Development of orientation tuning in simple cells of primary visual cortex

Bartlett D. Moore IV and Ralph D. Freeman

Vision Science Group, Helen Wills Neuroscience Institute, and School of Optometry, University of California, Berkeley, Berkeley, California 94720-2020

Running head: Development of orientation tuning

Number of figures: 11
Number of pages: 35

Correspondence should be addressed to: R.D. Freeman, 360 Minor Hall, UC Berkeley School of Optometry, Berkeley, CA 94720; freeman@neurovision.berkeley.edu
ABSTRACT

Orientation selectivity and its development are basic features of visual cortex. The original model of orientation selectivity proposes that elongated simple cell receptive fields are constructed from convergent input of an array of lateral geniculate nucleus neurons. However, orientation selectivity of simple cells in the visual cortex is generally greater than the linear contributions based on projections from spatial receptive field profiles. This implies that additional selectivity may arise from intra-cortical mechanisms. The hierarchical processing idea implies mainly linear connections, while cortical contributions are generally considered to be nonlinear. We have explored development of orientation selectivity in visual cortex with a focus on linear and nonlinear factors in a population of anesthetized four-week postnatal kittens and adult cats. Linear contributions are estimated from receptive field maps by which orientation tuning curves are generated and bandwidth is quantified. Nonlinear components are estimated as the magnitude of the power function relationship between responses measured from drifting sinusoidal gratings and those predicted from the spatial receptive field. Measured bandwidths for kittens are slightly larger than those in adults, while predicted bandwidths are substantially broader. These results suggest that relatively strong nonlinearities in early postnatal stages are substantially involved in the development of orientation tuning in visual cortex.

Keywords: development, orientation selectivity, vision, visual cortex, nonlinearity
INTRODUCTION

The transformation of receptive fields (RFs) from center-surround organization in the early visual pathway to that of elongated edges in striate cortex is accompanied by the property of orientation selectivity of cortical neurons. Although orientation tuning is present at early postnatal stages, it narrows developmentally to a final adult level of selectivity (Bonds 1979; Freeman and Ohzawa 1992). Regarding the derivation of simple cell orientation selectivity, there is evidence supporting both feedforward and intra-cortical processing (see Ferster and Miller 2000 for a review). The classical model of orientation selectivity involves a hierarchical processing of information occurring from convergent arrays of feed-forward LGN input onto simple cells in area 17 of the visual cortex (Hubel and Wiesel 1962). Tests of this model have included direct recordings from LGN afferents (Chapman et al. 1991), and simultaneous recordings from pairs of monosynaptically connected LGN and simple cells (Tanaka 1983; Reid and Alonso 1995). In other tests, intracellular recordings of simple cells have been made while primary visual cortex was presumably inactivated. Reported findings indicate that specificity of orientation tuning can be accounted for entirely by thalamic input (Ferster et al. 1996; Chung and Ferster 1998). In addition, synaptic input to simple cells is reported to be approximately linear, which is consistent with the original hierarchical model of orientation specificity (Jagadeesh et al. 1997).

Alternative evidence suggests that linear summation of feedforward input cannot account for all the orientation selective properties of cortical cells. Intracellular recordings of simple cells indicate that the spiking output of these neurons is more narrowly tuned than the synaptic input (Volgushev et al. 1996; Volgushev et al., 2000;
Finn et al., 2007). The assumption is that if thalamic input is linear, nonlinear effects
involved in orientation tuning processes must be cortical (Jagadeesh et al. 1997). The
influence of cortical processes on simple cell orientation selectivity has been considered
in different models of central visual pathway function (Douglas et al. 1995; Somers et al.
1995; Vidyasagar et al. 1996; Chance et al. 1999). The general assumption is that
cortical mechanisms, and in particular the nonlinearity introduced by a spike threshold,
play a clear role in the refinement of simple cell orientation tuning (Carandini and
Ferster, 2000; Volgushev et al. 2000; Finn et al. 2007).

Linear and nonlinear contributions to orientation selectivity of simple cells have
been estimated previously by comparing measured tuning with predictions made from
linear summation across spatial RF profiles. Results of studies using extracellular spike
rate measurements indicate that most simple cells exhibit sharper measured orientation
tuning compared to what is predicted by linear spatial processes (Gardner et al. 1999; Li
et al. 2003; Usrey et al. 2003). However, a similar procedure conducted intracellularly
found a strong agreement between orientation tuning predicted from spatial RFs and
measured using gratings (Lampl et al., 2001). The discrepancy between the intracellular
and extracellular studies noted above suggests that the spike threshold exerts a larger
effect on responses to oriented gratings than on RFs calculated based on linear spatial
summation.

We consider here the development of orientation selectivity in the central visual
pathway with respect to linear and nonlinear processes in kittens and in adult cats. To do
this, we have computed predicted orientation tuning by visual activation from linear
summation across simple cell spatial RFs. We have compared the predicted values with
measured orientation tuning results obtained by use of conventional drifting sine wave grating stimuli. Our findings indicate that predictions of orientation tuning bandwidths based on linear spatial summation are broader in young kittens, compared to those found in adults, while measured bandwidths are similar in the two groups. These results show that nonlinear mechanisms during development of orientation tuning are relatively strong compared to those in adults. This finding indicates that cortical mechanisms play a substantial role in the development of orientation tuning and presumably other response properties of first stage cells in the visual cortex.
METHODS

Physiological procedures

Previous descriptions of our general physiological procedures have been published (Anzai et al. 1999a,b; Li and Freeman 2010; DeAngelis et al. 1993a,b). In brief, extracellular recordings are made from isolated simple cells in the striate cortex of anesthetized and paralyzed mature cats or four-week postnatal kittens using tungsten-in-glass microelectrodes (Levick 1972). For mature animals, penetrations are made along the medial bank of the postlateral gyrus through a craniotomy centered at 4 mm posterior and 2 mm lateral from zero Horsley-Clarke stereotaxic position (Horsley and Clarke 1908). For kittens, electrode penetrations are made through a craniotomy around 2 to 3 mm anterior and 1 to 2 mm lateral to the lambda suture, a prominent feature at the dorsal edge of occipital lobe. After single units are isolated, preferred values are determined quantitatively for orientation, spatial frequency, position and RF characteristics by use of drifting sinusoidal gratings. Receptive fields were between 0° and 15° eccentric. For this study, we used simple cells identified on the classical basis of internal structure of the spatial RF (Hubel and Wiesel 1962), and the degree of first harmonic modulation in responses to drifting sinusoidal gratings (Skottun et al. 1991). Orientation tuning curves are established quantitatively by use of the first harmonic response to gratings at optimal spatial frequencies and a drift rate of 2 Hz. To do this, gratings are presented monocularly at seven or more orientations in 10° to 15° increments on both sides of the preferred orientation. Each stimulus is presented for 4 seconds followed by an interstimulus interval of 2 to 4 seconds and the order of presentation is randomized. High grating
contrasts are used to elicit strong responses and blank stimuli are employed to estimate spontaneous activity for each cell.

We also obtained spatiotemporal RF maps by use of dynamic sparse white noise stimuli and a reverse correlation technique as described elsewhere (DeBoer and Kuyper 1968; Eggermont et al., 1983; Jones and Palmer 1987a,b; Sutter 1975). Details of the technique we used here have been described previously (DeAngelis et al. 1993a).

Briefly, a rectangular stimulus is divided into a 20 x 20 grid oriented along each neuron’s preferred orientation and presented within the classical RF. Bar stimuli within the patch have high (32 cd/m²) or low (2 cd/m²) luminance, and are distributed sequentially at random grid locations for 40 ms durations. Mean background luminance is 20 cd/m². Cross-correlation of the resulting spike train with the stimulus pattern yields a linear approximation of the space-time RF profile.

Data analysis

Orientation tuning width (half-width at half-height), preferred orientation, and response amplitude, are quantified by Gaussian fits to peaks of orientation tuning curves using a nonlinear optimization procedure (Matlab *fmincon*). The Gaussian function is given by:

\[r(\theta) = Ae^{-(\theta - \theta_{opt})^2/2\sigma_\theta^2} + A_{off} \]

where \(r(\theta) \) is the amplitude at orientation \(\theta \); Parameters \(A \) and \(A_{off} \) are the peak response amplitude and the amplitude offset, respectively; \(\theta_{opt} \) denotes the peak of the Gaussian (the preferred orientation); and \(\sigma_\theta \) is the standard deviation. Halfwidth of the orientation tuning curves is defined as half the width of the Gaussian at half the maximum height.
above A_{offs} and is equal to $1.17 \cdot \sigma_{\theta}$. In general, these fits captured a high proportion of
the variance (median adult $r^2= 0.9657$; median kitten $r^2= 0.9433$).

Predicted orientation tuning curves are computed in order to estimate linear and
nonlinear contributions to orientation selectivity, as described in a previous paper
(Gardner et al. 1999). Orientation tuning is predicted by application of a discrete Fourier
transform to each cell’s two-dimensional spatial RF. Predicted responses are obtained by
a sampling of points in the amplitude spectrum along a semicircle centered at the origin
and having a radius corresponding to the spatial frequency of the sine-wave gratings used
to measure orientation responses. The amplitude of each point along this arc through the
frequency amplitude spectrum is taken as the predicted response to a sine-wave grating at
that particular orientation. Each cell’s predicted orientation tuning curve is fit with a 1D
Gaussian to quantify the bandwidth (half-width at half-height, as above; median adult $r^2= 0.9614$; median kitten $r^2= 0.9216$).

Each cell’s output nonlinearity is quantified by first sorting the measured
responses from lowest to highest. These responses are then compared to the amplitude of
the frequency spectrum at the corresponding orientations. The data are then plotted on
log-log coordinates and a straight line is fitted to the relationship (median adult $r^2= 0.9888$, median kitten $r^2= 0.9730$). The slope of this line is taken as an estimate of the
power function exponent for each cell (Anzai et al., 1999a; Duong and Freeman, 2008).

A second method of calculating exponents, as used in previous studies (Gardner et al.,
1999; Li et al., 2003) produced similar results to those presented here.

RF length is estimated by integration along a 1° slice through the 2D RF envelope
at $37\% (1/e)$ of the maximum amplitude. The slice is parallel to the preferred orientation
and passes through the point of maximum RF energy. For RFs with subunits of unequal lengths, the length of the longest subunit is used. RF width is estimated by integration across a 1° slice orthogonal to the preferred orientation and passing through the point of maximum RF energy. Aspect ratio is defined as the ratio of RF length to RF width. Where stated, population means are accompanied by standard errors.

RESULTS

We have used an analytical approach that assumes a fundamental sequence of processing for orientation selectivity as illustrated in Figure 1A. In this diagram, a sine-wave grating stimulus is filtered by center-surround retinal and LGN neurons. The output from an elongated array of LGN neurons then projects to a simple cell which also receives linear cortical inputs, resulting in a linear simple cell RF filter which is elongated along one axis and contains multiple subregions. Before the output of the simple cell is transformed into action potential response, it is subjected to a static expansive nonlinearity (Albrecht and Geisler 1991, DeAngelis et al. 1993a; Anzai et al. 1999a; see Ferster and Miller 2000 for a review).

The effects of expansive output nonlinearities on orientation tuning are explored in Figure 1B and 1C. Figure 1B shows a schematic orientation tuning curve that has undergone transformation by various output nonlinearities of different strengths, which are quantified here as power function exponent values. The input tuning curve is shown in black. The gray curves show the same schematic tuning curve when output nonlinearities are imposed. Note that the tuning curve becomes substantially narrower at
high exponent values. The effects of expansive output exponents on orientation tuning
bandwidth are illustrated in Figure 1C. The horizontal axis shows orientation tuning
bandwidth before the output nonlinearity, while the vertical axis shows orientation tuning
following the output nonlinearity. The black line depicts a linear relationship and the
family of gray traces illustrate the effects of various nonlinear exponent values. The gray
traces convey the notion that expansive exponents signify substantially lower orientation
tuning bandwidths.

We have analyzed RF maps and orientation tuning curves from 91 simple cells in
the primary visual cortex. Of these, 52 were from 11 mature cats and 39 were obtained
from 16 four-week postnatal kittens. For these animals, protocols for other experiments
were also employed. In the current study, experimentally determined spatial RF maps
were used to predict orientation tuning bandwidths which were then compared to those
observed in response to drifting sinusoidal gratings. Results of this analysis for a typical
simple cell from the mature group are illustrated in Figure 2. The two-dimensional RF
profile is illustrated in 2A. This was determined by use of a dynamic white noise stimulus
to yield the detailed RF map in both space and time. The profile of this spatiotemporal
RF at the correlation delay that produces the largest sum of squared response is then
taken as the spatial RF which is used for subsequent analysis. Regions of visual space
that are excited by bright or dark spots are shaded green or red, respectively. Solid or
dotted contour lines enclose positive or negative values, respectively. Note that this
example simple cell has two adjacent parallel elongated subregions which is typical and
has been noted in previous studies (Jones and Palmer 1987a; DeAngelis et al. 1993a,b;
Reid et al. 1997; Alonso et al. 2001).
A spatial RF depiction is illustrated with contour lines in Figure 2A. From this pattern, we calculated the frequency domain transform of the spatial RF which has symmetrical components, as illustrated in 2B. Figure 2B contains a semi-circle with a radius set by the optimal spatial frequency value determined by use of drifting sinusoidal gratings. The amplitude of the frequency domain profile along the semi-circle yields a predicted orientation tuning curve generated from the frequency domain analysis as illustrated in 2C. The measured orientation tuning curve for this cell, as shown in Figure 2D, is a typical response to a grating drifting in the neuron’s preferred direction (red) and a corresponding Gaussian fit (blue). The error bars depicted in Figure 2D represent one standard error and are representative of the response variance encountered for other cells in our population. For this example simple cell, measured bandwidth is lower (12°) than that predicted from spatial analysis (25°). The data illustrated in Figure 2 are typical of the simple cells in our sample. In general, the neurons are highly tuned for grating orientation, and generally have bi-directional responses although drift in one direction is frequently dominant. While the magnitude of responses to gratings drifting in different directions frequently differ, peaks for preferred and nonpreferred directions have similar bandwidths (Campbell et al. 1968). In the current study, we have measured bandwidths using the direction of grating drift that generates highest responses.

To illustrate the range of response types that we have observed, representative tuning functions are shown in Figure 3 for four cells each from mature cats and kittens. The same RF subregion coloring used in Figure 2 is employed here; areas excited by bright or dark spots are shaded, respectively, in green or red. Typical RF patterns include
two subregions. Although less common, we have also observed some with three
subregions, as illustrated in 3C and 3E. The important observation for all eight illustrated
response patterns is that predicted orientation tuning bandwidths are broader than those
measured experimentally. For the adult neurons, predicted bandwidths are 17°, 17°, 35°
and 54° in Figures 3A, 3B, 3C and 3D, respectively. The corresponding measured
bandwidths are 13°, 9°, 19°, and 19°, respectively. Predicted bandwidths for the kitten
cells shown in Figures 3E, 3F, 3G, and 3H are 51°, 58°, 33° and 57°, respectively, while
the corresponding measurements are 15°, 16°, 14° and 19°. Another observation is that
there is good qualitative agreement between measured and predicted preferred orientation
values. In general, previous investigations have noted a clear correlation between
preferred orientation and that of the major axis of the spatial RF. (Jones and Palmer
1987b; Gardner et al. 1999; Usrey et al. 2003). Peak response rates for kittens are weaker
than those from adults, as expected (Braastad and Heggelund 1985). For our population
of simple cells, we find that peak response rates evoked by gratings are significantly
higher in adults than in kittens (32.3 spikes/sec vs. 16.0 spikes/sec; p<0.01, ANOVA;
same test used below, unless otherwise indicated).

As noted above, each orientation tuning curve for our sample of cells was fitted
with a Gaussian function. From these functions, we quantified tuning bandwidths and
plot predicted versus measured values for adult (filled circles) and kitten (open circles)
neurons in Figure 4. Note that most data points are below the diagonal line with unity
slope. Therefore, measured bandwidths are generally narrower than predicted values. For
the entire population of cells from adults and kittens, mean predicted bandwidth is 38.51°
± 1.38° and mean measured bandwidth for the same population of cells is 21.58° ± 1.21°.
The bandwidth difference is statistically significant. (p< 0.01). For adult cells alone, mean predicted and measured bandwidths are 33.13° ± 1.72° and 20.65° ± 1.41°, respectively. For kitten cells, mean predicted and measured bandwidth values are 45.68° ± 1.67° and 22.82° ± 2.11°, respectively. Considered together, mean orientation tuning for both kitten and adult neuron populations show lower values in measured compared to predicted estimates.

[Figures 4 and 5 approximately here]

Distributions for orientation tuning bandwidths of kitten and adult populations are shown in histogram form in Figure 5. For neurons from adults, as shown in 5A and 5B, measured bandwidths are significantly smaller than those predicted from two-dimensional spatial RF profiles (p< 0.01). Both predicted (Gardner, et al. 1999; Li et al. 2003) and measured (Campbell et al. 1968; Henry et al. 1974; Rose & Blakemore 1974; Wilson and Sherman 1976; Freeman and Ohzawa 1992; Gardner et al. 1999; Li et al. 2003) bandwidths in our sample of cells from adults are comparable to those of previous studies. A similar difference in predicted versus measured orientation tuning bandwidths is observed for the population of cells from kittens, as shown in 5C and 5D (p<0.01). For this population, measured bandwidths are similar to those reported in previous investigations (Bonds 1979; Braastad and Heggelund 1985; Freeman and Ohzawa 1992). Measured values are similar for adult and kitten cell populations and there is no significant difference (p=0.3789). However, predicted bandwidths from kitten spatial RFs are significantly broader than those from adult animals. (p<0.01).
The results described above show clear and substantial differences between predicted and measured orientation tuning bandwidths for cells from both adult and kitten cell populations. Since predicted tuning curves are based on assessments of summation across linear RFs, it is likely that the discrepancy between predicted and measured values is due to nonlinear elements as described in previous work (Gardner et al. 1999; Li et al. 2003; Usrey et al. 2003). Our analysis provides an assessment of nonlinear components of simple cell orientation tuning. The analytical steps of this technique are as follows. To estimate the linear contribution, we first measure spatial RFs using a white-noise stimulus with reverse correlation analysis. We then obtain a predicted orientation tuning curve from frequency domain transform of the spatial RF based on linear spatial summation. The nonlinear contribution to orientation tuning is then estimated by comparison of the responses measured using sine-wave gratings with the amplitude of the tuning curve predicted from the linear RF. Specifically, measured responses are sorted from lowest to highest and compared with the amplitude of the predicted tuning curve at corresponding orientations (see Methods). The magnitude of the nonlinear power function exponent is then estimated as the slope of a straight line fit to the relationship in log-log coordinates (Anzai et al., 1999a). Data for an example cell are shown in Figure 6A and 6B. For exponent values less than 1, nonlinearities are compressive, while those greater than 1 are expansive.

Distributions of exponent values for kitten and adult cell populations are presented in Figure 6C and 6D, respectively. For the adult population in 6D, the mean is 4.43 ± 0.67 which is an expansive value. It indicates that the linear spatial RF is insufficient to account for the sharpness of orientation tuning and that other mechanisms
are needed to refine orientation tuning to the measured values. For the neuronal group from kittens in 6C, the mean exponent value is almost twice that for adults, 8.18 ± 1.36. The difference is significant (p=0.0342). The data in Figure 6 demonstrate clearly that the exponents required to account for the discrepancy between predicted and measured bandwidths are substantially higher in kittens compared to adults. The implication is that nonlinearities during the critical early developmental stages of the visual system, which we assume are derived from intra-cortical processes, play a vital role in the refinement of orientation tuning. Although the developmental process of orientation tuning has been studied previously, we are not aware of any similar analysis or conclusion from earlier investigations.

To further analyze the relationship between orientation tuning development and neural nonlinearities, we now examine orientation bandwidth as a function of exponent values, as shown in Figure 7. Here, predicted and measured bandwidths are examined, respectively, as a function of exponent values in 7A and 7B. For adult simple cells (filled circles), there is a significant positive correlation between exponent value and predicted bandwidth ($r^2 = 0.1708$, p< 0.01). This type of correlation does not apply in the case of kitten simple cells (open circles). For kittens, $r^2 = 0.0742$ and p = 0.0921, indicating that exponent values do not correlate with predicted bandwidths. In the case of measured bandwidths, Figure 7B shows a significant negative correlation for kitten simple cells, ($r^2 = 0.1771$, p < 0.01). In other words, neurons with high exponent values have relatively narrow measured tuning bandwidths. There is a similar relationship for adult simple cells ($r^2 = 0.1826$, p < 0.01).
Our analysis approach, as illustrated in Figure 2, involves predicted versus measured orientation tuning curves. The predicted curve is taken as the amplitude of the frequency domain profile along an arc with a radius determined by the neuron’s optimal spatial frequency. The bandwidth of each predicted orientation tuning curve is therefore dependent upon both the profile of the frequency domain RF and the optimal spatial frequency. Previous findings show that spatial frequency selectivity of cortical neurons in the cat is relatively low in early postnatal days and develops rapidly to adult levels by 5 or 6 weeks postnatal (Derrington and Fuchs 1981; Freeman and Ohzawa 1992). Our current results show that orientation tuning bandwidths predicted from kitten spatial RFs are significantly broader than those from adult animals. It is of obvious interest to determine if optimal measured spatial frequency is correlated with predicted orientation tuning bandwidth. To examine this, we plot optimal spatial frequency distributions of the neurons in our samples from kittens and adult cats. As shown in Figure 8, optimal spatial frequency values are, as expected, higher for adult (0.52 ± 0.04 c/d) compared to kitten (0.30 ± 0.03 c/d) simple cells and the difference is significant (p<0.01).

Optimal spatial frequencies are lower for kittens compared to adult cats, and predicted bandwidths are dependent on optimal spatial frequencies. Therefore, cells with low optimal spatial frequencies should have relatively high predicted bandwidths. To examine this, predicted tuning bandwidths are compared to optimal spatial frequencies in Figure 8C. As the data show for both kittens and adults (open and filled circles, respectively), there is an inverse relationship between spatial frequency and predicted...
orientation selectivity ($r^2 = 0.2794, p < 0.01$ and $r^2 = 0.1133, p < 0.05$, for kittens and adults, respectively). Thus, there is a clear correlation between development of peak spatial frequency values and predicted orientation tuning bandwidths.

An obvious parameter in the study of orientation selectivity is the inherent spatial structure of the simple cell RF. Specifically, the size, shape, spacing, and numbers of RF subunits are of clear interest. Although we did not quantify the number of simple cell subunits due the difficulty in accurately measuring that value, we did explore several other parameters related to RF structure. We measured length, width, and aspect ratio of the simple cell RFs in our samples. (See Methods for details). Measurements of these parameters are shown in histogram form for kitten and adult neurons in Figure 9. With regard to RF length (9A and 9B), we find similar values in adults compared to those in kittens (2.67° ± 0.10° vs. 2.51° ± 0.10°; $p=0.28$). Three adult cells were excluded from this analysis due to difficulties in measuring RF length. Similarly, RF widths (9C and 9D) are approximately equal in our adult cat and kitten samples (1.84° ± 0.12° vs. 1.89° ± 0.12°; $p=0.81$). Aspect ratios (9E and 9F), which were computed for each neuron, are slightly higher for adult compared to kitten populations (1.65 ± 0.08 vs. 1.54 ± 0.12; $p=0.4742$), but this difference is not significant.

[Figure 9 approximately here]

These same RF parameters of length, width, and aspect ratio, are also examined with respect to predicted and measured bandwidths in Figure 10. For predicted and measured bandwidths, there are no correlations between RF length (10A, 10B) and bandwidths for either adult or kitten populations (adult predicted $r^2 = 0.0110$, $p = 0.4730$, adult measured $r^2 = 0.0040$, $p = 0.6658$, kitten predicted $r^2 = 0.0001$, $p=0.5512$, kitten
measured $r^2 = 0.0001$, $p = 0.9419$). For width parameters ($10C, 10D$) there are no
correlations for the kitten cell population (predicted $r^2 = 0.0138$, $p = 0.4756$, measured r^2
$= 0.001$, $p = 0.9561$). Measured orientation tuning bandwidth for adults is weakly
correlated with RF length ($r^2 = 0.0815$, $p = 0.0402$), but predicted bandwidth is not ($r^2 =
0.0181$, $p = 0.3422$). Aspect ratio is weakly correlated with predicted bandwidths in
adults but not for kitten cells (Figure 10E; $r^2 = 0.1920$, $p < 0.01$; $r^2 = 0.1046$, $p = 0.0446$,
respectively). For measured orientation tuning, there is a weak correlation with aspect
ratio for adults but not for kittens. (Figure 10F; $r^2 = 0.1358$, $p < 0.01$; $r^2 = 0.0152$, $p =
0.4551$, respectively). A similar relationship between aspect ratio and bandwidth has
been reported previously for adult cortical neurons (Gardner et al. 1999). Considered
together, these findings indicate that the linear RF structure plays a relatively larger role
in the determination of orientation selectivity in mature visual cortex compared to young
kittens.

[Figure 10 approximately here]

Our main findings of predicted versus measured tuning bandwidths, as shown in
Figure 4, show that the main contribution to orientation selectivity in cortical simple cells
is via linear spatial RF structure. Presumably, nonlinear cortical mechanisms contribute
to the refinement of orientation tuning. To determine if the degree of nonlinearity is
related to RF structure, we compared length, width, and aspect ratio with exponent values
for each cortical simple cell.
The relationships of these parameters, as shown in Figure 11, indicate an absence of correlations between exponent values and the RF variables of length, width, and aspect ratio for adults and kittens (length, 12A; $r^2 = 0.0006$, $p = 0.5912$; $r^2 = 0.0265$, $p = 0.3221$, width, 12B; $r^2 = 0.0572$, $p = 0.0878$; $r^2 < 0.01$, $p = 0.5753$, aspect ratio, 12C; $r^2 < 0.01$, $p = 0.7348$; $r^2 = 0.0148$, $p = 0.4609$, adults and kittens respectively). It appears, therefore, that RF structure is not specifically related to the degree of nonlinearity in either of the two cortical populations we have studied.

[Figure 11 approximately here]
We have examined the development of orientation tuning in the primary visual cortex of the cat. Our analysis concerns cortical simple cells which are thought to receive linear feedforward input from the LGN. We assume that the spatial organization of simple cell RFs generated from spike responses can be used to make predictions about linear contributions to orientation tuning. This analysis provides a direct assessment of linear and nonlinear contributions to simple cell orientation tuning. We have carried out this analysis for cortical simple cells in adult cats and for kittens at age four weeks postnatal. Our approach is to compare orientation tuning curves of adult and kitten cortical cell populations by use of drifting sine-wave gratings. Bandwidths are predicted from linear spatial RF profiles. For the population of cortical simple cells that we have studied, measured bandwidths are similar in kittens and adults. However, predicted bandwidths in kittens are substantially broader.

Our estimates of nonlinear contributions to orientation tuning are determined by derivations of exponent values in each population. The exponents are derived by estimation of the difference between linear predictions of orientation tuning and measurements with sine-wave gratings. Specifically, exponent values are taken as the slopes of straight line fits to the relationship between measured responses and predicted amplitudes in log-log coordinates (Anzai et al 1999).

For each neuron, exponent values greater or less than 1.0 reflect the degree of influence exerted by nonlinear mechanisms on orientation tuning. This provides a quantitative analysis of linear and nonlinear contributions. We find expansive processes, i.e., processes serving to sharpen rather than broaden orientation tuning, for both
populations of neurons. However, exponent values are significantly higher for neurons from kittens, as compared to those from adults. Although tuning can be accounted for in part by changes in spatial characteristics of linear spatial RF profiles, nonlinear mechanisms, presumably within visual cortex, are especially prominent in the refinement of orientation tuning in kittens.

Orientation selectivity is a primary property of neurons in visual cortex, and it has been studied from both experimental and theoretical perspectives. In the steady-state mature case, orientation selectivity of simple cells was originally proposed to be the result of input from elongated arrays of LGN neurons with center-surround configurations (Hubel and Wiesel 1962). The assumption was that there is a simple linear summation of input from LGN cells. Subsequent intracellular recordings from simple cells have demonstrated that thalamic input is linear, in accordance with this model (Jagadeesh et al. 1997). A more powerful experimental approach was to record simultaneously from monosynaptically connected LGN and visual cortical neurons that shared common RF space. Once again, the serial processing feedforward model was consistent with obtained data (Reid and Alonso 1995; Alonso, et al. 2001).

However, the serial processing hierarchical model of simple cell orientation selectivity is inconsistent with some findings. For example, linear summation of individual intracellular postsynaptic potentials can accurately account for a given cell’s optimal orientation, but not tuning bandwidth (Volgushev et al. 1996; but see Lampl et al. 2001). Some nonlinear processes have been described in the retina (Shapley and Victor 1978; Benardete and Kaplan 1999), and LGN (Duong and Freeman 2008), but intracellular recordings in simple cells indicate that LGN input is linear. It appears
therefore that nonlinear processes in early visual pathways could be a result of feedback from visual cortex. The additional orientation tuning refinement that is not accounted for by a simple serial feedforward processing mechanism could be due to expansive static nonlinearities at the output stage of simple cells (Gardner et al. 1999). The expansive static nonlinearity could be the result of interactive processes between membrane potential and action potential thresholds (see Ferster and Miller 2000).

The contribution of a spike threshold mechanisms to orientation tuning has also been investigated (Carandini and Ferster 2000; Volgushev et al. 2000). Apparently, no intracellular studies have focused on orientation tuning in immature kitten visual cortex. Expansive nonlinearities have also been studied in connection with contrast adaptation. For example, contrast adaptation is very strong in young kittens (Sclar et al. 1985). This effect could be similar to that found in different types of expansive nonlinearities.

The factor most likely to account for the strong nonlinear control of orientation tuning in young animals is a spike threshold mechanism. It may be involved as follows. The greater the difference between the baseline membrane potential and the spike threshold, the stronger the static output nonlinearity imposed by the threshold. This is because only the most optimal stimuli will provide enough excitatory input to result in a spike. Weak suboptimal stimuli will result only in subthreshold responses. Since LGN firing rates in kittens are lower than those in the adult (Daniels et al. 1978), there are presumably lower baseline membrane potentials in kitten simple cells due to reduced excitatory input. If this is the case, it could result in the relatively stronger nonlinearities we observe in kitten compared to adult simple cells. The higher firing rates in adult LGN neurons could provide enough excitatory feedforward input, even for suboptimal stimuli,
to elevate the simple cell membrane potential to close to the spike threshold and maintain
the cell in a relatively more linear domain. Note that the actual membrane potential of
the spike threshold in this scenario is the same for adults and kittens; it is only the
baseline voltage that is different. Theoretical studies have described the relationship
between membrane potential and threshold nonlinearities in detail (Hansel and van
Vreeswijk 2002; Miller and Troyer 2002).

It should be noted that because our RF maps are derived from extracellular
measurements, they may be subject to the effects of spike thresholds (Bringuier et al.
1999). However, while the predicted orientation tuning bandwidths presented here and
those predicted from intracellular RFs are similar (Lampl et al. 2001), measured tuning
bandwidths are much broader for intracellular responses. This suggests that spike
thresholds have minimal effects on RFs generated on the basis of linear spatial
summation.

In conclusion, our current results show that nonlinear mechanisms, presumably of
cortical origin, participate substantially in the maturation and refinement of orientation
tuning in young kittens. This process may be described quantitatively as one involving
expansive nonlinearities. Once maturation is attained, orientation tuning appears to be
correlated more clearly with linear RF elements.

Acknowledgements:
We thank J. Magid, M. Melissa, J. Pollard for their technical assistance.
This work was supported by a National Eye Institute research grant (NIH EY-01175).
REFERENCES

FIGURE LEGENDS

Figure 1. Schematic diagram of a basic orientation tuning sequence. A. The stimulus, in this case a drifting sine-wave grating, is first filtered by retinal and LGN cells. Convergent output from an array of LGN cells is then linearly summed with linear cortical input by the simple cell, resulting in the characteristic elongated receptive field profile. Before output from the simple cell, the signal is subjected to an expansive output nonlinearity which has the effect of reducing responses to non-optimal stimuli. B. Schematic orientation tuning curves following static output nonlinearities of various strengths. Orientation tuning before output nonlinearity is shown in black. Curves illustrating orientation tuning following output nonlinearities of various exponent strengths (n) are shown in gray. These show substantially lower bandwidths than the original tuning curve. C. Relationship between orientation tuning bandwidth before and after expansive output nonlinearity. The black line depicts a linear relationship. Gray lines show orientation tuning at various nonlinear output exponent values. These curves illustrate that orientation tuning bandwidths following output nonlinearities are sharper, and that higher exponent values impose more sharpening.

Figure 2. Analysis used to measure linear/nonlinear contributions to simple cell orientation tuning. A. Contour plot of a spatial RF profile for an example simple cell. Regions of visual space that are responsive to bright spots are shown in green, while those responsive to dark spots are shown in red. B. Frequency domain profile of the spatial RF in (A). Amplitude of frequency domain profile (red) is fit to a 1D Gaussian function (blue) to estimate bandwidth. See text for full details of the spatial analysis used.
to predict orientation tuning. C. Orientation tuning curve predicted from the spatial RF.

D. Orientation tuning curve as measured using drifting sine-wave gratings (red), with Gaussian fit (blue).

Figure 3. Examples of analysis for neurons from adult and kitten populations. RFs with predicted and measured orientation tuning are shown for 4 cells from each group. A-D illustrates for adult simple cells the spatial RF configuration. Areas excited by bright spots are shaded green and areas excited by dark spots are shaded red. Cells typically have 2 subunits like those shown in B and D, although some possess additional subunits like those shown in A and C. The corresponding measured orientation tuning curve for each adult cell is shown in A1-D1 (red). The orientation tuning curve predicted from the spatial RF is shown in black. The amplitude of the predicted tuning curve has been normalized to the peak response of the measured curve for illustration purposes. Four example kitten RFs are shown in E-H, along with the corresponding measured and predicted tuning curves (E1-H1). For all the cells depicted here, there is a good agreement between the measured and predicted preferred orientation, with the exception of the cell shown in F. There is a range of discrepancy between predicted and measured tuning bandwidths. The linear spatial RF accurately predicts the measured tuning bandwidth of the adult cell shown in A and the kitten cell shown in H. For other cells, such as the adult cell shown in C and the kitten cell shown in F, however, there is a larger discrepancy between the predicted and measured tuning curves, indicating that nonlinear processing sharpens orientation tuning beyond that presented by the spatial RF.
Figure 4. Scatterplot of orientation tuning bandwidth predicted from the spatial RF versus orientation tuning bandwidth measured with sinusoidal gratings. Filled circles correspond to bandwidths from adult animals and open circles correspond to bandwidths from kittens. The dashed lines indicate bandwidth means for all neurons in our sample (mean predicted bandwidth = $38.51^\circ \pm 1.38^\circ$; mean measured bandwidth = $21.58^\circ \pm 1.21^\circ$).

Figure 5. Histograms of predicted and measured orientation tuning for adults and kittens. A. Orientation tuning bandwidths predicted from adult spatial RFs (mean = $33.13^\circ \pm 1.72^\circ$). B. Distribution of orientation tuning bandwidths measured in adult animals with drifting sinusoidal gratings (mean = $20.65^\circ \pm 1.41^\circ$). C. Bandwidths predicted from kitten spatial RFs (mean = $45.68^\circ \pm 1.67^\circ$). D. Distribution of orientation tuning bandwidths measured in kittens (mean = $22.82^\circ \pm 2.11^\circ$).

Figure 6. Estimation of exponents describing the nonlinear contributions to orientation tuning in simple cells. A. Measured responses from sine wave gratings versus linear prediction taken from the frequency domain RF for the cell shown in Figure 2. B. To measure the exponent of the static nonlinearity, data are fit with a straight line in log-log coordinates. The slope of the line is then taken as an estimate of the exponent. C. Exponents needed to match predicted and measured orientation tuning in kittens (mean = 8.18 ± 1.36). D. Exponents needed to match predicted and measured orientation tuning in adult animals (mean = 4.43 ± 0.67). Mean exponent values are significantly higher in
kittens than in adults (p = 0.03), signifying that nonlinear cortical mechanisms influence orientation tuning more in kittens than in adult animals.

Figure 7. Relationship of exponent values to measured and predicted orientation tuning bandwidths. A. Predicted bandwidth *versus* exponent for adult cats (filled circles) and kittens (unfilled circles). There is a significant positive correlation for adult but not for kitten simple cells ($r^2 = 0.1708$, $p < 0.01$ vs. $r^2 = 0.0742$, $p = 0.0921$, respectively). B. Measured bandwidth *versus* exponent. Kitten exponents are negatively correlated with measured bandwidths, ($r^2 = 0.1771$, $p < 0.01$, respectively). Adults cells show a similar negative correlation ($r^2 = 0.1826$, $p < 0.01$). Note that the highest exponent values occur in kitten neurons with very narrow measured orientation tuning.

Figure 8. Preferred spatial frequencies for adults and kittens. Spatial frequency tuning was assessed using drifting gratings. Adult simple cells (A) have a higher mean optimal spatial frequency than kitten simple cells (B; 0.52 ± 0.04 cycles/deg vs. 0.30 ± 0.03 cycles/deg; $p<0.01$). (C) Orientation tuning bandwidth predicted from the spatial RF *versus* preferred spatial frequency. There is an inverse relationship between optimal spatial frequency and the predicted bandwidth for both kitten simple cells ($r^2 = 0.2794$, $p < 0.01$) and adult simple cells ($r^2 = 0.1133$, $p < 0.05$).

Figure 9. Measurements of kitten and adult RF structure, including length, width, and aspect ratio. A. Adult RF lengths (mean = $2.67^\circ \pm 0.10^\circ$). B. Kitten RF lengths (mean = $2.51^\circ \pm 0.10^\circ$). There is no significant difference between adult and kitten RF lengths.
(p = 0.28). C. Adult RF widths (mean = 1.84° ± 0.12°). D. Kitten RF widths (mean = 1.89° ± 0.12°). There is no significant difference between adult and kitten RF widths (p = 0.81). E. Adult RF aspect ratios (mean = 1.65 ± 0.08). F. Kitten RF aspect ratios (mean = 1.54 ± 0.12). There is no significant difference between adult and kitten RF aspect ratios (p = 0.4742).

Figure 10. Relationship between RF structure and orientation tuning bandwidths. A. Relationship between RF length and predicted orientation tuning. There is no correlation for either adult or kitten simple cells (r² = 0.0110, p = 0.4730; r² = 0.0001, p = 0.5512). B. Relationship between RF length and measured orientation tuning for adults (filled circles) and kittens (unfilled circles). There is no correlation for either adult or kitten simple cells (r² = 0.0040, p = 0.6658; r² = 0.0001, p = 0.9419). C, D. Relationships between RF width and predicted and measured orientation tuning. Neither the predicted nor measured orientation tuning bandwidths for kittens are significantly correlated (r² = 0.0138, p = 0.4756; r² = 0.001, p = 0.9561). Measured orientation tuning bandwidth for adults is weakly correlated with RF length (r² = 0.0815, p = 0.0402), but predicted bandwidth is not (adult r² = 0.0181, p = 0.3422). E. Relationship between RF aspect and predicted orientation tuning. Predicted orientation tuning is weakly but significantly correlated with RF aspect ratio for adults and kittens (r² = 0.1920, p < 0.01; r² = 0.1046, p = 0.0446, respectively). F. Relationship between RF aspect ratio and measured orientation tuning. There is a significant correlation between RF aspect ratio and measured orientation tuning bandwidth for adults but not for kittens (r² = 0.1358, p < 0.01; r² = 0.0152, p = 0.4551, respectively).
Figure 11. Relationship between RF structure and exponent values for adult cats (filled circles) and kittens (open circles). A. Relationship between RF length and exponent value. There is no significant correlation between RF length and exponent value for adults or kittens ($r^2 = 0.0006$, $p = 0.5912$; $r^2 = 0.0265$, $p = 0.3221$, respectively). B. Relationship between RF width and exponent value. There is no significant correlation between RF width and exponent value for adults or kittens ($r^2 = 0.0572$, $p = 0.0878$; $r^2 < 0.01$, $p = 0.5753$, respectively). C. Relationship between RF aspect ratio and exponent value. There is no significant correlation between RF aspect and exponent value for adults or kittens ($r^2 < 0.01$, $p = 0.7348$; $r^2 = 0.0148$, $p = 0.4609$, respectively). RF structure does not appear to influence nonlinearity for either adult or kitten simple cells.
Figure 6