Nicotinic neuromodulation in auditory cortex requires MAPK activation in thalamocortical and intracortical circuits

Irakli Intskirveli and Raju Metherate
Department of Neurobiology and Behavior and Center for Hearing Research
University of California, Irvine

Abbreviated title: Nicotinic modulation in AI requires MAPK

Corresponding Author:
Raju Metherate, Ph.D.
University of California, Irvine
2205 McGaugh Hall
Irvine, CA 92697-4550
(949) 824-6141, fax: (949) 824-2447
email: raju.metherate@uci.edu
Abstract

Activation of nicotinic acetylcholine receptors (nAChRs) by systemic nicotine enhances sensory-cognitive function and sensory-evoked cortical responses. Although nAChRs mediate fast neurotransmission at many synapses in the nervous system, nicotinic regulation of cortical processing is neuromodulatory. To explore potential mechanisms of nicotinic neuromodulation, we examined whether intracellular signal transduction involving mitogen-activated protein kinase (MAPK) contributes to regulation of tone-evoked responses in primary auditory cortex (A1) in the mouse. Systemic nicotine enhanced characteristic frequency (CF) tone-evoked current-source density (CSD) profiles in A1, including the shortest-latency (presumed thalamocortical) current sink in layer 4 and longer-latency (presumed intracortical) sinks in layers 2-4, by increasing response amplitudes and decreasing response latencies. Microinjection of the MAPK kinase (MEK) inhibitor U0126 into the thalamus, targeting the auditory thalamocortical pathway, blocked the effect of nicotine on the initial (thalamocortical) CSD component, but did not block enhancement of longer-latency (intracortical) responses. Conversely, microinjection of U0126 into supragranular layers of A1 blocked nicotine’s effect on intracortical, but not thalamocortical, CSD components. Simultaneously with enhancement of CF-evoked responses, responses to spectrally-distant (nonCF) stimuli were reduced, implying nicotinic “sharpening” of frequency receptive fields, an effect also blocked by MEK inhibition. Consistent with these physiological results, acoustic stimulation with nicotine produced immunolabel for activated MAPK in A1, primarily in layer 2/3 cell bodies. Immunolabel was blocked by intracortical microinjection of the nAChR antagonist dihydro-β-erythroidine, but not methyllycaconitine, implicating α4β2*, but not α7, nAChRs. Thus, activation of MAPK in
functionally distinct forebrain circuits—thalamocortical, local intracortical and long-range intracortical—underlies nicotinic neuromodulation of A1.

Keywords: nicotine, acetylcholine, mouse
Introduction

Nicotine administration in humans and animal models enhances sensory-cognitive function, producing, for example, enhanced processing of attended sensory stimuli (Hasselmo and Sarter 2011; Kassel 1997; Levin et al. 2006). Nicotinic enhancement of sensory-cognitive function likely involves regulation of cortical processing, and in primary auditory cortex nicotine produces apparent neuromodulatory actions that can enhance responsiveness and selectivity to sensory stimuli (Kawai et al. 2011; Liang et al. 2008). Such effects are neuromodulatory in that they alter cortical responsiveness to acoustic inputs and can endure for tens of minutes (Metherate 2011b).

Nicotinic actions that are neuromodulatory contrast with a large literature establishing the nAChR as the prototypic ionotropic neurotransmitter receptor (Albuquerque et al. 2009; Lester and Dani 1995; Miyazawa et al. 2003). The nAChR is a ligand-gated ion channel that activates rapidly and, depending on subunit composition, also can desensitize rapidly in the continued presence of agonist (Pidoplichko et al. 1997; Zhang et al. 1994). Potential mechanisms that could underlie long-lasting "modulatory" actions have been identified in diverse brain regions, and include: i) nicotinic activation of diffuse neurotransmitter systems (e.g., midbrain dopaminergic neurons) that, in turn, exert conventional neuromodulatory actions in other regions (Azam et al. 2003; Hasselmo and Sarter 2011), ii) sustained activation by circulating nicotine of a weakly-desensitizing component of the nAChR response (Lester and Dani 1995; Picciotto et al. 2008; Pidoplichko et al. 1997), or iii) activation of intracellular signaling pathways (Chang and Berg 2001; Dajas-Bailador and Wonnacott 2004; Morley and Happe 2000). The present study
explores the last possibility, the involvement of signal transduction pathways in nicotinic regulation of auditory cortex.

Studies have implicated MAPK in nicotinic regulation of neurons and non-neuronal tissue. Systemic nicotine increases levels of phosphorylated (activated) extracellular signal-related kinase (ERK) 1/2, a member of the MAPK family, in forebrain neurons as measured by immunocytochemistry or Western blot (Brunzell et al. 2003; Steiner et al. 2007; Valjent et al. 2004). Such results are consistent with a growing body of evidence from neuronal and non-neuronal preparations that MAPK mediates some effects of nicotine (Chang and Berg 2001; Dajas-Bailador and Wonnacott 2004; Song et al. 2008). Here, we investigate the role of MAPK in nicotinic regulation of tone-evoked responses in mouse A1. We find that MAPK activation in three functionally distinct thalamocortical and intracortical circuits underlies enhancement of responses to CF stimuli and suppression of responses to spectrally-distant (nonCF) stimuli. Activation of MAPK in A1 requires nAChRs that also are located in A1. These results indicate that MAPK mediates nicotinic neuromodulation of A1 to enhance the processing of acoustic information within more narrowly focused receptive fields. The results are incompatible with alternative explanations (above) involving diffuse neurotransmitter systems or sustained action of circulating nicotine.
Materials and Methods

Animals

Adult (~90 day old) male FVB mice were used for all procedures in accordance with the NIH Guide for the Care and Use of Laboratory Animals and as approved by the University of California, Irvine, IACUC. Mice were anesthetized with urethane (0.7 g/kg i.p., Sigma) and xylazine (13 mg/kg i.p., Phoenix Pharmaceuticals), placed in a sound-attenuating chamber (AC-3, IAC) and maintained at 37 deg. C. Anesthesia was supplemented as necessary with urethane (0.13 g/kg) and xylazine (13 mg/kg) via an i.p. catheter to avoid movement of mice. The head was secured in a stereotaxic frame (model 923, Kopf Instruments) using blunt earbars. After a midline incision, the skull was cleared and secured to a custom head holder. A craniotomy was performed over the right auditory cortex and the exposed brain was kept moist with warmed saline. In some cases a second craniotomy was made to permit microinjections into the thalamus. After the craniotomy, the blunt earbars were removed to permit acoustic stimulation.

Electrophysiology and acoustic stimulation

Tone-evoked local field potentials (LFPs) were recorded using a glass micropipette filled with 1 M NaCl (~1 MΩ at 1 kHz) for mapping A1, or a 16-channel silicon multiprobe (~2-3 MΩ at 1 kHz for each 177 µm² recording site, 100 µm separation between recording sites; NeuroNexus Technologies) for CSDs, and were filtered and amplified (1 Hz to 10 kHz, AI-401 or AI-405, CyberAmp 380; Axon Instruments), digitized and stored on a computer (Apple Macintosh running AxoGraph software). Acoustic stimuli were digitally synthesized and controlled using MALab (Kaiser Instruments) and a computer (Macintosh) and delivered through an open field speaker (ES-1 or FF-1 with ED-1 driver, Tucker-Davis Technologies) positioned ~3 cm in front
of the left ear. For calibration (sound pressure level, SPL, in dB re: 20 µPa) a microphone (model 4939 and Nexus amplifier; Brüel and Kjaer) was positioned in place of the animal at the tip of the left earbar. Tones were 100 ms in duration with 5 ms linear rise and fall ramps and range 1-40 kHz and -10 dB to 70 dB SPL. During data collection, stimuli were delivered at a rate of 1/s in sets of 25 trials.

Determination of A1 recording site

To find a recording site in A1, we modified our method previously described for rat (Kaur et al. 2005). Initially, we recorded tone-evoked responses from multiple sites ~250 µm apart along the anterior-posterior axis in auditory cortex using a glass micropipette. Based on responses to a standard set of tones (1-40 kHz in 2.5 kHz steps, -10 dB to 70 dB SPL in 5 dB steps), we determined characteristic frequency (CF, frequency with the lowest threshold) for each recording site. Initial maps of CF were determined from LFP recordings at the cortical surface, with subsequent confirmation at a few sites using multiunit recordings in layer 4 (~400 µm depth). CF maps were constructed to confirm the tonotopy expected for A1, including a reversal of tonotopy at the border with the anterior auditory field (Stiebler et al. 1997). We then chose a site within A1 having a CF of 10-20 kHz, and mapped along the dorsoventral axis of the presumed isofrequency region to find the site with the shortest latency, largest amplitude surface LFP. This site was used for all subsequent procedures. We inserted a 16-channel multiprobe perpendicular to the pial surface to record LFPs throughout the cortical depth, and re-determined more precisely CF (1 kHz steps) and threshold (5 dB steps) based on the initial slope and onset latency of LFPs recorded 300-400 µm below the surface. Tone-evoked LFPs were considered
threshold responses when their amplitude exceeded 3 standard deviations from the baseline value determined over the 100 ms preceding the tone.

Drug application

Nicotine hydrogen tartrate (Sigma) was dissolved in saline and adjusted to pH 7.0 before systemic injection. The nicotine dose is reported as free base (1 mg/kg nicotine hydrogen tartrate = 0.35 mg/kg free base), and was delivered subcutaneously. The MAPK-ERK kinase (MEK) inhibitor U0126 and its inactive analog U0124 (Calbiochem) were stored at -20°C as stock solutions in DMSO. Immediately before injection the stock was diluted in ACSF (125 mM NaCl, 2.5 mM KCl, 25 mM NaHCO₃, 1.25 mM KH₂PO₄, 1.2 mM MgSO₄, 2.0 mM CaCl₂, 10 mM dextrose) to 20 µM (2% final DMSO concentration). The injected solution also contained 2% tetramethylrhodamine dextran (10 kD, Invitrogen) or fluorescein dextran (10 kD, Invitrogen) to mark injection sites. For thalamic and cortical microinjections we used a 0.5 µl Hamilton syringe fitted with a glass pipette (~20 µm tip). During injections, ~100 nl (thalamus) or ~50 nl (cortex) volume was delivered slowly over 5 min, and the injector removed from the brain after an additional 10 min (after which tone-evoked responses were collected for ~30 min before administration of nicotine; e.g., Fig. 3). Thalamic injections targeted the superior thalamic radiation (STR), which contains the initial ~1 mm of the auditory thalamocortical pathway before it emerges from the thalamus proper (Cruikshank et al. 2002). Stereotaxic coordinates were (mm from bregma): AP 1.5-1.6, ML 2.2-2.3, and DV -2.8. Cortical injections targeted the supragranular cortex close to the multiprobe. In order to locate injection sites, after each experiment the animal was perfused with 4% paraformaldehyde and the brain sectioned in the thalamocortical (thalamic injections) or coronal (cortical injections) plane. Sections (~50 µm
thick) were mounted on a glass slide and imaged using a digital camera (AxioCam and Axioskop microscope, Zeiss) and software (OpenLab, Improvision). The brightest (center) region of fluorescence was designated as the injection site.

Physiology data analysis

Each tone-evoked response is the average response to 25 stimuli and responses to CF and nonCF stimuli at threshold and two higher intensities were determined at regular intervals before and after drug administration. CSD profiles were constructed off-line as described previously (Kaur et al. 2005; Kawai et al. 2007). One dimensional CSD profiles are the second spatial derivative of the LFP laminar profile (Muller-Preuss and Mitzdorf 1984); conventionally, a current sink implies the location, timing and magnitude of underlying synaptic excitation. The onset of a CSD trace was defined as the time at which the response crossed a threshold 2 standard deviations above baseline. The middle-layer CSD trace with shortest onset latency (typically 200-400 µm depth) was designated the initial sink, and its initial amplitude considered a reflection of monosynaptic thalamocortical input (note, however, that this middle layer sink often is preceded by a deeper sink in layer 5-6, see Fig. 1). Current sink magnitudes were measured in two ways: the initial sink's initial amplitude was measured 5 ms after onset, and for all sinks we measured peak amplitude over the first 100 ms (i.e., up to tone offset). To obtain group CSD profiles (e.g., Fig. 2), individual pre-nicotine profiles were normalized to the largest amplitude current sink, aligned so that the initial (thalamocortical) sink was placed at the same depth (designated mid-layer 4 in figures), and averaged across animals.

Laminar analysis
To relate CSD profiles to cortical laminae, we measured cortical thickness in the 20 kHz region of A1 in a separate group of adult animals, and subdivided the cortex into layers per Anderson et al (2009). A pipette containing fluorescent tracer (as above) was lowered into the 20 kHz region to mark the site. After removing the pipette, the animal was sacrificed and the brain sectioned without tissue fixation using a vibrating tissue slicer (Leica). Then, in 200 µm-thick coronal sections, we measured cortical width at the injection site and nearby sites (see Results).

Statistical analyses

All mean data are reported ± s.e.m. Statistical comparisons were performed using Microsoft Excel or JMP. Tests of independent means were Student’s t-test or factorial ANOVA ($\alpha = 0.05$). Tests of related means (e.g., time course data, Fig. 3) were Multivariate Analysis of Variance (MANOVA) followed by post hoc paired t-tests (two-tail) with Bonferroni correction. To determine drug effects, we first examined response data within each of two ~30 min time periods—pre-drug (baseline) and pre-nicotine (but after injection of U0124 or U0126)—and confirmed response stability using multiple paired t-tests to show that the four response measures within each 30 min period did not differ. Recordings with unstable responses were not analyzed further. For stable responses, baseline and pre-nicotine data were grouped within each time period and compared to each other (paired t-test); pre-nicotine responses were compared to post-nicotine responses (grouped into 14-minute bins) using MANOVAs followed by appropriate post hoc tests with correction.

Immunolabelling
A separate group of adult male mice was anesthetized and prepared surgically as described above, except that two craniotomies were performed to expose auditory cortex in both hemispheres and the speaker was placed directly in front of the animal, 3 cm from its nose. Using stereotaxic coordinates (2.75 mm posterior and 4.25 mm lateral to bregma) we placed a glass microelectrode on the cortical surface or in layer 4 (400 µm depth) and mapped (250 µm spacing) the cortical response to click stimuli in each hemisphere. We selected the site with the shortest onset latency and a robust response, presumably within A1, for microinjection of drugs or control solution (ACSF) prior to acoustic stimulation and subsequent immunohistochemistry. For microinjection we used a glass micropipette with a ~20 µm tip fitted on a 0.5 µl Hamilton syringe. Microinjections (50 nl volume delivered over 5 min) were made at a depth of ~200 µm and consisted of ACSF or the nAChR antagonists dihydro-β-erythroidine (DHβE, 1 µM) or methyllycaconitine (MLA, 10 nM) to block α4β2* nAChRs (asterisk indicates presence of additional subunits) or α7 nAChRs, respectively, with 2% fluorescein dextran (10 kD, Invitrogen) for post hoc visualization of the injection site. Immediately after microinjection, we presented white noise bursts repeatedly for 15 min (50 dB, 100 ms duration, 5 ms rise/fall ramps, 0.5 stimuli per sec) followed by systemic nicotine as before. After another 5 min of white noise stimulation, the animal was removed from the acoustic chamber for transcranial perfusion. Animals were deeply anesthetized and perfused transcardially with ice-cold phosphate-buffered saline (PBS), followed by 4% paraformaldehyde in PBS. Brains were removed and placed in the same fixative overnight, then rinsed with PBS and sectioned along the horizontal plane (40 µm sections; VF-200 microtome, Precisionary Instruments Inc). Sections were rinsed in PBS and incubated for 90 min in a blocking solution of 5% donkey serum and 0.3 % Triton X 100 in PBS
at room temperature. Sections were then placed in a solution containing the primary antibody against phosphorylated ERK (Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) MAPK antibody, 1:400, rabbit monoclonal antibody; Cell Signaling Technology #4370) (Abdala-Valencia et al. 2011; Faber et al. 2011) in blocking solution (5% Donkey serum and 0.3 % Triton X 100 in PBS) at 40 deg. C for 24 hour. After washing the sections for 10 min X 3 in PBS, sections were incubated with secondary antibody (1:250 Alexa Fluor 594 donkey anti-rabbit IgG; Invitrogen, Molecular Probes) in blocking solution in dark for 120 min at room temperature. Sections were then washed 10 min X 3 times in PBS and then mounted on slides using Glycergel mounting medium (Dako).

Cell counting. We used a microscope (Zeiss Axioskop) equipped with a digital camera (Zeiss Axiocam) and fluorescent light source (X-Cite; 120 Q Series. EXFO Photonic Solution Inc). Imaging software (Zeiss AxoVision) was used to store images in fluorescence and normal light, and at different magnifications. After identifying the injection site (fluorescent tracer), the distribution of immunolabeled cells was determined. On each horizontal slice, the cortical region of interest was divided into four 250 µm-wide bins centered on the injection site (two anterior and two posterior to the center of the injection site), however labeled cell counts did not differ by bin and data were combined. Each bin spanned all cortical layers, and itself was subdivided into five 100 µm-thick rectangles spanning the superficial half of cortex (approximately layers 1-4), and a single rectangle for the lower cortex (~layers 5-6). Using imaging software (NIH Image-J) we measured the size and brightness of each labeled cell, and counted cells as immunopositive if the brightness exceeded background by 2 standard deviations.
Results

We begin with a description of tone-evoked CSD profiles in mouse A1 and their regulation by systemic nicotine. We then show the effects of microinjecting into the thalamus or cortex the drug U0126, which selectively blocks activation of the MAPK family member ERK1/2 by inhibiting MAPK-ERK kinase (MEK), the immediately upstream kinase required for activation of ERK1/2. Thalamic injections targeted the initial portion of the auditory thalamocortical pathway, whereas cortical injections targeted supragranular layers of A1. All injection sites were confirmed (using fluorescent dye) to be in the targeted regions, but since drugs likely spread beyond the injection sites we distinguish only between cortex and thalamus when inferring locus of action. Finally, using immunolabeling techniques, we examine the distribution of cortical cells with phosphorylated (activated) MAPK, and determined whether immunolabeling depended on nAChRs that also were located within A1.

Tone-evoked CSD profiles in mouse A1

After mapping to determine the location of A1 (see Materials and Methods), we selected a recording site with a CF of ~20 kHz in order to examine responses to both CF and a second stimulus frequency ~2 octaves lower (referred to as “nonCF”). We inserted a 16-channel multiprobe electrode orthogonal to the cortical surface to record LFPs in all cortical layers simultaneously (100 µm separation between recording sites, with the first site visible at the cortical surface). At regular (~7 min) intervals before and after administration of nicotine and other drugs, tone-evoked LFPs were elicited in response to CF and nonCF stimuli at intensities ranging from below threshold to 70 dB SPL. CSD profiles were derived off-line. Results below
are for stimulation at 70 dB SPL, except for an explicit comparison that confirms similar effects at different intensities (Fig. 4).

In order to relate CSD profiles to cortical layers, in five animals we measured cortical thickness within the 20 kHz CF region of A1 and subdivided the cortex into layers per the quantitative description of Anderson et al (2009) (see Materials and Methods). Fluorescent tracer was injected intracortically into a 20 kHz site and the brain removed and sectioned without fixation. Cortical thickness at the injection site averaged 1061 ± 11.8 µm (n = 5), and similar thickness was found at sites 200 µm anterior (1051 ± 15.3 µm) and 200 µm posterior (1024 ± 13.2 µm; paired t-tests, p’s > 0.05) to the injection site. Thus, cortical thickness at all three sites averaged 1045 µm, and this value was used for CSD analysis. A fourth site 400 µm anterior to the injection site—and outside A1 since it was anterior to the physiologically-mapped reversal of CF between A1 and the anterior auditory field—had a thicker cortex than each site within A1 (mean 1163 ± 13.2 µm, p’s < 0.001). In order to assign recording depths to cortical layers, we used the following laminar proportions (Anderson et al. 2009): layers 1, 2, 3 and 4 occupied equal widths within the upper 50% of the cortex, and layers 5 and 6 were equally spaced within the lower 50%. These laminar proportions are consistent with our own Nissl material, which however was not used to estimate cortical width given the ~10% shrinkage due to fixation (width at 20 kHz injection site in fixed tissue, 899 ± 16.8 µm, n = 3). Thus, the cortical width of 1045 µm at the recording site is spanned by the first 11 recording sites on the 16-channel multiprobe, and CSD profiles illustrated here span the full cortical depth.
A sample CSD profile elicited by CF stimuli is shown in Fig. 1 to illustrate the main response features. CF stimuli typically elicited one or two major current sinks (putative sites of excitatory synaptic activity) in the middle and upper layers. The initial portion (first few milliseconds) of the shortest-latency, middle-layer current sink presumably reflects thalamocortical input (at 400 µm depth, or upper layer 4; green trace and white arrow in Fig. 1) (Happel et al. 2010; Kaur et al. 2004; Kaur et al. 2005). This initial current sink peaked within ~20 ms either within the same layer (layer 4) or in a more superficial layer (200-300 µm depth, layer 2 or 3; red trace and angled black arrow in Fig. 1). A shift in the location of the main sink from layer 4 to layer 2/3 over time was seen in most cases (65%, 17/26 animals). In fewer cases (35%, 9/26 mice), the peak of the main current sink remained in the input layer. Longer-latency current sinks that could endure 100 ms or more likely reflect substantial intracortical activity, and were common throughout the middle and upper layers. Other common response features include current sources above and below the current sinks, and in most animals, a small but clear current sink in deeper layers (at 800 µm depth in Fig. 1) that preceded the layer 4 initial sink. Apart from this brief response, in most animals infragranular activity was weak, and tone-evoked activity typically was restricted primarily to input and supragranular layers.

Because of the similarity of CF-evoked CSD profiles across animals, we constructed group profiles (Fig. 2A). Individual CSD profiles were normalized to the largest amplitude current sink in the pre-nicotine condition, and aligned across animals by assigning the shortest-latency middle-layer current sink to the same position (designated mid-layer 4 in Fig. 2A). The
normalized profiles were then averaged across animals. Depth in cortex was assigned to layers using information on the relative thickness of layers (above), and layers 2 and 3 were grouped by convention and because the main sink could be found in either. Many of the same features seen in individual examples (Fig. 1) are seen in the group average, including a main (largest amplitude) sink centered either in layer 4 or layer 2/3, long-lasting intracortical sinks in layers 2-4, and little or no activity in layers 5-6 except for a weak, brief response preceding the layer 4 onset. Due to variability in the laminar location of the main sink for individual animals within each group, the main sink in group profiles could be found either in layer 4 (e.g., Fig. 2D) or layer 2/3 (e.g., Fig. 2A).

Nicotinic modulation of CF-evoked CSD profiles

In preliminary experiments, systemic nicotine was administered over a range of doses (0.7-2.1 mg/kg free base, s.c.) to establish a low but effective dose for enhancing tone-evoked responses. The effects of nicotine were determined on the initial slope and peak amplitude of CF-evoked LFPs recorded in layer 4 using a micropipette electrode. Nicotine doses of 0.7-1.4 mg/kg are above threshold for enhancing responses in rat A1 (Liang et al. 2006), but were less effective in mouse (comparison of post- vs. pre-nicotine measures, paired t-test, n = 7; slope 0.97 ± 0.03 of baseline, p = 0.6; amplitude 0.97 ± 0.01 of baseline, p = 0.8). A higher dose of 2.1 mg/kg was more consistently effective, increasing slope to 1.64 ± 0.13 of baseline (p = 0.01, n = 3), and amplitude to 2.32 ± 0.48 of baseline (p = 0.02). This dose was considered reliably effective and used for all subsequent experiments.
The effect of systemic nicotine on CF-evoked CSD profiles can be seen in control experiments during which the inactive drug U0124 was injected into the thalamus or cortex. The group CSD profile is shown in Fig. 2A (thalamic control injection, n = 7; lower panels show first 20 ms after tone onset), and example CSD traces are in Fig. 2B. Systemic nicotine enhanced tone-evoked responses, most prominently in layers 2-4 (Fig. 2A). In particular, nicotine reduced the latency and increased the amplitude of the initial current sink in layer 4 and the main current sink in layer 2/3 (Fig. 2B). Nicotine also enhanced longer-latency sinks, but because of their variable laminar location and timing, group effects are less obvious.

These effects are consistent with previous reports of nicotinic enhancement of sensory-evoked cortical responses in LFP, single unit and multiunit recordings (Harkrider and Champlin 2001; Liang et al. 2006; Oldford and Castro-Alamancos 2003; Parkinson et al. 1988). Unlike previous reports, however, the present study explicitly identifies two potential loci of nicotinic action: first, nicotinic enhancement of thalamocortical input implies a pre-cortical locus consistent with, for example, recent evidence that nAChRs regulate excitability of auditory thalamocortical axons (Kawai et al. 2007). Second, enhancement of intracortical current sinks suggests either: i) an intracortical locus of action, or ii) intracortical propagation of enhanced thalamocortical input. Thus, the neuromodulatory effects of systemic nicotine could result from actions in the thalamocortical pathway (or any preceding auditory relay) and, possibly, intracortical circuits.

To test for MAPK-mediated modulation at these loci, we injected the MEK inhibitor U0126 into
either the thalamocortical pathway or supragranular A1, and then tested for effects of systemic nicotine.

Effects of thalamic or cortical microinjection of MEK inhibitor on nicotinic modulation of CSD profiles

The MEK inhibitor U0126 (20 µM; 100 nl in thalamus or 50 nl in cortex) was microinjected 30 min prior to systemic nicotine, since such pre-treatment (dose and duration) is known to selectively block MAPK activation (phosphorylation of ERK1/2) in a wide variety of tissues including rodent forebrain (Favata et al. 1998; Roberson et al. 1999; Shobe et al. 2009; Steiner et al. 2007; Welsby et al. 2009). Thalamic injections targeted the initial ~1 mm segment of the auditory thalamocortical pathway (superior thalamic radiation, STR); all fluorescently-labeled injection sites were centered in, or largely overlapped, portions of STR. Cortical injections were centered in supragranular layers adjacent to the CSD multiprobe. Injections sites were confirmed after each experiment by visualizing the fluorescent dye injected along with drugs (Fig. 2B, right, shows a thalamic injection in STR).

Thalamic injection of MEK inhibitor preferentially reduced the effects of systemic nicotine on the tone-evoked thalamocortical current sink (Fig. 2C). The group CSD profile shows that nicotine clearly enhanced tone-evoked activity in supragranular layers, but had lesser effects on the earliest response in layer 4 (Fig. 2C, lower panels show initial response in layer 4). In contrast, cortical injection of MEK inhibitor largely blocked nicotinic enhancement of supragranular current sinks (Fig. 2D) without blocking the shift to shorter latencies and larger
amplitudes for the initial layer 4 current sink (lower panels in Fig. 2D). The differential effects of thalamic vs. cortical MEK inhibition imply that MAPK in two distinct loci contributes to nicotinic modulation.

To quantify these effects we focused on the major response features, as shown in Fig. 2B. In order to assess thalamocortical input we focused on the initial portion of the layer 4 current sink, measuring its onset latency and amplitude 5 ms after onset (Fig. 2B, bottom traces and inset). Then, to assess intracortical activity we measured the peak latency and peak amplitude of the current sink in layer 2/3 (Fig. 2B, top traces). We also measured the peak layer 4 sink (latency and amplitude), an intermediate measure that likely reflects both thalamocortical and intracortical processing. In control animals, nicotine decreased latencies and increased amplitudes for the layer 4 and layer 2/3 current sinks (Fig. 2B), as seen in group CSD profiles and summarized in Table 1.

Group data in Fig. 3 show the magnitude and time course of drug effects on thalamocortical input (layer 4 sink, onset latency and amplitude at 5 ms; Fig. 3A and B, left column), and intracortical activity (layer 2/3 sink, peak latency and amplitude; right column). Histograms in Fig. 3 and data in Table 1 summarize peak effects of nicotine over 15-30 min (or 30 min average, if no effect of nicotine). Fig. 3A, left, shows the effects of thalamic drug injections. Prior to systemic nicotine (delivered at black arrow), response measures were not affected by thalamic injection of the control drug, U0124 (at white arrow; delivered over 5 min followed by 10 min rest; all responses normalized to pre-nicotine values). In controls, systemic nicotine reduced latencies and enhanced amplitudes for the initial layer 4 sink (onset latency and amplitude at 5
ms; Fig. 3A, left column), the peak layer 2/3 sink (peak latency and peak amplitude; Fig. 3A, right column), and the peak sink in layer 4 (not shown; Table 1) (all comparisons MANOVAs, post-nicotine data grouped into 14-min bins and asterisks indicate outcome of post-hoc tests with Bonferroni correction, see Materials and Methods, n = 7; layer 4 onset latency: $F(4,24) = 5.26, p = 0.0035$; layer 4 peak latency: $F(4,24) = 3.98, p = 0.0128$; layer 2/3 peak latency: $F(4,24) = 3.58, p = 0.019$; layer 4 initial amplitude: $F(4,24) = 2.79, p = 0.04$; layer 4 peak amplitude: $F(4,24) = 3.88, p = 0.014$; layer 2/3 peak amplitude: $F(4,24) = 2.78, p = 0.04$). The effects of nicotine lasted ~14-28 min. Statistically significant post-nicotine time points were averaged to obtain peak values shown in histograms, and compared to pre-nicotine values (Fig. 3A, Table 1 lists outcome of pre- vs. post-nicotine paired t-tests, n = 7). Thus, nicotine increased amplitudes and decreased latencies of tone-evoked current sinks attributed to both thalamocortical and intracortical processing.

Microinjection into the thalamus of the MEK inhibitor U0126 differentially affected nicotinic regulation of thalamocortical vs. intracortical responses. In the presence of thalamic MEK inhibition, systemic nicotine did not affect the onset latency or initial amplitude of the layer 4 current sink (Fig. 3A, left column; MANOVAs, n = 5-6; latency: $F(4,20) = 0.753, p = 0.567$; amplitude: $F(4,20) = 0.74, p = 0.57$). However, nicotine still reduced the peak latency and increased the peak amplitude of the layer 2/3 current sink (right column; latency: $F(4,16) = 3.006, p = 0.05$; amplitude: $F(4,16) = 5.96, p = 0.003$). The inhibitor also blocked nicotine’s effect on the layer 4 sink peak latency and amplitude (n = 6, not shown, Table 1; latency: $F(4,20)$
= 1.87, p = 0.155; amplitude: F(4,20) = 0.377, p = 0.82). The effects of thalamic MEK inhibitor are summarized in the histograms and Table 1 (n = 5-6). Peak effects of nicotine (histograms) also were compared between drug conditions and significant differences indicated in Fig. 3A (between-bar comparisons, ANOVA, * p < 0.05; ** p < 0.01). Thus, inhibition of MAPK activation in the thalamus blocked nicotine’s effect on the CF-evoked layer 4 current sink, but not its effect on the layer 2/3 current sink.

Nicotine’s effects following intracortical injection of drugs is shown in Fig. 3B. For control injections (U0124), effects of nicotine closely resembled those described above for thalamic controls, i.e., reduced current sink latencies and increased amplitudes (Fig. 3B; MANOVAs, n = 6; layer 4 onset latency: F(4,20) = 3.65, p = 0.02; layer 4 peak latency: F(4,20) = 2.45, p = 0.02; layer 2/3 peak latency: F(4,20) = 6.013, p = 0.002; layer 4 initial amplitude: F(4,20) = 10.14, p = 0.0001; layer 4 peak amplitude: F(4,20) = 5.79, p = 0.003; layer 2/3 peak amplitude: F(4,20) = 3.52, p = 0.02). Peak nicotine effects are summarized in the histograms and Table 1 (pre- vs. post-nicotine, paired t-tests, n = 6).

In contrast to the effects of thalamic MEK inhibition, however, intracortical MEK inhibition blocked nicotine’s effect on the intracortical (layer 2/3) sink’s peak latency and amplitude, but did not prevent the decreased onset latency and increased initial amplitude for the layer 4 sink (Fig. 3B; MANOVAs, n = 6; layer 4 onset latency: F(4,20) = 3.031, p = 0.04; layer 4 peak latency: F(4,20) = 1.133, p = 0.37; layer 2/3 peak latency: F(4,20) = 1.106, p = 0.38; layer 4 initial amplitude: F(4,20) = 4.15, p = 0.01; layer 4 peak amplitude: F(4,20) = 0.9, p= 0.48; layer 2/3 peak amplitude: F(4,20) = 0.08, p = 0.98). The effects of cortical MEK inhibition are
summarized in the histograms and Table 1 (pre- vs. post-nicotine paired t-tests, n = 6). Peak effects of nicotine (histograms) also were compared between drug conditions and significant differences indicated in Fig. 3B (between-bar comparison, ANOVA, ** p < 0.01). Thus, inhibition of MAPK activation in the cortex reduced nicotine’s effect on the CF-evoked layer 2/3 current sink, but not its effect on the initial layer 4 current sink, confirming the contrasting effects of thalamic vs. cortical MEK inhibition.

Note that prior to nicotine administration, injection of MEK inhibitor into the thalamus (Fig. 3A, at white arrow) or cortex (Fig. 3B, white arrow) did not by itself affect amplitude or latency measures for any current sink (Fig. 3, paired t-tests comparing average baseline vs. average pre-nicotine responses, p values > 0.05), indicating that blockade of thalamic or cortical MAPK activation per se did not affect tone-evoked responses.

Comparison of results across stimulus intensity

Although the results presented above are for acoustic stimulation at 70 dB SPL, similar results were observed for CF stimuli at all intensities tested. Figure 4 summarizes the effects of nicotine on responses to CF stimuli at threshold intensity (12.5 ± 0.84 dB SPL, n = 26) and two higher intensities (40 dB, 70 dB), separately for the initial layer 4 current sink (Fig. 4, left column), and the peak layer 2/3 sink (right column). After control injections of U0124 into the thalamus (top row) or cortex (bottom row), nicotine enhanced all response amplitudes at each intensity tested (Fig. 4, solid lines; paired t-tests, p values < 0.05; n = 6-7 at each intensity for thalamic injections; n = 6 for cortical injections). Injection into the thalamus of the MEK inhibitor
blocked nicotine’s effect in layer 4 (Fig. 4, top row, dashed lines; paired t-tests, \(p > 0.05 \), \(n = 6 \) at each intensity), but not in layer 2/3 (\(p < 0.05 \)), similarly at each intensity. Conversely, cortical injection of the MEK inhibitor blocked nicotine’s effect on the layer 2/3 sink (Fig. 4, bottom row, dashed lines; paired t-tests, \(p > 0.05 \), \(n = 6 \) at each intensity), but not on the layer 4 sink (\(p < 0.05 \)). The effects of nicotine and MEK inhibition, therefore, did not vary with acoustic intensity.

Thus, blocking activation of MAPK in thalamus vs. cortex differentially blocks nicotine-induced enhancement of the initial layer 4 current sink vs. peak layer 2/3 current sink, indicating dependence on thalamocortical vs. intracortical processes, respectively. Inhibition of MEK in either locus prevented enhancement of the peak layer 4 sink, suggesting underlying contributions from both thalamocortical and intracortical processes.

Nicotinic modulation of nonCF-evoked responses

Nicotine’s effect on responses to nonCF stimuli (2 octaves below CF) differed consistently from its effect on CF-evoked responses at the same recording site (determined following a single nicotine injection, alternating CF and nonCF stimulus sets). Because the nonCF-evoked CSD profiles and the changes produced by nicotine were more varied than at CF (Kaur et al. 2005), we did not construct group CSD profiles but instead grouped data using three different measures: i) peak current sink in layer 4, ii) peak current sink in layer 2/3, and iii) largest-amplitude sink,
regardless of layer. As shown in Fig. 5A for an individual animal, even as nicotine enhanced responses to CF stimuli (Fig. 5A, top), at the same time it reduced responses to nonCF stimuli (Fig. 5A, bottom). In group data (Fig. 5B), nicotine reduced by ~20% the peak amplitude of the largest current sink evoked by nonCF stimuli (data combined from control animals following injection of U0124 into thalamus or cortex; paired t-test, n = 12, p = 0.005), and showed a tendency to reduce the peak sink in layer 4 (p = 0.053), but did not affect the peak sink in layer 2/3 (p = 0.651). Regardless of which measurement is employed, nicotine consistently increased the contrast between nonCF-evoked responses (either suppressed or not affected) and enhanced CF-evoked responses.

To determine the contribution of MAPK activation to nicotinic suppression of nonCF-evoked responses, we measured the effects of MEK inhibitor on nicotinic regulation of the largest amplitude current sink. Following microinjection of U0126 into the thalamus or cortex, nicotine did not alter the amplitude of the largest current sink (Fig. 5B; thalamic injection, paired t-test, n = 5, p = 0.199; cortical injection, n = 6, p = 0.217). Thus, the suppressive effect of nicotine on nonCF-evoked responses, as with its enhancing effect on CF-evoked responses, requires activation of MAPK.

Activated-MAPK immunofluorescence and dependence on cortical nAChRs
In a final set of experiments, we determined the distribution of cells in A1 with nicotine-induced activation of MAPK, and the dependence on nAChRs that also are in A1 (as opposed to, for example, nAChRs regulating diffuse neurotransmitter systems originating in the brainstem that, in turn, project to A1). We subjected six adult mice to bilateral white noise acoustic stimulation and systemic nicotine after microinjecting auditory cortex in one hemisphere with control solution (ACSF) and in the contralateral hemisphere with a nAChR antagonist, either DHβE (50 nl, 1 µM) or MLA (10 nM) to block α4β2* or α7 nAChRs, respectively. In each animal, both intracortical injection sites were marked with fluorescent tracer (Fig. 6A). After 5 min of post-nicotine acoustic stimulation, animals were perfused and the brains sectioned and processed for immunofluorescent labeling of phosphorylated MAPK (see Materials and Methods).

In control hemispheres (ACSF microinjection), immunolabeled cells were found primarily in the upper layers of A1 (Fig. 6B), especially from 100 µm to 300 µm below the pia (Fig. 6C; ANOVAs comparing depth distributions in 100 µm bins, p’s < 0.05). The majority of immunolabeled cells exhibited clear somatic staining but beyond that did not have readily identifiable morphology, and some cells exhibited short, vertically oriented processes (Fig. 6B). The immunolabeling of somata was blocked completely by intracortical DHβE, but not affected by intracortical MLA (Fig. 6B, C; ANOVAs comparing 100 µm-wide bins in control vs. drug hemispheres; DHβE: p < 0.05 for 0-100 µm, 100-200 µm and 200-300 µm, n = 3 animals; MLA: p > 0.05 for all depths, n = 3 animals). Thus, nicotinic activation of MAPK in A1 depends on α4β2*, but not α7, nAChRs that are also in A1.
In two additional animals, the brain was sectioned in a near-horizontal plane so as to preserve the thalamocortical pathway (Cruikshank et al. 2002). We focused on the first 1-2 millimeters of the thalamocortical pathway, including STR, looking for immunolabeled processes. Although STR and the portion of the thalamocortical pathway anterior to the hippocampus did contain diffuse, above-background levels of immunofluorescence, there were few identifiable processes and this approach was not pursued further.

Discussion

The results show that modulation of tone-evoked responses in A1 by systemic nicotine depends on MAPK-mediated signal transduction. Enhancement of CF-evoked current sinks in layers 4 and 2/3 involves independent activation of MAPK within thalamocortical and local intracortical circuits, whereas nicotinic suppression of responses to spectrally-distant (nonCF) stimuli depends on MAPK to suppress activity along long-distance intracortical pathways. Activation of cortical MAPK in turn depends on activation of $\alpha_4\beta_2^*$ nAChRs located in A1. Thus, nicotinic modulation of spectral integration in A1, the end result of which is to shift cortical processing towards favoring CF stimuli, involves activation of MAPK in at least three distinct circuits.

Nicotinic “neuromodulation” via ionotropic nAChRs and MAPK

The nAChR is the prototypic ionotropic receptor, a ligand-gated ion channel best known for its role at the neuromuscular junction but also well known for actions in the brain (Albuquerque et al. 2009; Lester and Dani 1995; Pidoplichko et al. 1997). Neuronal nAChRs are pentamers
comprised of α and β subunits, or only α subunits, that mediate multiple actions in cortex such
as rapid postsynaptic excitation of interneurons and pyramidal neurons, presynaptic enhancement
of neurotransmitter release, and as shown recently, enhanced excitability of thalamocortical
axons (Frazier et al. 1998; Gray et al. 1996; Grybko et al. 2011; Kawai et al. 2007; Roerig et al.
1997). Neuronal nAChRs gate a cation current of Na^+, K^+ and, depending on subunit
composition, Ca^{2+} (Dajas-Bailador and Wonnacott 2004; Vernino et al. 1992). Rapid application
of agonist demonstrates that nAChRs activate rapidly, and in the continued presence of agonist
exhibit fast and slow components of desensitization, so that much of the current may subside
within milliseconds (Pidoplichko et al. 1997; Zhang et al. 1994). In addition to Ca^{2+} influx via
the receptor itself, nAChR activation can increase intracellular Ca^{2+} via voltage-gated Ca^{2+}
channels or release from intracellular stores (Dajas-Bailador and Wonnacott 2004; Dickinson et
al. 2008; Grybko et al. 2011; Sharma and Vijayaraghavan 2003); in principle, any of these Ca^{2+}
sources could trigger biochemical signal transduction.

In contrast to the rapid ion fluxes gated by nAChRs, many studies at the systems and behavioral
levels reveal more subtle effects of nicotine that endure for tens of minutes and contribute to
perceptual and cognitive enhancement (see final section, below). Potential mechanisms
underlying nicotinic neuromodulation include sustained activation of a weakly-desensitizing
nAChR current by circulating nicotine (half-life in mouse, ~9 min; (Siu and Tyndale 2007) or
activation of brain systems that exert conventional neuromodulatory actions via metabotropic
receptors (see Introduction). However, the present study indicates that neither of these potential
mechanisms plays a major role in nicotine-induced neuromodulation of A1, since nicotinic
effects were blocked by inhibition of MAPK activation (despite the continued presence of
circulating nicotine), and MAPK activation was blocked by antagonism of cortical nAChRs (despite continued nicotinic stimulation of, for example, diffuse neurotransmitter systems originating in the brainstem or basal forebrain). Nicotinic activation of MAPK has been demonstrated in a variety of preparations, including cultured cortical neurons (Steiner et al. 2007), cortical synaptosomes (Dickinson et al. 2008), cell lines (Nakayama et al. 2001) and autonomic ganglia (Chang and Berg 2001). Systemic nicotine in vivo activates MAPK in frontal cortex, as demonstrated by immunolabeling and Western blot for phosphorylated ERK1/2 (Brunzell et al. 2003; Valjent et al. 2004). In most studies, however, the functional consequences of nicotine-induced MAPK activation on cortical circuits is not clear. The present study shows that activation of MAPK is required for nicotinic enhancement of sensory processing in A1.

MAPK-mediated regulation of distinct thalamocortical and intracortical circuits

Previous studies have shown that systemic nicotine enhances sensory-evoked cortical responses measured by recording single units, evoked potentials and LFPs in humans, cats, rats and mice (Harkrider and Champlin 2001; Kawai et al. 2011; Liang et al. 2006; Metherate 2004; Oldford and Castro-Alamancos 2003; Parkinson et al. 1988). The present study extends this observation to the critical involvement of MAPK, and importantly, implicates distinct loci of action. Although nAChRs are found throughout the auditory system (Morley and Happe 2000), the effects of systemic nicotine on processing in A1 clearly involve dependence on cortical nAChRs and modulation, via MAPK, of three functionally distinct forebrain circuits.
One locus of action lies along the auditory thalamocortical pathway that mediates the CF-evoked initial current sink in cortical layer 4. The onset and initial few milliseconds of the layer 4 current sink are affected by microinjection into the thalamus of nAChR antagonist (Kawai et al. 2007) or MEK inhibitor (present results), but not by intracortical injection of nAChR antagonist (Kawai et al. 2011), MEK inhibitor (present study) or the GABA agonist muscimol (Happel et al. 2010; Kaur et al. 2004; Liu et al. 2007), indicating that this initial portion of the layer 4 current sink reflects monosynaptic thalamocortical input. Nicotinic enhancement of thalamocortical input likely involves enhanced excitability of myelinated thalamocortical axons (Kawai et al. 2007), which relay information about CF stimuli to A1. The initial segment of the thalamocortical pathway was the target of microinjections in present study, but since injections likely spread beyond this narrow pathway other thalamic structures may be implicated.

Similarly, the subcortical white matter though which the myelinated thalamocortical pathway projects also exhibits binding for nAChRs (Bieszczad et al. 2011) and may have been affected by microinjections in the present study. Regardless of the exact locus, the results clearly show that nicotinic enhancement of cortical responsiveness involves enhanced thalamocortical input.

A second locus of action is intracortical and also contributes to enhanced responses to CF stimuli. Thalamocortical input to layer 4 of A1, as in other sensory cortices (Douglas and Martin 2004), is rapidly amplified by local circuits to produce a large current sink in layer 2/3 (Happel et al. 2010; Kaur et al. 2005; Kawai et al. 2011; Liu et al. 2007). In the present study, nicotinic enhancement of this layer 2/3 sink was blocked by cortical, but not thalamic, injections of MEK inhibitor, and immunolabel for activated MAPK in layer 2/3 was blocked by intracortical DHβE. These results complement the recent physiological demonstration that intracortical DHβE blocks.
nicotinic enhancement of the layer 2/3 current sink (Kawai et al. 2011). Together, these results indicate a local nicotinic action within A1, one that involves cortical α4β2* nAChRs and subsequent activation of MAPK. Importantly, these results also indicate that nicotinic enhancement of intracortical responses occurs independently of enhanced thalamocortical input. Moreover, since endogenous cholinergic systems innervate thalamus and cortex separately, i.e., from cholinergic nuclei in the brainstem vs. basal forebrain, respectively (Everitt and Robbins 1997), our findings imply that activation of thalamic vs. cortical MAPK could occur independently.

The third locus of action lies along long-distance (“horizontal”) intracortical pathways that mediate responses to spectrally-distant, nonCF stimuli. Previous studies have employed a variety of methods, notably CSD analysis and intracortical silencing via muscimol administration, to demonstrate that cortical responses to spectrally-distant stimuli depend on long-distance intracortical projections from regions of A1 where the stimulus is CF (Happel et al. 2010; Kaur et al. 2004; Kaur et al. 2005). The present results showing differential effects of nicotine on CF- vs. nonCF-evoked responses—e.g., enhancement vs. either suppression or no effect, respectively—further support the notion of distinct underlying circuits (see also similar findings from Kawai et al. 2011). Blockade of nicotinic suppression by MEK inhibition implies regulation of long-distance pathways. The apparent activation of layer 1 by nicotine in some cases (e.g., Fig. 5A, nonCF “Difference” profile) suggests a role for layer 1 interneurons that are excited by nicotine and in turn inhibit layers 2/3 (Christophe et al. 2002; Lee et al. 2010), and may regulate long-distance projections mediating nonCF responses (Metherate 2011a). Note that an unresolved issue relates to the physical arrangement of nAChRs and MAPK within auditory...
cortex. For example, it is not known whether nAChRs and MAPK are co-localized in the same neuron. Methods for visualizing nAChRs and MAPK will be useful for resolving this issue.

Nicotinic activation of MAPK in sensory-cognitive function

The present results also could help elucidate the role of nAChRs in cognitive function, given an extensive literature implicating MAPK as a critical node among signaling pathways mediating behaviorally-relevant synaptic plasticity (Philips et al. 2007; Reissner et al. 2006; Sweatt 2004; Waltereit et al. 2001; Welsby et al. 2009). Experience-dependent plasticity in sensory cortex is thought to require a convergence of sensory inputs with inputs mediating the effects of behavioral attention (Carpenter-Hyland et al. 2010; Fritz et al. 2003; Weinberger 2004). Since nAChRs contribute to attentional mechanisms (Hasselmo and Sarter 2011), an attractive notion is that MAPK may serve as a molecular “node” (Reissner et al. 2006) or coincidence detector (Sweatt 2001) to signal concurrent sensory stimulation and attention. Such interactions may occur along multiple time scales (Philips et al. 2007; Shobe et al. 2009): in the short term, nicotinic “sharpening” of receptive fields (enhancement of CF-evoked responses, suppression of nonCF-evoked responses), may contribute to mechanisms of “attentional narrowing” or filtering (Kassel 1997; Metherate 2011a). Over a longer term, nicotinic activation of MAPK may contribute to learning-related synaptic plasticity (London and Clayton 2008; Sweatt 2004; Welsby et al. 2009). These issues will be the focus of future investigations.
Acknowledgements

Acknowledgements: We thank Ronit Lazar and Dr. Candace Hsieh for assistance with immunofluorescence experiments, and Drs. Thomas J. Carew and Gary Phillips for helpful discussions about MAPK. This research was supported by NIDA (R01 DA12929) and NIDCD (R01 DC02967, P30 DC08369).

Author contributions

II and RM designed the experiment, analyzed the data and wrote the manuscript. II performed all data collection.

London SE, and Clayton DF. Functional identification of sensory mechanisms required for

Metherate R. Functional connectivity and cholinergic modulation in auditory cortex. Neurosci

Metherate R. Modulatory mechanisms for controlling auditory processing. In: Synaptic
Mechanisms in the Auditory System, edited by Trussell LO, Popper AN, and Fay RR. New York:

Miyazawa A, Fujiyoshi Y, and Unwin N. Structure and gating mechanism of the acetylcholine

Morley BJ, and Happe HK. Cholinergic receptors: dual roles in transduction and plasticity.

Muller-Preuss P, and Mitzdorf U. Functional anatomy of the inferior colliculus and the
auditory cortex: current source density analyses of click-evoked potentials. Hear Res 16: 133-
142, 1984.

Nakayama H, Numakawa T, Ikeuchi T, and Hatanaka H. Nicotine-induced phosphorylation
of extracellular signal-regulated protein kinase and CREB in PC12h cells. J Neurochem 79: 489-

Oldford E, and Castro-Alamancos MA. Input-specific effects of acetylcholine on sensory and

Parkinson D, Kratz KE, and Daw NW. Evidence for a nicotinic component to the actions of

Picciotto MR, Addy NA, Mineur YS, and Brunzell DH. It is not "either/or": activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood. *Prog Neurobiol* 84: 329-342, 2008.

Table 1. Effects of systemic nicotine on CF tone-evoked current sinks following thalamic or cortical injections of control drug or MEK inhibitor.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Injection Site</th>
<th>Layer 4 current sink</th>
<th>Layer 2/3 current sink</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Onset Latency</td>
<td>Initial Amplitude</td>
</tr>
<tr>
<td>Control (U0124)</td>
<td>Thalamic</td>
<td>0.001*</td>
<td>0.0003*</td>
</tr>
<tr>
<td></td>
<td>Cortical</td>
<td>0.029*</td>
<td>0.036*</td>
</tr>
<tr>
<td>MEK inhibitor (U0126)</td>
<td>Thalamic</td>
<td>0.270</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>Cortical</td>
<td>0.005*</td>
<td>0.04*</td>
</tr>
</tbody>
</table>

P values associated with paired t-test comparing pre-nicotine average to post-nicotine average calculated as for histograms in Fig. 3. *, p < 0.05
Figure 1. Laminar profile of CF tone-evoked responses in A1. A representative example of LFPs (left column) recorded using a 16-channel silicon multiprobe (12 channels shown, with the trace from the recording site visible at the cortical surface labeled 0 µm). The derived, one-dimensional CSD traces (middle column) and interpolated color plot (right) show the CSD response to the stimulus (20 kHz, 70 dB SPL, 100 ms duration). The green CSD trace and white arrow indicate the layer 4 sink that includes the presumed thalamocortical response. The red trace and black arrow indicate the layer 2/3 (intracortical) current sink. The color scale indicates response amplitudes normalized to the largest current sink (reds/black) and largest current source (blues/white), and also applies to all subsequent CSD figures.

Figure 2. Effects of systemic nicotine on group CSD profiles in A1 for control animals (A) and after thalamic (C) or intracortical (D) microinjection of MEK inhibitor. (A) Nicotine enhanced CSD profiles evoked by CF stimuli (70 dB, n = 7) after control injections of U0124 targeting the initial thalamocortical pathway. Vertical dashed lines indicate 20 ms time window expanded in lower panels. (B) Example of nicotine’s effects on current sinks in layers 4 and 2/3 (traces on left; inset shows points of measurement); arrowheads indicate onset of CF stimulus, 70 dB SPL. Images on right show example of thalamic injection site. The auditory thalamocortical pathway (STR) is indicated by white arrow in image of a near-horizontal (“thalamocortical” plane) brain section (top). Fluorescence image of same section (bottom) reveals injection site in STR. A similar procedure was carried out in each animal to identify thalamic or cortical injections sites. AC, auditory cortex; MG, medial geniculate; LG, lateral geniculate; hip, hippocampus. (C)
Group CSD profiles after thalamic injection of the MEK inhibitor, U0126, reveal strong nicotine effects in upper layers but lesser effects on initial responses in layer 4. (D) Group CSD profiles after intracortical injection of U0126 reveal little effect of nicotine on supragranular responses, but preserved enhancement of initial layer 4 responses.

Figure 3. Time course and peak magnitude of systemic nicotine’s effects on CF-evoked current sinks in layers 4 and 2/3 following thalamic (A) or intracortical (B) microinjection of control drug (U0124) or MEK inhibitor (U0126). Measurements reflect thalamocortical input (“Layer 4” indicates sink onset latency and amplitude at 5 ms, cf. Fig. 2B) or intracortical activity (“Layer 2/3” indicates sink peak latency and peak amplitude). (A) Nicotine effects on latency (top row) and amplitude (bottom row) measures after thalamic injections of control drug (U0124, n = 7) or MEK inhibitor (U0126, n = 6). Arrows indicate time of thalamic microinjection (white arrows) and systemic nicotine (black arrows). Data normalized to average values over 30 min pre-nicotine period. Thalamic MEK inhibition blocked nicotine's effect on the layer 4, but not layer 2/3, current sink. Statistics: for time course data, asterisks (U0124) and crosses (U0126) indicate significant difference from pre-nicotine response (post-hoc tests with Bonferroni correction following MANOVA; post-nicotine data grouped in 14-minute bins); for histograms, which show average significant nicotine effect in each condition, or 30 min average if no effect, asterisks above each bar indicate level of significance (* p < 0.05, ** p < 0.01, *** p < 0.001), and asterisk between bars indicates difference between groups (U0124 vs. U0126, * p < 0.05, ** p < 0.01). (B) Nicotine’s effects on latency and amplitude measures after intracortical control injections (U0124, n = 6) or MEK inhibition (U0126, n = 6). Intracortical MEK inhibition
blocked nicotine's effects on the layer 2/3 sink, but not on the initial layer 4 sink. Conventions as in (A).

Figure 4. Effects of nicotine and MEK inhibition are similar at all stimulus intensities tested. Graphs show effects of nicotine on current sinks in layer 4 (initial amplitude) and layer 2/3 (peak amplitude) evoked by CF stimuli at three intensities: acoustic threshold (10-20 dB), 40 dB and 70 dB SPL. Thalamic injections (top row): in control experiments (U0124), nicotine enhanced all sink amplitudes evoked by stimuli at each intensity (pre- vs. post-nicotine, paired t-tests, p's < 0.001 - 0.05, n = 7). Thalamic inhibition of MEK (U0126) blocked nicotinic enhancement of the initial layer 4 current sink at each intensity (pre- vs. post-nicotine, paired t-tests, p's > 0.05, n = 6) but did not prevent nicotine's enhancement of layer 2/3 current sink (p's < 0.05). Intracortical injections (bottom row): in control experiments (U0124) nicotine enhanced all tone-evoked sink amplitudes at each intensity (pre- vs. post-nicotine, paired t-tests, p's < 0.01 - 0.05, n = 5-6). Intracortical inhibition of MEK (U0126) blocked nicotinic enhancement of the peak layer 2/3 sink (pre- vs. post-nicotine, paired t-tests, p's > 0.05, n = 6) but did not prevent enhancement of the initial layer 4 sink (p's < 0.01 - 0.05, n = 6).

Figure 5. Effects of nicotine and MEK inhibition on CSD profiles evoked by spectrally-distant nonCF stimuli. (A) In this example, systemic nicotine simultaneously enhanced CF-evoked current sinks (top row) and reduced most activity evoked in response to nonCF stimuli (two octaves below CF; bottom row). CSD profiles show nicotine effect after control (U0124) intracortical injections; "Difference" profiles on right obtained by subtracting pre-nicotine from post-nicotine CSDs (red colors indicate enhancement, blue colors indicate reduction). (B) Group
data showing nicotine's effect on the largest amplitude current sink evoked by nonCF stimuli in each animal, after microinjection of control drug (U0124) or MEK inhibitor (U0126) into the thalamus or cortex. In controls, nicotine significantly reduced the current sink peak amplitude (pre- vs. post-nicotine, paired t-test, thalamic: p < 0.05, n = 6; cortical: p < 0.05, n = 6), while after MEK inhibition (U0126) nicotine had no effect (thalamic: p > 0.05, n = 5; cortical: p > 0.05, n = 6). Asterisk indicates p < 0.05.

Figure 6. Distribution of cells with activated MAPK in A1, and dependence of activation on intracortical nAChRs. (A) Horizontal tissue section with brightfield view (left) and fluorescence (right) showing location of drug injection site in A1; scale bar, 1 mm. (B) Representative tissue sections showing immunolabeled cells in upper layers of A1 in response to acoustic (white noise) stimulation and systemic nicotine after intracortical microinjection of control solution (ACSF, left), DHβE (1 µM, middle) and MLA (10 nM, right); scale bar 50 µm. Control and DHβE examples are from opposite hemispheres in the same animal. DHβE prevented labeling of cell bodies and reduced somewhat the level of “background” immunofluorescence. (C) Depth distribution of immunolabeled cell bodies (mean number of labeled cell bodies per 100 µm depth) after control (ACSF) intracortical injections in A1, and after intracortical injection of either DHβE (n = 3 animals) or MLA (n = 3) in the opposite hemisphere of the same animals.
Figure 1
Figure 3

A

Layer 4

Layer 2/3

B

Layer 4

Layer 2/3
Figure 4

Layer 4

Layer 2/3

Thalamic Injection

Cortical Injection

Amplitude

0.5 - 2

Pre-Nic. 1-30 min 31-63 min

Post-Nic.

U0124

Threshold

70 dB

40 dB

U0126

70 dB

40 dB

Threshold
Figure: 5

A

Tone onset

U0124

CF Stimuli

Nicotine 1-30 min

Difference

Layer

1

2/3

4

5

6

B

nonCF, Largest Amplitude Sink

Normalized amplitude

Thalamic injection Cortical injection

* *
Figure 6

A

B

Layer 2/3

C

Pia

Depth (µm)

Number of Cells