristol, UK), quinpirole hydrochloride (Sigma-Aldrich, St. Louis, MO, USA), S-(-)-sulpiride
(Sigma-Aldrich), nafadotride (Sigma-Aldrich) and PD128907 hydrochloride (Sigma-Aldrich).
All drugs were added to the perfusing ACSF. DNQX, S-(-)-sulpiride and nafadotride were
dissolved with 0.1% DMSO in ACSF.

Data analysis

Clampfit (pClamp 10, Axon Instruments) was used for analyses of electrophysiological
data. Input resistance was measured from slopes of least-squares regression lines fitted to
voltage-current (V-I) curves measured at the peak voltage deflection (current pulse amplitude
up to -100 pA). The amplitudes of the action potential and afterhyperpolarization (AHP)
were measured from the action potential threshold. By application of depolarizing step
current pulses (300-400 ms), rheobase was identified as the minimal current which
consistently elicited an action potential. Repetitive firing was evaluated by measuring the
maximal firing rate and slope of least-squares regression lines in a plot of the number of
spikes versus the amplitude of injected current, i.e. frequency-current (F-I) curve (up to
approximately 400 pA).

Amplitudes of uIPSCs were measured as the difference between the peak postsynaptic
currents and the baseline currents taken from a 2-3 ms time window close to the onset of the
uIPSCs. Average amplitude, paired-pulse ratio (PPR) of the 2nd to 1st uIPSC amplitude,
coefficient of variation (CV) and failure rate of the 1st uIPSCs in control were calculated
from 10 events just before drug application. For quantification of the drug effects on uIPSCs,
last 10 events recorded during the drug application were analyzed. uIPSC amplitude in the
range of synaptic noise was taken as failure. Failure events were included for computation
of uIPSC amplitude, PPR, and CV. The 20-80% rise time, 80-20% decay time and onset
latency of uIPSCs were measured from average traces, which were obtained from traces
aligned to the peak of presynaptic action potentials. The decay phase from peak to baseline
was fitted by a double exponential function (Origin ver. 8, Microcal Software Inc.,
Northampton, MA, USA):

$$f(t) = A_{fast} \exp(-t/\tau_{fast}) + A_{slow} \exp(-t/\tau_{slow})$$

where A_{fast} and A_{slow} are the amplitudes of fast and slow decay components, respectively, and
τ_{fast} and τ_{slow} are their respective decay time constants. Weighted decay time constant (τ_w)
was calculated using the following equation (Bacci et al. 2003; Kobayashi et al. 2008):

$$\tau_w = [(A_{fast} \tau_{fast}) + (A_{slow} \tau_{slow})]/(A_{fast} + A_{slow})$$

Data are presented as mean ± standard error of the mean (SEM). The intrinsic
electrophysiological properties of neurons and kinetics of uIPSCs were analyzed using
Student’s t-test. Comparisons of the uIPSC amplitude and PPR between control and drug application were conducted by paired t-test. Normality of these data sets was tested by Shapiro-Wilk normality test using a software (SPSS version 12, Chicago, USA). Because the distribution of failure rate could not be fitted with normal distribution, nonparametric Wilcoxon test was applied for its comparison. Connection rates of MS\rightarrowMS and FS\rightarrowMS neurons were compared by χ^2 test. In each cell pair, Student’s t-test was used to classify the drug-induced changes of uIPSC amplitude, i.e. facilitation, suppression or no change. The level of $P < 0.05$ was adopted to indicate significance.

Histology

To visualize biocytin-labelled neurons after whole-cell patch clamp recording, slices were fixed and cryoprotected. Sections were processed using the ABC method (Vector Laboratories, Burlingame, CA, USA) and fluorescence visualized using Alexa 488 conjugated streptavidin (Molecular Probes, Eugene, OR, USA). Slices were examined and imaged with a fluorescent microscope (BZ-9000, Keyence, Osaka, Japan). All chemicals, unless specified otherwise, were purchased from Sigma-Aldrich.

RESULTS

Whole-cell patch-clamp recordings were performed from neurons in the NAc shell; neurons were randomly selected except for neurons with large somata that are considered to be cholinergic neurons (Kawaguchi et al. 1995). In the present study, three neuron subtypes were recorded, i.e. MS, FS and PLTS neurons.

Pair-recorded MS neurons are shown in Fig. 1A. MS neurons were identified based on their electrophysiological properties: (1) a ramp depolarizing potential induced by a subthreshold step pulse injection, (2) a temporal lag before repetitive firing and (3) adaptation
of action potentials (Fig. 1B). In contrast, FS neurons showed large AHP amplitude and extremely high repetitive firing frequency without spike adaptation (Fig. 1D, Table 1). PLTS neurons were characterized by their low-threshold spike firing and large and persistent depolarization (data not shown). Population of recorded MS, FS and PLTS neurons in this study was 97.6%, 2.2% and 0.1%, respectively (n = 1443). We found only 2 connections of MS→PLTS neurons and therefore we did not include PLTS neurons in further analysis.

Subthreshold responses and action potential kinetics of MS and FS neurons are summarized in Table 1.

Connection rate between MS→MS, MS→FS and FS→MS pairs were 20.0%, 2.7% and 53.3%, respectively (Table 2). Because only one FS→FS connection was found in this study, we did not include it for further analysis. Mutual connections were found in 1.7% of MS-MS pairs. Electrical synapses were rarely observed (0.4%) between MS-MS pairs. Typical examples of uIPSCs in MS→MS and FS→MS are shown in Fig. 1E and F. The amplitude of uIPSCs in FS→MS was significantly larger than that in MS→MS connections (P < 0.05, Student’s t-test; Table 2). On the other hand, other kinetics of uIPSCs for these connections, including the latency, PPR, 20-80% rise time, 80-20% decay time, half duration and decay time constant, were comparable (Fig. 1E and F, Table 2). Application of 10 μM bicuculline almost completely diminished uIPSCs, suggesting that uIPSCs were predominantly mediated by GABA_A receptors (n = 8 in MS→MS connections, Fig. 1B; n = 3 in FS→MS connections, data not shown).

Quinpirole suppresses MS-MS connections transmission presynaptically

Quinpirole is a dopamine D_2-like receptor agonist, which non-selectively activates D_2, D_3 and D_4 receptors (Tang et al. 1994). Fig. 2 shows a typical example of the effects of quinpirole on uIPSCs of MS→MS connections. Application of quinpirole (1 μM) reduced
the amplitude of the 1st uIPSCs, in contrast to less effect on 2nd uIPSC amplitude (Fig. 2B).
The amplitude of the 1st uIPSCs was suppressed by quinpirole in 23/29 (79.3%) of MS→MS
connections; in only 2/29 connections (6.9%) were uIPSCs facilitated by quinpirole. The
remaining two connections were not substantially affected by quinpirole. Overall,
quinpirole (1 μM) reduced the 1st uIPSC amplitude by 29.6 ± 5.9% (n = 29, P < 0.001, paired
t-test). Suppression of uIPSCs by quinpirole was accompanied by increases in PPR (0.58 ±
0.04 to 0.99 ± 0.16; n = 29, P < 0.05, paired t-test) and failure rate (16.7 ± 3.0% to 32.4 ±
4.2%; n = 29, P < 0.01, Wilcoxon test), suggesting that quinpirole-induced suppression was
likely to be mediated by presynaptic mechanisms.

Effects of quinpirole on uIPSCs in FS→MS connections

In contrast to the predominantly suppressive effects of quinpirole (1 μM) on MS→MS
connections, FS→MS connections showed diverse effects of quinpirole. We analyzed 21
FS→MS connections with 14 presynaptic FS neurons. Eight connections (38.1%) showed
quinpirole-induced facilitation of uIPSCs. On the other hand, 5 FS→MS connections
(23.8%) showed uIPSC suppression by quinpirole. The other 8 connections (38.1%) were
not significantly affected by quinpirole. Mean amplitude of the 1st uIPSCs during
application of 1 μM quinpirole (n = 21, 89.1 ± 15.5 pA) was comparable to that in controls
(90.6 ± 15.2 pA; P > 0.8, paired t-test). The resting membrane potential of MS (n = 29) and
FS cells (n = 9) was not significantly changed by application of quinpirole (P > 0.1, paired
t-test).

Our quadruple whole-cell recording, where one FS neuron innervates three MS neurons,
showed that the presynaptic FS cell exhibited heterogeneous quinpirole-induced modulation
of uIPSCs, i.e. two FS-MS connections (FS→MS1 and MS2) showed quinpirole-induced
facilitation of uIPSCs, whereas one FS→MS (FS→MS3) connection showed suppression (Fig.
These results suggest that the effects of quinpirole on uIPSCs were different depending on the postsynaptic MS neurons, even though uIPSCs were generated by the same presynaptic FS cell.

CV analysis

In order to confirm whether the effects of quinpirole on uIPSCs in MS→MS or FS→MS connections are mediated by presynaptic mechanisms, we performed CV analysis (Bartos et al. 2001; Mainow and Tsien 1990). The mean and CV of the 1st uIPSCs amplitude during quinpirole application were normalized by those in control, i.e., \(\frac{CV_{\text{quinpirole}}}{CV_{\text{control}}} \) was plotted against \(\frac{\text{Mean}_{\text{quinpirole}}}{\text{Mean}_{\text{control}}} \), respectively. If the plotted points were located to the identity line, it is indicated that the effect of quinpirole was induced by presynaptic mechanisms including depletion of the vesicular pool (Stevens and Tsujimoto 1995).

Both in MS→MS and FS→MS connections, points were relatively broadly distributed, but most connections were located close to the identity line (Fig. 4). These results suggest that presynaptic mechanisms are involved at least in the part of the quinpirole-induced effects on uIPSCs obtained from MS→MS and FS→MS pairs, though we cannot exclude the possibility of postsynaptic mechanisms.

Cholinergic inputs do not contribute to quinpirole-induced uIPSC suppression in MS→MS connections

In addition to MS and FS neurons, cholinergic interneurons are another neuron subtype in the NAc (Kawaguchi 1993; Kawaguchi et al. 1995). Cholinergic interneurons are immunopositive for choline acetyltransferase and morphologically characterized by their giant somata (Kawaguchi 1993; Kawaguchi et al. 1995). They are characterized electrophysiologically by long-lasting AHP and large hyperpolarization-activated cation
current. In *in vivo* preparations, cholinergic interneurons show irregular firing at 2-10 Hz, suggesting that MS neurons receive tonic cholinergic inputs. Therefore, it is possible that quinpirole suppresses uIPSC amplitude by modulation of cholinergic inputs on MS neurons.

To examine this possibility, we analyzed the effects of quinpirole in combination with atropine and mecamylamine, non-selective muscarinic and nicotinic antagonists, respectively. Application of quinpirole (1 μM) under pre-application of atropine (1-10 μM) and mecamylamine (10 μM) significantly suppressed the amplitude of uIPSCs by 40.1 ± 9.4% (n = 7; *P* < 0.01; paired *t*-test). This reduction was equivalent to that in application of quinpirole alone, indicating that quinpirole-induced suppression of uIPSCs is less likely to be mediated by cholinergic modulation of MS neurons.

Sulpiride and nafadotride block quinpirole-induced suppression of MS → MS connections

To examine which receptor subtypes are involved in quinpirole-induced suppressive effects on the 1st uIPSC amplitude among D2, D3 and D4 receptors, we examined the effect of quinpirole on uIPSCs under application of sulpiride or nafadotride.

Sulpiride is a relatively selective antagonist for D2 receptors, though it has moderate affinity to D3 receptors. Under pre-application of 1 μM sulpiride, quinpirole (1 μM) had little effect on uIPSC amplitude in MS → MS connections (96.0% of control; Fig. 5). Quinpirole did not significantly change PPR (0.68 ± 0.08 under sulpiride to 0.75 ± 0.08 with quinpirole, *n* = 15), nor failure rate (34.0 ± 5.2% under sulpiride to 29.3 ± 5.8% with quinpirole, *n* = 15), as shown in Fig. 5C.

Nafadotride is a D2/3 receptor antagonist with some preference for D3 receptors; Audinot et al. (1998) reported that *K*_i is 0.52-0.88 nM for D3 receptors and 5 nM for D2 receptors. Similar to sulpiride, pre-application of nafadotride (10 μM) blocked quinpirole (1 μM)-induced uIPSC suppression (103.9% of controls, *n* = 7; Fig. 6). PPR was not
significantly changed by quinpirole under application of nafadotride (0.57 ± 0.05 to 0.67 ± 0.11, n = 7). Failure rate was also little affected by quinpirole in combination with nafadotride (30.2 ± 7.2% to 28.0 ± 6.6%, n = 7).

These results suggest that D_{2/3} receptors are involved in quinpirole-induced suppression of uIPSC amplitude in MS→MS connections.

PD128907 mimics quinpirole-induced suppression of uIPSCs between MS-MS neurons

Application of PD128907 (1 μM), a D_{2/3} receptor agonist (Bowery et al. 1996; Audinot et al. 1998; van Vliet et al. 2000), invariably suppressed the amplitude of the 1st uIPSCs by 75.0 ± 7.0% (P < 0.05, n = 7; paired t-test; Fig. 7). PD128907-induced suppression of uIPSCs was accompanied with significant increases in PPR (0.77 ± 0.13 to 1.25 ± 0.11; n = 7; P < 0.05, paired t-test) and failure rate (30.2 ± 7.2% to 43.6 ± 10.6%; n = 7; P < 0.001, Wilcoxon test).

These results support the idea described above that D_{2/3} receptors are involved in quinpirole-induced suppression of uIPSC amplitude in MS→MS connections.

DISCUSSION

MS neurons in the NAc are innervated by GABAergic inhibitory inputs from FS neurons and recurrent collaterals from MS neurons themselves. MS→MS and FS→MS connections showed similar electrophysiological kinetics of uIPSCs, though their presynaptic firing properties were considerably different (Kawaguchi 1993; Taverna et al. 2007). A D_{2}-like receptor agonist, quinpirole, suppressed uIPSCs in MS→MS connections via D_{2/3} receptors, whereas uIPSCs in FS→MS connections exhibited heterogeneous effects by quinpirole. CV analysis suggests that presynaptic mechanisms are involved in quinpirole-induced modulation of MS→MS and FS→MS connections.
Comparison of basic electrophysiological properties between MS and FS neuron-induced uIPSCs

As well as in the striatum (Kawaguchi 1993), GABAergic neurons in the NAc are classified into three subtypes by their anatomical and physiological properties, i.e. MS, FS and PLTS neurons. Among these neurons, MS neurons are the major subtype; they occupy more than 90% of the total population of NAc neurons. In contrast, the population of FS neurons is reported to be much smaller: 11% in ventral striatum (Taverna et al. 2007). In the present study, these neuron subtypes were classified by electrophysiological properties, in accordance with previous reports (Kawaguchi 1993; Taverna et al. 2007). In terms of fundamental physiological properties of MS and FS neurons, our report extends previous studies by demonstrating that the amplitude of uIPSC obtained from FS→MS connections are twice larger than those of MS→MS connections and the connection rate is much higher in FS→MS connections (53.3 % vs. 20.0%) in the NAc. These findings are critical for estimating the impact of these inhibitory synapses on MS neurons.

Quinpirole differentially modulates MS→MS and FS→MS connections

If MS neurons without connections from adjacent MS neurons are impacted by similar EPSPs from presynaptic glutamatergic neurons, these MS neurons are likely to send inhibitory signals cooperatively so that neurons in projection sites such as the ventral pallidum receive potent inhibition. On the other hand, if MS neurons with connections are impacted similarly by EPSPs, initial activation of MS neurons suppresses surrounding MS neurons, i.e. lateral inhibition, and, as a result, inhibitory output is likely to be reduced. In the NAc, reciprocal connections between MS-MS neurons were found (Fig.2; Taverna et al. 2005), suggesting that mutual connections between MS and MS neurons contribute to
suppression of output signals. Therefore, uIPSC suppression via D_{2}-like receptor activation may increase output from the NAc. In contrast, FS→MS connections potently suppress many MS neurons, such that FS neurons effectively suppress outputs from MS neurons. The present finding of quinpirole-induced divergent effects on FS→MS connections suggests that FS neurons regulate outputs from the NAc in a complicated manner via D_{2}-like receptors.

Taken together with D_{2}-like receptor-dependent regulation of MS→MS and FS→MS connections, it is likely that D_{2}-like receptors increase the contrast of MS neuron activities depending on FS neuron activities: MS neurons increase output signals by reducing lateral inhibition during a dormant period of FS neuron activities, whereas subpopulation of MS neurons are potently suppressed when FS neurons are activated (Guzmán et al. 2003).

Presynaptic D_{2/3} receptors mediate quinpirole-induced suppression of uIPSCs in MS→MS connections

According to analyses of PPR, failure rate and CV, the inhibitory effects of quinpirole on MS→MS connections are likely to be mediated via presynaptic mechanisms. Quinpirole is considered to be a non-selective agonist of D_{2}-like receptors, which include D_{2-4} receptors coupled to G_{i} protein (Stoof and Kebabian 1981). Both sulpiride, a relatively selective antagonist of D_{2} receptors, and nafadotride, a relatively selective antagonist of D_{3} receptors, diminished quinpirole-induced suppression of uIPSCs. We consider that these antagonists most likely block both D_{2} and D_{3} receptors, since sulpiride also binds to D_{3} and nafadotride to D_{2} receptors (Sokoloff et al. 1990). Although the results of sulpiride and nafadotride may exclude a contribution from D_{4} receptors to uIPSC suppression by quinpirole (Audinot et al. 1998; Hernández et al. 2006), which is consistent with the finding that D_{4} receptor expression is extremely low in the NAc (Tarazi et al. 1997), the present study did not show a direct evidence that excludes the possibility of contribution of D_{4} receptors to quinpirole-induced
uIPSC suppression, and therefore, this point should be examined using selective D₄ receptor agonists/antagonists in the future.

The result with PD128907, a D₃ receptor-selective agonist (Pugsley et al. 1995), may suggest some greater contribution from D₃ receptors than from D₂ receptors (Chen et al. 2006; Hammad et al. 2006). Compared with the striatum, the NAc expresses more abundant D₃ receptors (Diaz et al. 2000; Murray et al. 1994; Sokoloff et al. 1990), suggesting an important roles for NAc D₃ receptors in psychological disorders, including drug addiction and schizophrenia (Joyce and Millan 2005; Wilffert et al. 2005). The present results elucidate in part the mechanisms of these roles of D₃ receptors in the NAc: lateral inhibition of MS neurons is suppressed by D₃ receptor activation, which in turn facilitates output signals from the NAc.

Taverna et al. (2005) have reported the presynaptic inhibition via D₁-like receptors in MS→MS connections in the NAc shell, using dual whole-cell patch-clamp recordings. However, they have not investigated the inhibition via D₂-like receptors. Hjelmstad (2004) reported evoked IPSCs in the NAc shell are inhibited via presynaptic D₁-like receptors but not D₂-like receptors. Nicola and Malenka (1997) also reported that activation of D₁-like receptors suppresses IPSCs recorded from MS neurons in the NAc core. They recorded evoked IPSCs by applying electrical stimulation via electrodes set extracellularly. Taken together with the present results of the contradict actions of D₂-like receptors on MS→MS connections and FS→MS connections, subpopulation of FS→MS connections that are facilitated by activating D₂-like receptors might mask the inhibitory effects on MS→MS synapses via D₂-like receptors. In addition, GABAergic afferents from the ventral pallidum might mask the effects on MS→MS synapses via D₂-like receptors. Furthermore, there is another possibility that dopaminergic modulations between the NAc core and shell could be different.
Functional considerations

NAc MS neurons send their GABAergic axons to the output structures of the basal ganglia, including the ventral pallidum and substantia nigra pars reticulata (Groenewegen et al. 1991). The projection neurons in both regions are GABAergic and, therefore, D₂-like receptor-mediated facilitation of NAc MS neurons is likely to cause facilitation of neural activities in downstream structures, including thalamic nuclei, via disinhibition mechanisms. This working hypothesis may elaborate underlying mechanisms of D₂ receptor-mediated modulation of physiological functions in the NAc. These effects may be shared with D₁-like receptors (Taverna et al. 2005). Indeed, behavioral pharmacological studies have reported synergistic effects of D₁- and D₂-like receptors on oral dyskinesia (Cools et al. 1995). The present results may indicate a possible underlying mechanism for such oral dyskinesia.

In order to predict the functional roles of these connections, we have to consider the much higher firing rate of FS neurons, which will potently suppress MS neuron activity during the active state of FS neurons, in addition to the present static profiles of uIPSCs and anatomical features. Furthermore, a critical question is how excitatory and inhibitory inputs converge on MS and FS neurons. There are several possible mechanisms to explain quinpirole-induced differential modulation of uIPSCs between MS→MS and FS→MS connections. First, presynaptic voltage-gated calcium channels might be different in MS and FS neurons. Second, the involvement of D₂-like receptor subtypes might be different. If temporal activation patterns of MS and FS neurons are addressed, it could be possible to predict the dynamics of dopaminergic regulation of outputs via MS neurons more precisely, which would contribute to elucidate the underlying mechanisms of dopaminergic drugs.
ACKNOWLEDGEMENTS

We thank Dr. Kiyofumi Yamamoto for his excellent technical assistance, Dr. Satoshi Fujita for helpful discussion, and Prof. John L. Waddington for critical comments on the manuscript. This work was supported by KAKENHI 20592188 to M.K and 21890265 to S.K.; a Nihon University Joint Grant Research Grant to M.K.; The Promotion and Mutual Aid Corporation for Private Schools of Japan to N.K., and M.K.; the Uemura Foundation to M.K.; and a Grant for the Promotion of Multi-disciplinary Research Projects entitled ‘Translational Research Network on Orofacial Neurological Disorders’ from the Japanese Ministry of Education, Culture, Sports, Science and Technology to N.K. and M.K.
REFERENCES

Koshikawa N, Koshikawa F, Tomiyama K, Kikuchi de Beltrán K, Kamimura F, Kobayashi, M. Effects of dopamine D₁ and D₂ agonists and antagonists injected into the

Murray AM, Ryoo HL, Gurevich E, Joyce JN. Localization of dopamine D₃ receptors to mesolimbic and D₂ receptors to mesostriatal regions of human forebrain. *Proc Natl Acad Sci USA* 91: 11271-11275, 1994.

Nicola SM, Malenka RC. Dopamine depresses excitatory and inhibitory synaptic transmission by distinct mechanisms in the nucleus accumbens. *J Neurosci* 17: 5697-5710, 1997.

Pennartz CM, Dolleman-Van der Weel MJ, Kitai ST, Lopes da Silva FH. Presynaptic dopamine D₁ receptors attenuate excitatory and inhibitory limbic inputs to the shell region

Pennartz CM, Groenewegen HJ, Lopes da Silva FH. The nucleus accumbens as a complex
of functionally distinct neuronal ensembles: an integration of behavioural,

Prinssen EP, Balestra W, Bemelmans FF, Cools AR. Evidence for a role of the shell of the

Pugsley TA, Davis MD, Akunne HC, MacKenzie RG, Shih YH, Damsma G, Wikstrom
H, Whetzel SZ, Georgic LM, Cooke LW, Demattos SB, Corbin AE, Glase SA, Wise
LD, Dijkstra D, Heffner TG. Neurochemical and functional characterization of the

Sharp T, Zetterstrom T, Ljungberg T, Ungerstedt U. A direct comparison of
amphetamine-induced behaviours and regional brain dopamine release in the rat using

Shinonaga Y, Takada M, Mizuno N. Topographic organization of collateral projections
from the basolateral amygdaloid nucleus to both the prefrontal cortex and nucleus

Sibley DR, Monsma FJ Jr, Shen Y. Molecular neurobiology of dopaminergic receptors. Int

Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC. Molecular cloning and

Stevens CF, Tsujimoto T. Estimates for the pool size of releasable quanta at a single central

Stoof JC, Kebabian JW. Opposing roles for D-1 and D-2 dopamine receptors in efflux of

Tang L, Todd RD, Heller A, O'malley KL. Pharmacological and functional characterization
of D2, D3 and D4 dopamine receptors in fibroblast and dopaminergic cell lines. J

Tarazi FI, Kula NS, Baldessarini RJ. Regional distribution of dopamine D4 receptors in rat

TABLE 1. Intrinsic electrophysiological properties of MS and FS neurons

<table>
<thead>
<tr>
<th>Neuron subtype</th>
<th>Medium spiny neuron</th>
<th>Fast spiking neuron</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SEM. n</td>
<td>Mean ± SEM. n</td>
</tr>
<tr>
<td>Vm (^a) (mV)</td>
<td>-82.8 ± 0.6 97</td>
<td>-81.7 ± 1.1 24</td>
</tr>
<tr>
<td>Input resistance (MΩ)</td>
<td>258.5 ± 17.0 97</td>
<td>145.7 ± 19.6*** 24</td>
</tr>
<tr>
<td>Action potential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold (mV)</td>
<td>-48.0 ± 0.6 97</td>
<td>-48.4 ± 1.3 24</td>
</tr>
<tr>
<td>Amplitude (mV)</td>
<td>73.6 ± 1.3 97</td>
<td>62.6 ± 2.7*** 24</td>
</tr>
<tr>
<td>Half duration (ms)</td>
<td>1.42 ± 0.02 97</td>
<td>0.70 ± 0.04*** 24</td>
</tr>
<tr>
<td>AHP (^b) amplitude (mV)</td>
<td>6.7 ± 0.5 97</td>
<td>18.1 ± 1.7*** 24</td>
</tr>
<tr>
<td>Rheobase (pA)</td>
<td>118.0 ± 6.1 83</td>
<td>185.2 ± 19.8** 21</td>
</tr>
<tr>
<td>Maximal firing rate (Hz)</td>
<td>32.4 ± 1.2 81</td>
<td>86.2 ± 6.2*** 21</td>
</tr>
<tr>
<td>F-I slope (Hz/pA)</td>
<td>0.46 ± 0.03 83</td>
<td>0.79 ± 0.10** 21</td>
</tr>
</tbody>
</table>

\(^a\) Resting membrane potential; \(^b\) Afterhyperpolarization. **: \(P < 0.01\), ***: \(P < 0.001\), Student’s \(t\)-test.
TABLE 2. Properties of unitary IPSCs from MS/FS to MS neurons

<table>
<thead>
<tr>
<th>Presynaptic GABAergic neuron subtype</th>
<th>Medium spiny neuron</th>
<th>Fast spiking neuron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection rate to MS neuron (%)</td>
<td>20.0</td>
<td>53.3†††</td>
</tr>
<tr>
<td>Latency (ms)</td>
<td>1.2 ± 0.1</td>
<td>1.1 ± 0.2</td>
</tr>
<tr>
<td>Amplitude (pA)</td>
<td>52.9 ± 10.3</td>
<td>109.4 ± 24.2*</td>
</tr>
<tr>
<td>Paired-pulse ratio</td>
<td>0.71 ± 0.04</td>
<td>0.75 ± 0.03</td>
</tr>
<tr>
<td>20-80% rise time (ms)</td>
<td>1.4 ± 0.2</td>
<td>1.1 ± 0.2</td>
</tr>
<tr>
<td>80-20% decay time (ms)</td>
<td>16.6 ± 1.0</td>
<td>16.8 ± 1.1</td>
</tr>
<tr>
<td>Half duration (ms)</td>
<td>10.6 ± 0.6</td>
<td>9.3 ± 0.5</td>
</tr>
<tr>
<td>Tau" (ms)</td>
<td>12.9 ± 0.5</td>
<td>15.4 ± 2.0</td>
</tr>
</tbody>
</table>

Tau" is obtained from decay time constants of double exponential fitting curves (see Materials and Methods). †††: $P < 0.001$, χ^2 test. *: $P < 0.05$, Student’s t-test.
FIGURE LEGENDS

Figure 1. Paired whole-cell patch clamp recording from MS→MS and FS→MS neurons.

A: An example of fluorescence image of a pair of MS neurons recorded in NAc shell. Arrows show soma of each MS neuron. B: Firing properties of a MS neuron in response to depolarizing square current pulses (top). Lower traces represent voltage responses of a MS neuron. Arrow heads and arrows show a ramp depolarizing potential and temporal lags before repetitive firing, respectively. The resting potential is shown on the left of voltage traces.

C: Unitary IPSCs (uIPSCs) recorded from MS→MS neuron pair in control (a) and under application of bicuculline (10 μM), a GABA_A receptor antagonist (b). Top traces show short depolarizing current pulses into presynaptic MS neurons, which elicit action potentials in the presynaptic MS neuron (middle). Bottom traces show uIPSCs responding to presynaptic action potentials. Ten consecutive traces are shown in grey lines and averaged traces are shown in black. Note that uIPSCs are diminished by application of bicuculline. D: Firing properties of a FS neuron responding to depolarizing square current pulses (upper). Note high frequency of repetitive firing without adaptation (bottom).

E,F: Kinetics of uIPSC in MS→MS (E) and FS→MS connections (F). Broken lines are fitted curves with double exponential function and τ means weighted decay time constant (see MATERIALS and METHODS).

Figure 2. The effects of quinpirole on uIPSCs recorded from MS→MS connections.

A: A scheme of mutual connection (MS1→MS2 and MS2→MS1) with subthreshold and firing properties of each MS neuron. The resting membrane potentials are shown on the left of traces. B: The effect of quinpirole (1 μM) on uIPSC of MS1→MS2 (a) and MS2→MS1 (b) connections. Top and bottom traces show presynaptic action currents and uIPSCs recorded from postsynaptic neurons, respectively. Left and right panels indicate traces in control and
under quinpirole application. Ten consecutive traces are shown in grey lines and averaged traces are shown in black. Note that quinpirole suppresses uIPSC amplitude in both connections. C: Time courses of uIPSCs before, during and after quinpirole application in MS1→MS2 and MS2→MS1 connections shown in A and B. D: Summary of the effects of quinpirole on uIPSC amplitude, paired-pulse ratio and failure rate in MS→MS connections (n = 29). * P < 0.05, and *** P < 0.001, paired t-test. †† P < 0.01, Wilcoxon test.

Figure 3. The effects of quinpirole on uIPSCs in FS→MS connections. Aa: A scheme of three MS neurons (MS1, MS2 and MS3) innervated by one FS neuron. Ab: Subthreshold and firing properties of each neuron. The resting membrane potentials are shown in the left of traces. B: The effect of quinpirole (1 μM) on uIPSC of FS→MS1/MS2/MS3 connections. Top traces show presynaptic action currents and lower traces are uIPSCs recorded from MS1, MS2 and MS3 neurons in control (upper) and under quinpirole application (lower). Ten consecutive traces are shown in grey lines and averaged traces are shown in black. Note that quinpirole facilitates uIPSC amplitude in FS→MS1/MS2 connections, whereas it decreases uIPSC amplitude in FS→MS3 connections. C: The time course of uIPSC amplitude on application of quinpirole in FS→MS connections shown in A and B.

Figure 4. CV analysis of the effects of quinpirole on MS→MS (A) and FS→MS (B) connections. The inverse of the square of CV for the 1st uIPSCs under application of quinpirole is plotted against their mean amplitude; both CV and mean are normalized to the respective values of the 1st uIPSCs in controls. Lines of identity are indicated as dots.

Figure 5. Sulpiride (1 μM) blocks quinpirole-induced suppression of uIPSCs in MS→MS connections. A: Typical traces under application of 1 μM sulpiride alone (left) and
co-application with 1 μM quinpirole (right). Top traces show presynaptic action currents (MS1) and bottom traces are uIPSCs recorded from postsynaptic neuron (MS2). Ten consecutive traces are shown in grey lines and averaged traces are shown in black. B: The time course of uIPSC amplitude on application of sulpiride and quinpirole shown in A. C: A summary of the uIPSC amplitude, paired-pulse ratio and failure rate under application of sulpiride alone (closed column) and co-application with quinpirole (open column). There is no significant difference between these two groups (n = 15).

Figure 6. Nafadotride (10 μM) blocks quinpirole-induced suppression of uIPSCs in MS→MS connections. A: Typical traces under application of 10 μM nafadotride alone (left) and co-application with 1 μM quinpirole (right). Top traces show presynaptic action currents (MS1) and bottom traces are uIPSCs recorded from postsynaptic neuron (MS2). Ten consecutive traces are shown in grey lines and averaged traces are shown in black. B: The time course of uIPSC amplitude on application of nafadotride and quinpirole shown in A. C: A summary of the uIPSC amplitude, paired-pulse ratio and failure rate under application of nafadotride alone (closed column) and co-application with quinpirole (open column). There is no significant difference between these two groups (n = 7).

Figure 7. Application of PD128907 (1 μM) mimics quinpirole-induced uIPSC suppression in MS→MS connections. A: The effect of 1 μM PD128907 on uIPSC of MS1→MS2 connections. Top and bottom traces show presynaptic action currents and uIPSCs, respectively, recorded from postsynaptic neurons. Left and right panels indicate traces in control and under PD128907 application, respectively. Ten consecutive traces are shown in grey lines and averaged traces are shown in black. B: Time courses of uIPSCs before, during and after PD128907 application shown in A. C: Summary of the effects of
PD128907 on uIPSC amplitude, paired-pulse ratio and failure rate in MS→MS connections (n = 7). * $P < 0.05$, paired t-test. † $P < 0.05$, Wilcoxon test.
Figure 1

A. Medium spiny neuron

B. Fast spiking neuron

C. Control

D. Bicuculline

E. MS → MS

F. FS → MS
Figure 3

Aa

B

C

Figure 3
Figure 4

A MS → MS connection

B FS → MS connection
Figure 6

(A)

(B)

(C)
Figure 7

A

Figure 7A shows recordings of miniature inhibitory postsynaptic currents (mIPSCs) in a control condition and after the application of PD128907. The recordings are from cells labeled MS1 and MS2.

B

Figure 7B illustrates the time course of uIPSC amplitude (pA) in response to PD128907. The x-axis represents time in minutes, and the y-axis shows the amplitude of uIPSC in pA. The data points are marked with circles, and the black bar indicates the application of PD128907.

C

Figure 7C presents the summary statistics of paired-pulse ratio and failure rate. The bars represent the mean ± standard error of the mean (SEM) for control and PD128907 conditions. The asterisk (*) indicates a significant difference at p < 0.05, and the dagger (†) indicates a trend towards significance.