Network and neuronal membrane properties in hybrid networks reciprocally regulate selectivity to rapid thalamocortical inputs

Michael J. Pesavento¹, David J Pinto¹,²,³
¹Department of Neurobiology and Anatomy
²Department of Biomedical Engineering
³Department of Neurology
University of Rochester School of Medicine
Rochester, NY 14642

Running Title: Network and membrane properties in hybrid network

Corresponding Author:
Michael J. Pesavento
Department of Physics, 0374
University of California, San Diego
9500 Gilman Dr.
La Jolla, CA 92093-0374
Email: mpesavento@ucsd.edu

Number of figures: 11 (10 color) + 1 table
Number of words,
Abstract: 250
Introduction: 1303
Discussion: 3094

Keywords: thalamocortical transformation; barrel cortex; somatosensory cortex; neural circuit; feedforward inhibition; recurrent excitation

Acknowledgements: We would like to thank J. S. Connell for technical assistance with software architecture. Thank you for helpful comments given by David Kleinfeld and Daniel Simons. This work was supported by an NSF Career Award (DJP).
ABSTRACT

Rapidly changing environments require rapid processing from sensory inputs. Varying deflection velocities of a rodent’s primary facial vibrissa cause varying temporal neuronal activity profiles within the ventral posteromedial thalamic nucleus. Local neuron populations in a single somatosensory layer 4 barrel transform sparsely coded input into a spike count based on the input’s temporal profile. We investigate this transformation by creating a barrel-like hybrid network with whole-cell recordings of *in vitro* neurons from a cortical slice preparation, embedding the biological neuron in the simulated network by presenting virtual synaptic conductances via a conductance clamp. Utilizing the hybrid network, we examine the reciprocal network properties (local excitatory and inhibitory synaptic convergence), and neuronal membrane properties (input resistance) by altering the barrel population response to diverse thalamic input. In the presence of local network input, neurons are more selective to thalamic input timing; this arises from strong feedforward inhibition. Strongly inhibitory (damping) network regimes are more selective to timing and less selective to the magnitude of input, but require stronger initial input. Input selectivity relies heavily on the different membrane properties of excitatory and inhibitory neurons. When inhibitory and excitatory neurons have identical membrane properties, the sensitivity of *in vitro* neurons to temporal versus magnitude features of input was substantially reduced. Increasing the mean leak conductance of the inhibitory cells decreased the network’s temporal sensitivity, whereas increasing excitatory leak conductance enhanced magnitude sensitivity. Local network synapses are essential in shaping thalamic input, and differing membrane properties of functional classes reciprocally modulate this effect.
INTRODUCTION

Understanding the relationship between single neuron membrane properties and network processing is a necessary component of understanding neuronal circuit processing. Many studies have examined the response of cortical neurons to sensory stimuli within networks (in vivo whole-animal preparations), while others have examined the activity of such neurons responding to injected current in relative isolation (in vitro slice preparations). Due to the difficulty in separating the roles of network connectivity and neuronal membrane properties in reshaping transient input, this relationship requires an innovative approach. We create a hybrid network – consisting of a biological neuron embedded in a simulated conductance-based computational network – to assist in the isolation of neuronal and network contributions to reshaping transient input. This technique gives unprecedented levels of control over network connectivity and neuronal membrane properties while permitting comparison of in vitro neuron responses across a multitude of conditions.

The rodent vibrissa system is uniquely positioned to provide insight into neuronal- and network-level processing of sensory inputs. Discrete, dense, clusters of neurons within layer 4 of rodent primary somatosensory cortex, known as “barrels” (Woolsey and Van der Loos, 1970; Welker, 1971), receive the majority of their afferent input from analogous groups of neurons in the ventral posteromedial (VPM) nucleus in the thalamus (Jensen and Killackey, 1987; Simons and Carvell, 1989; Land et al., 1995). Within a layer 4 barrel, three electrophysiologically distinct neuronal subpopulations form a strongly interconnected synaptic network: excitatory regular-spiking (RS) neurons, inhibitory fast-spiking (FS) neurons, and inhibitory low-threshold-spiking (LTS) neurons (McCormick et al., 1985; Beierlein et al., 2003). Although several neuronal morphologies have been observed in each class (Kawaguchi, 1993; Kawaguchi and Kubota, 1997; Staiger et al., 2004; Sun et al., 2006), electrophysiological measures allow accurate classification by observed intrinsic membrane properties in response to square pulses of current injection (Pesavento et al., 2010; Gibson et al., 1999; McCormick et al., 1985). In this study, we are
focusing on RS and FS neuron transient responses to thalamic input; LTS neurons largely do not receive direct thalamic input (Cruikshank et al., 2010; Gibson et al., 1999) and therefore are not discussed here.

The temporal features of sensory stimuli are conveyed through the thalamus to the sensory cortex via multiple sensory modalities (Phillips et al., 1988; Buracas et al., 1998; DeWeese et al., 2003; Reinagel and Reid, 2000; Wehr and Zador, 2003). A number of studies have examined the contribution of either cortical neurons or cortical networks in shaping the responses to rapid thalamic input. Layer 4 barrel neurons respond preferentially to fast, synchronous or near-synchronous thalamic input (Pinto et al., 2000; Ito and Kato, 2002; Wilent and Contreras, 2004; Arabzadeh et al., 2005), while similar results have been reported in both visual cortex (Alonso et al., 1996; Hirsch et al., 2008) and auditory cortex (Wehr and Zador, 2003). This sensitivity may be due in part to the membrane properties of individual neurons (Chung and Ferster, 1998; Azouz and Gray, 2000; Wilent and Contreras, 2005; Pesavento et al., 2010). Several studies also suggest that network interactions contribute to barrel response sensitivity (Pinto et al., 2000; Wilent and Contreras, 2004; Arabzadeh et al., 2005). Our goal is to clarify these reciprocal contributions of neuronal and network properties in context of temporal selectivity in the barrel system.

Neurons within the barrel form an interconnected synaptic network, including direct thalamic input (Jensen and Killackey, 1987), feedforward inhibition (Miller et al., 2001; Pouille and Scanziani, 2001; Swadlow and Gusev, 2002; Wehr and Zador, 2003; Lawrence and McBain, 2003; Gabernet et al., 2005; Bruno and Sakmann, 2006; Cruikshank et al., 2007), and recurrent excitation (Douglas et al., 1995; Adorjan et al., 1999; Miller et al., 2001). In barrels, the overall effect of network interactions is inhibitory or damping due to the strength of feedforward inhibition (Pinto et al., 2003; Swadlow et al., 2005). We further explore how each class of synaptic inputs – thalamic, local excitatory, and local inhibitory – contribute to modifying neuronal response properties. Previous modeling studies have explored the balance of local and thalamic inputs (Kyriazi and Simons, 1993) and excitation and inhibition within the local network (Pinto et al., 2003). The role of network feedback has also been examined via bath application of muscimol, effectively inhibiting all local synaptic connections (Liu et al., 2007). However,
this likely alters the intrinsic membrane properties of the neurons, making an accurate comparison
difficult. The hybrid network is well suited to the task of comparing the responses of a single neuron or
neuronal population in the absence of local network input versus the presence of network input. An
additional strength of the hybrid network over modeling studies is that we are examining the responses of
biological neurons.

Previously, we characterized the activity of individual neurons in rat barrel cortex in response to
simulated thalamocortical input (Pesavento et al., 2010). We found that neurons responding in the
absence of local network activity cannot account for the response sensitivity of ensemble barrel responses
observed in vivo (Pinto et al., 2000). In this study, we examine the combined effect of intrinsic neuronal
and network properties using a unique combination of whole-cell patch recordings and real-time
computer simulations. Recording from individual barrel neurons in vitro, we use a conductance clamp to
embed the neurons in a simulated barrel network. This arrangement allows us to change the intrinsic
properties of the barrel neurons and examine the effects of those changes on the network’s response. Our
hybrid network is activated by simulated thalamic synaptic inputs modeled after real thalamic responses
to whisker deflections of different velocities (Pesavento et al., 2010; Pinto et al., 2000).

Using the hybrid network, we find that the presence of local synaptic input from the surrounding
network explains much of the difference of response measures between in vivo neurons and in vitro
neurons. We then examine what aspects of the network contribute to shaping response selectivity to
thalamic input, and how these principles can apply to other sensory modalities. Damping networks (Pinto
et al., 2003) with strong feedforward inhibition enhance response selectivity to fast inputs while
decreasing the sensitivity to input magnitude. Recurrent excitation may play an important role in non-
transient input processing.

The intrinsic membrane properties of neurons – such as input resistance and firing rate adaptation
– have been used to classify electrophysiological differences between subpopulations; however, it is also
important to note that these classifications also distinguish between different functional classifications, such as excitatory and inhibitory synaptic projections. Excitatory RS neurons have higher input resistance than inhibitory FS neurons, which results in broader response selectivity in the inhibitory neurons and higher temporal selectivity in the excitatory neurons (Pesavento et al., 2010). This difference between neuronal subclasses may be an essential component of how local synaptic input shapes the population response to transient thalamic input.

Using both the hybrid network and off-line simulations, we find that differences in the intrinsic properties of RS versus FS barrel neurons are crucial for enabling the network to enhance barrel sensitivity to input timing. In addition, changes to the input resistance (leak conductance) of either FS or RS neurons strongly alter the processing ability of the network, consistent with our previous model predictions.

Our hybrid network allows full control over synaptic connections and intrinsic membrane properties, enabling us to explore how they each affect response sensitivity to the number of active thalamic synapses as well as sensitivity to the timing of their input. The results presented here indicate a close inter-relationship between neuron- and network-level processing in determining local circuit function. The differences of individual neuronal membrane properties result in selective responses to input in the absence of local network synapses. The addition of network synapses then additionally increases the selectivity of the neurons. The final step in this reciprocal interaction occurs when the membrane properties of individual neurons are changed, thus altering the effect of the network input on neuronal population output.

METHODS

We generated a computational model of a barrel network by synaptically connecting RS and FS neurons and construct thalamic spike volleys based on known responses to whisker deflections. Using the
dynamic clamp, we present virtual synaptic conductances from the model neurons and thalamic inputs. Finally, we modified the intrinsic properties of the simulated neurons and observe the results. Many aspects of our simulated network are conceptually based on previous work (Kyriazi and Simons, 1993). Model neurons and simulated networks are constructed probabilistically by varying parameters to generate responses that conform to experimental data at the level of both the barrel network and barrel neurons. Membrane conductance values and individual synaptic strengths are drawn from normal distributions centered on mean values such that simulated neural responses have the same mean and variance as real neurons. Network connections are assigned randomly, but with convergence values in accord with the known connectivity estimates of the barrel cortex network. This strategy ensures that each instance of our simulated and hybrid networks is unique and that our results are robust to heterogeneities (Skinner et al., 2005). At the same time, however, both the neurons and network of each simulation closely approximates real features of barrel circuitry to the extent of our present knowledge.

Preparation and Electrophysiology

All electrophysiological methods were performed as reported previously (Pesavento et al., 2010). Whole cell dynamic clamp recordings were taken from layer 4 regular spiking (RS) neurons. Cortical slices 400 μm thick were obtained using a mechanical vibratome (World Precision Instruments, Sarasota, FL) from Sprague-Dawley rats on postnatal day 13-24, using the near-coronal slicing angle described by Land and Kandler (2002). Slices were bathed in artificial cerebrospinal fluid (ACSF) containing (in mM) 126 Na, 3 KCl, 1.25 NaH$_2$PO$_4$, 2 MgSO$_4$, 26 NaHCO$_3$, 10 dextrose, and 2 CaCl$_2$, and saturated with 95% O$_2$-5%CO$_2$ at a temperature of 35°C. Borosilicate glass micropipettes were pulled with a Flaming-Brown puller (P97, Sutter Instruments) to a tip resistance of 5-10 MΩ and access resistance of 18-30 MΩ, and were filled with an internal solution consisting of (in mM) 135 K-gluconate, 4 KCl, 2 NaCl, 10 HEPES, 0.2 EGTA, 4 ATP-Mg, 0.3 GTP-Tris, and 7 phosphocreatine-Tris (pH 7.25, 290 mOsm). Whole-cell patch recordings were made in current clamp mode using an Axon Instruments Multiclamp 700B.
amplifier. All protocols were reviewed and approved by the University of Rochester Committee on Animal Resources (UCAR).

Barrels were clearly visible in the living slice. Only layer 4 barrel neurons were examined in this study. A small constant holding current (maximum ±100 pA) was applied to bring the neuron’s dialyzed resting potential to -65 mV to facilitate comparisons between cells. Previous studies have found that slight modulations of the membrane potential strongly influence the amplitude of post-synaptic potentials, as well as the timing of evoked action potentials (Petersen et al., 2003; Sachdev et al., 2004); here we attempted to minimize those differences by keeping the rest potential consistent within the experiments.

We controlled current injection, data collection, and real-time (i.e. dynamic clamp) stimulation using Labview-RT software (National Instruments) written specifically for the task. A host computer system running custom Labview software controlled stimulus parameters and file I/O. A slave computer system running custom software on the Labview-RT operating system performed all real-time calculations for network simulation and conductances to apply to a single *in vitro* neuron via an A/D converter (National Instruments). Membrane potentials were recorded using an Axon Instruments amplifier, and response waveforms were sampled and digitized at 10 KHz.

We injected square current pulses into each neuron to classify the neuron and quantify several standard response measures. Pulses lasted 1000 ms, ranged in amplitude between ±0.4 nA in 0.1 nA increments, and were presented at a rate of 0.5 Hz. Cells were classified as regular spiking (RS), fast spiking (FS) or low-threshold spiking (LTS) according to previously established criteria (Pesavento et al., 2010; Gibson et al., 1999). Only responses from *in vitro* RS barrel neurons were analyzed in this study. All observed intrinsic membrane properties, such as input resistance and membrane time constant, are similar to those previously reported (Pesavento et al., 2010).

There was little spontaneous activity within the slice (Pesavento et al., 2010). Currents and virtual conductances were applied to a single cell, eliciting at most one or two spikes. Stimulating a single
neuron does not activate the slice network; thus, the results observed are unaffected by other neurons in the slice. Initial studies tested this by pharmacologically blocking synaptic interactions by applying kynurenic acid and picrotoxin to the bathing solution. We observed no change in the single neuron response measures (data not shown).

Simulated RS and FS neurons

Single compartment conductance-based models of regular spiking (RS) and fast spiking (FS) neurons were created using current balance equations (Pesavento et al., 2010). To generate a heterogeneous network, we varied the values of each maximal conductance so that the intrinsic membrane properties of the model neurons are within the range of those measured from real barrel neurons recorded in vitro (Beierlein et al., Pesavento et al., 2010). Network simulations generated populations of model neurons by randomly selecting the maximum conductances and radius based on a Gaussian distribution with means listed and standard deviation of 5% of the mean. Membrane capacitance density was held constant at 1.0 μF/cm² for all neuron classes. All membrane parameters are given in terms of the both the mean channel conductance density and specific conductances; actual values vary about those means.

We modeled conductance-based RS and FS neurons using current-balance equations that describe membrane voltage:

\[
C_m \frac{dV_{RS}}{dt} = I_{\text{leak}}(V) + I_{Na}(V,h) + I_{K\text{dr}}(V,n) + I_{AHP}(V,w) + I_{\text{app}} + I_{\text{synX}}
\]

\[
C_m \frac{dV_{FS}}{dt} = I_{\text{leak}}(V) + I_{Na}(V,h) + I_{K\text{dr}}(V,n) + I_{P}(V,w) + I_{\text{app}} + I_{\text{synX}}
\]

\[
I_{\text{ion}} = g_{\text{ion}} a^p b^q (E_{\text{ion}} - V_Y(t))
\]

where \(C_m\) is the specific membrane capacitance, \(V_Y\) is the membrane potential for a neuron of class Y (RS or FS), \(I_{\text{ion}}\) are ionic currents, \(I_{\text{app}}\) is the applied current such as a square pulse, and \(I_{\text{synX}}\) is the simulated synaptic input from presynaptic neuronal population X (E, excitatory; I, inhibitory; T, thalamic). For each ionic current \(g_{\text{ion}}\), is the maximal conductance, a and b are the proportion of channels
that are activated and deinactivated, respectively, p and q are integers, and \(E_{ion} \) is the reversal potential for the given population of ion channels. Currents in the model RS neuron include fast sodium (Na) and potassium currents (K_{dr}), an after-hyperpolarization current (AHP), and a passive leak current (leak).

Currents in the model FS neuron include fast sodium (Na) and potassium currents (K_{dr}), a slowly inactivating potassium current (D), and a passive leak current (leak).

Model RS neurons

In simulated RS neurons, the soma is modeled as a sphere with radius=0.0031 cm. The leak conductance is \(g_{leak}=0.057 \text{ mS/cm}^2 \) (6.883 nS), with a reversal potential of \(E_{leak}=-67 \text{ mV} \).

\[
l_{leak}(V) = g_{leak} (E_{leak} - V)
\]

The fast sodium current is defined as

\[
l_{Na}(V, h) = g_{Na} m^3(V) h (E_{Na} - V)
\]

\[
\frac{dh}{dt} = \frac{h_{Na}(V) - h}{\tau_{h}(V)}
\]

\[
m_{Na}(V) = \frac{1}{1 + \exp\left(-\frac{V - \theta_m}{\sigma_m}\right)}
\]

\[
h_{Na}(V) = \frac{1}{1 + \exp\left(-\frac{V - \theta_h}{\sigma_h}\right)}
\]

\[
\tau_{h}(V) = 0.37 + 2.78 \frac{1}{1 + \exp\left(-\frac{V - \theta_{ht}}{\sigma_{ht}}\right)}
\]

where \(g_{Na}=42 \text{ mS/cm}^2 \) (5.072 nS), \(E_{Na}=55 \text{ mV} \), and the kinetic equation parameters are \(\theta_m=-20 \text{ mV} \), \(\sigma_m=9.5 \text{ mV} \), \(\theta_h=-40 \text{ mV} \), \(\sigma_h=-7 \text{ mV} \), \(\theta_{ht}=-40.5 \text{ mV} \), \(\sigma_{ht}=-6 \text{ mV} \). \(\theta_m \) was shifted 10 mV to the right along the voltage axis to match the observed *in vitro* spike threshold (Golomb et al 1997). The delayed rectifier potassium current is defined as

\[
l_{Kdr}(V, n) = g_{Kdr} n^4 (E_K - V)
\]
\[
\frac{dn}{dt} = \frac{n_\infty(V) - n}{\tau_n(V)}
\]

\[
n_\infty(V) = \frac{1}{1 + \exp\left(-\frac{V - \theta_n}{\sigma_n}\right)}
\]

\[
\tau_n(V) = 0.37 + 1.85 \frac{1}{1 + \exp\left(-\frac{V - \theta_{nt}}{\sigma_{nt}}\right)}
\]

where \(g_K=2.2 \text{ mS/cm}^2\ (0.266 \text{ nS})\), \(E_K=-90 \text{ mV}\), \(\theta_n=-20 \text{ mV}\), \(\sigma_n=9.5 \text{ mV}\), \(\theta_{nt}=-40.5 \text{ mV}\), \(\sigma_{nt}=-6 \text{ mV}\). \(\theta_n\) is shifted 12 mV to the right along the voltage axis to match the observed \textit{in vitro} spike threshold.

The after-hyperpolarization (AHP) current is a slow K\(^+\) current that is responsible for firing rate adaptation in RS neurons, similar to other slow K\(^+\) currents used in other models (Pinto et al, 2003; Prescott and Sejnowski, 2008). The form of the equation that we use is based on Pinto et al. (2003) and Kopell et al. (2000):

\[
I_{AHP}(V, n) = g_{AHP} w_0 \left(E_K - V \right)
\]

\[
\frac{dw}{dt} = \frac{w_\infty(V) - w}{\tau_w(V)}
\]

\[
w_\infty(V) = \frac{1}{1 + \exp\left(-\frac{V - \theta_w}{\sigma_w}\right)}
\]

\[
\tau_w(V) = \frac{800}{3.3 \exp\left(\frac{V - \theta_w}{\sigma_{wt}}\right) + \exp\left(\frac{V - \theta_w}{\sigma_{wt}}\right)}
\]

where \(g_{AHP}=0.08 \text{ mS/cm}^2\ (0.00966 \text{ nS})\), \(E_K=-90 \text{ mV}\), \(\theta_w=-25 \text{ mV}\), \(\sigma_w=10 \text{ mV}\), \(\sigma_{wt}=20 \text{ mV}\). \(\theta_w\) is shifted 10 mV to the right along the voltage axis to match the observed \textit{in vitro} spike threshold. The scaling parameter in the numerator of \(\tau_w(V)\) has also been changed to give a peak time constant of 22 ms at -37 mV, matching the observed time constant of \textit{in vitro} RS neurons (Pesavento et al., 2010).

\textit{Model FS neurons}

In simulated RS neurons, the soma is modeled as a sphere with radius=0.0019 cm. The leak conductance is \(g_{\text{leak}}=0.25 \text{ mS/cm}^2\ (11.3 \text{ nS})\), with a reversal potential of \(E_{\text{leak}}=-67 \text{ mV}\).
\[
I_{\text{leak}}(V) = g_{\text{leak}}(E_{\text{leak}} - V)
\]

The fast sodium current is defined as

\[
I_{Na}(V, h) = g_{Na} m_{\infty}^3(V) h (E_{Na} - V)
\]

\[
\frac{dh}{dt} = \frac{h_{\infty}(V) - h}{\tau_h(V)}
\]

\[
m_{\infty}(V) = \frac{1}{1 + \exp\left(-\frac{V - \theta_m}{\sigma_m}\right)}
\]

\[
h_{\infty}(V) = \frac{1}{1 + \exp\left(-\frac{V - \theta_h}{\sigma_h}\right)}
\]

\[
\tau_h(V) = 0.5 + 14.0 \frac{1}{1 + \exp\left(-\frac{V - \theta_{h\tau}}{\sigma_{h\tau}}\right)}
\]

where \(g_{Na} = 50 \text{ mS/cm}^2 \) (2268.2 nS), \(E_{Na} = 55 \text{ mV} \), \(\theta_m = -24 \text{ mV} \), \(\sigma_m = 11.5 \text{ mV} \), \(\theta_h = -58.3 \text{ mV} \), \(\sigma_h = -6.7 \text{ mV} \), \(\theta_{h\tau} = -60 \text{ mV} \), \(\sigma_{h\tau} = -12 \text{ mV} \). Our value of \(\theta_m \) gives simulation results that are in agreement with Golomb et al. (2007) and that closely approximate observed in vitro responses of real FS neurons to simulated thalamic input.

The delayed rectifier \(K^+ \) current \(I_{K\text{dr}} \) is based on \(\text{Kv3.1/2} \) channels found in FS neurons and is responsible for both their narrow action potential width (Beierlein et al., 2003; Chow et al., 1999) and for their high firing frequency (Erisir et al., 1999; Lien & Jonas, 2003). All parameters are identical to those used in Erisir et al (1999),

\[
I_{K\text{dr}}(V, n) = g_{K\text{dr}} n^2 (E_K - V)
\]

\[
\frac{dn}{dt} = \frac{n_{\infty}(V) - n}{\tau_n(V)}
\]

\[
n_{\infty}(V) = \frac{1}{1 + \exp\left(-\frac{V - \theta_n}{\sigma_n}\right)}
\]
where $g_{\text{Kdr}}=150 \text{ mS/cm}^2$ (6804.7 nS), $E_K=-90 \text{ mV}$, $\theta_n=-12.4 \text{ mV}$, $\sigma_n=6.8 \text{ mV}$.

The I_D current is a voltage-dependent K^+ current with fast activation and slow inactivation (Storm, 1988; Coetzee et al., 1999; Toledo-Rodriguez et al., 2004), and is dendrotoxin-sensitive. Slowly inactivating $Kv1.1$ channels have been found in FS cells (Goldberg et al., 2008), and serve to regulate the firing rate of FS neurons in response to near-threshold depolarizations. This channel is distinct from the $Kv1.3$ channel used by Erisir et al. (1999), which was based on human T-lymphocytes. Parameters were chosen so that our simulated FS neuron responded to square current pulses similar to real FS neurons recorded in vitro:

$$I_D(V, a, b) = g_D a^3 b (E_K - V)$$

$$\frac{da}{dt} = \frac{a_n(V) - a}{\tau_a}$$

$$\frac{db}{dt} = \frac{b_n(V) - b}{\tau_b}$$

$$a_n(V) = \frac{1}{1 + \exp \left(\frac{V - \theta_a}{\sigma_a} \right)}$$

$$b_n(V) = \frac{1}{1 + \exp \left(\frac{V - \theta_b}{\sigma_b} \right)}$$

where $g_D=0.15 \text{ mS/cm}^2$ (6.805 nS), $E_K=-90 \text{ mV}$, $\theta_a=-50 \text{ mV}$, $\sigma_a=20 \text{ mV}$, $\tau_a=2 \text{ ms}$, $\theta_b=-70 \text{ mV}$, $\sigma_b=60 \text{ mV}$, $\tau_b=150 \text{ ms}$. The maximum conductance g_D was selected such that the model FS neuron displays classic type-2 dynamics, as we and others have observed in vitro (unpublished data; Golomb et al., 2007).

Changing neuronal leak conductance

In several experiments, we systematically varied the leak conductance density of the simulated RS and FS neuronal subpopulations ($g_{\text{teak}} E$ and $g_{\text{teak}} I$, respectively). Simulated RS neurons had a baseline mean leak conductance density ($g_{\text{teak}} E$) of 0.057 mS/cm2, and was varied from 0.025-0.12
Simulated FS neurons had a baseline mean leak conductance density \(g_{\text{leak}} \) of 14 mS/cm\(^2\) (3.02-14.49 nS). Simulated FS neurons had a baseline mean leak conductance density \(g_{\text{leak}} \) of 0.25 mS/cm\(^2\), and was varied from 0.05-0.45 mS/cm\(^2\) (2.27-20.41 nS). Changing the neuronal leak conductance exhibits an inverse relationship with input resistance and the membrane time constant, as expected from the current-balance equations (Pesavento et al., 2010).

Simulated inhibitory RS neurons

A major goal of our study was to explore how differences in the intrinsic properties of RS versus FS neurons influence network processing. To examine this, we made the intrinsic membrane properties of simulated RS and FS neurons to be identical. That is, simulated FS neurons were given the same membrane capacitance, radius, conductances, and channel kinetics as simulated RS neurons. The role in the network of the modified FS neurons was left unchanged, e.g. synaptic convergence, kinetics, and maximum synaptic conductances were kept the same as before (Fig. 1A, right). In the text and figures, we refer to the modified FS neurons as inhibitory RS (RSi) neurons.

Simulated synapses

The arrival of a spike onto either real or simulated neurons evokes a synaptic conductance. Simulated synaptic conductances were governed by the following equation: \(a(t) \):

\[
a(t) = \begin{cases}
0 & t < 0 \\
\left(e^{-\frac{t}{\tau_1}} - e^{-\frac{t}{\tau_2}} \right) & t \geq 0
\end{cases}
\]

where thalamic (T) and excitatory (E) synapses were based on AMPA synapses, with time constants \(\tau_1=0.0935 \text{ ms}, \tau_2=1.4286 \text{ ms} \), which are related to the rise and fall times of a unitary excitatory post-synaptic current (EPSC), respectively (Hausser and Roth, 1997; Ermentrout, 1998b; Kleppe and Robinson 1999). Inhibitory (I) synapses were based on GABA\(_a\) synapses, with time constants \(\tau_1=0.1930 \text{ ms} \), \(\tau_2=5.5555 \text{ ms} \) for a unitary inhibitory post-synaptic current (IPSC) (Destexhe et al., 1998).
Synaptic currents were generated by summing the scaled conductances from all neurons from subpopulation X, and multiplying it by the driving force for the postsynaptic neuron i:

\[
I_{synX}(t) = \left(E_{synX} - V_i(t) \right) \sum_{j=1}^{n} g_{synX_{ij}} \sum_{k=1}^{\alpha_j} (t - t_{jk})
\]

where \(g_{synX_{ij}} \) is the maximum synaptic channel conductance from presynaptic neuron j of type X (thalamic, T; excitatory, E; or inhibitory, I) to postsynaptic neuron i, and the driving force given by the difference of the synaptic reversal potential \(E_{synX} \) (ETHAL=0 mV, EAMPA=0 mV, EGABA=-80 mV) and the membrane potential \(V_i(t) \) of postsynaptic neuron i. The membrane potential of an in vitro neuron was obtained in real-time via the conductance clamp. The function \(\alpha(t) \) was summed at each time step over each spike time \(t_{jk} \), which is the time of spike number k from neuron j onto neuron i.

Values for the maximum synaptic conductance \(g_{synX_{ij}} \) were selected to provide a good fit to experimental data examining unitary PSPs onto barrel neurons via paired recordings or minimal current stimulation between thalamic, RS, and FS neurons (Beierlein, 2003; Bruno and Sakmann, 2006). Importantly, these recordings were made at or near the soma, after synaptic PSPs had been shaped by dendritic spatial integration and/or active dendritic processing. Thus our simulations partially capture the effects of dendritic processing on unitary responses. The same synaptic dynamics are used in both simulated and hybrid networks. Figure 1E presents an example voltage trace obtained from an RS neuron generated in response to the current evoked by a single simulated input spike.

To introduce heterogeneity across synapses, we varied each maximum synaptic conductance using a normal distribution with mean \(g_{synX_{ij}} \) and standard deviation of 0.2 * \(g_{synX_{ij}} \), or 20% of the mean maximum conductance, resulting in PSPs with amplitude variance similar to those observed in vitro (Beierlein et al., 2003). We believe that this is a reasonable first-order approximation for the observed amplitude distribution, which is positively skewed. Due to the transient nature of the thalamic inputs and
cortical responses, we are not including synaptic depression or facilitation in our model. Mean maximum synaptic conductance values are given in Table 1.

It is known that FS neurons in barrel cortex receive stronger thalamic inputs than do RS neurons (Beierlein et al., 2003; Cruikshank et al., 2007). In contrast to our previous study (Pesavento et al., 2010), we scaled thalamic EPSPs onto model FS neurons to an amplitude of 4 mV. The increased EPSP resulted in a thalamic input magnitude threshold (number of spikes) that is 60% of what is observed in RS neurons (9 spikes versus 16, respectively). For all simulated thalamic inputs in this study, we held the ratio of thalamic input magnitude to inhibitory neurons (TI) to be 60% of the thalamic inputs on excitatory neurons (TE); thus as we varied TE, TI was 0.6*TE. FS neurons typically have a higher probability of thalamic convergence than RS neurons (Bruno and Simons, 2002). However, in this study we are not modeling the nonlinear effects of synaptic integration on dendritic arbors, only the PSPs observed at the soma.

Changes in the leak conductance for a given neuron also results in a change to the size and shape of PSPs arising from synaptic conductances. To isolate the effect of intrinsic properties from those of the network, each change in leak conductance was accompanied by a change in the maximum conductance for all arriving synapses so that PSPs retained their original size and approximate shape.

Simulated thalamic input volleys

We used the dynamic clamp to generate conductance waveforms that simulate thalamic synaptic input volleys evoked by fast, medium, and slow whisker deflections as described previously (see Fig. 2 in Pesavento et al., 2010). We constructed simulated input spike volleys (Fig. 1D) by modeling real thalamic spike time distributions evoked by fast, medium, and slow velocity caudal whisker deflections, as reported previously (Pesavento et al., 2010; Pinto et al., 2000) (Fig. 1B). Simulated spike times were selected using a family of log-logistic functions known as Fisk distributions (Fisk, 1961) (Fig. 1C).
For each stimulus presentation, a pool of 200 thalamic spike times was generated, approximating the number of thalamic neurons that project to a single barrel (Land et al., 1995; Varga et al., 2002; Bruno and Sakmann, 2006). Thalamic inputs to an individual neuron, simulated or in vitro, were applied as a fixed number of spike times (input magnitude) drawn from the pool of 200 spikes. This allows for the possibility that a given thalamic spike may arrive at more than one cortical neuron via thalamocortical divergence. In a simulation with intracortical connections present, 35 excitatory neurons receiving a mean input of 26 thalamic spikes, and 15 inhibitory neurons receiving 16 thalamic spikes, 1150 total thalamic input spikes are required for the simulation. Given that there are 200 spike times available, each thalamic spike will be propagated to about 6 neurons on average, allowing limited synchrony of thalamocortical synapses onto separate neurons.

We quantify thalamic input volleys in terms of timing and magnitude. Input timing is defined as the time required to generate 50% of the total spike count: 2, 5, and 8 ms for fast (F), medium (M), and slow (S) volleys, respectively (Fig.1C). This can also be understood as the median time for the cumulative distribution function (CDF).

Input magnitude is defined as the total number of spikes presented to a single neuron due to a single stimulus. Input magnitude was varied in increments of 3 spikes centered around a threshold value (T) that evoked a single output spike on 50% of all trials using the medium timing distribution. This is consistent with experimental data suggesting that barrel neurons fire sparsely in response to whisker deflections (Brecht and Sakmann, 2002). An increment of 3 spikes roughly corresponds to the 15% change in thalamic input magnitude observed in vivo using whisker deflections of different magnitudes (Pesavento et al., 2010; Pinto et al., 2000). For example, if a RS neuron generates a spike half of the time with presentation of 26 spikes, T=26 and the input magnitudes used would be 23, 26, 29, 32, and 35 spikes over each of the input timing distributions. The threshold value T varies with each in vitro neuron (Pesavento et al., 2010), therefore we estimate this value prior to running the full data collection. Input threshold is expressed in the normalized units around T throughout all figures.
We assessed the responses of each neuron to input volleys from the three temporal distributions and five different magnitudes, for a total of 15 volleys. Each volley was presented 25 times at a rate of 2 Hz with both the timing and magnitude randomized between trials. A new set of specific thalamic spike times were constructed each time a stimulus was presented, as described above.

Simulated neuronal network

Network simulations consisted of 35 RS neurons and 15 FS neurons, thereby maintaining a ratio of 70:30 excitatory to inhibitory neurons in a network with 50 neurons total. The barrel circuit was modeled as a random sparse network. Connections between subpopulations (RS and FS) were determined probabilistically based on estimates from pairwise recordings (Gibson et al., 1999; Beierlein et al., 2003; Sun et al., 2006; Cruikshank et al., 2007). Convergence from one subpopulation to another was defined as the mean probability that one cell will connect to another. Feedforward inhibition (IE) had a default convergence probability of 0.7 (a given inhibitory neuron had a 70% chance of having a single synapse on an excitatory neuron), recurrent excitation (EE) was 0.15, feedforward excitation (EI) was 0.5, and recurrent inhibition (II) was 0.2. These default connectivity values were found to give barrel-like responses (e.g. sensitive to input timing, net damping effect; c.f. Fig.3) and conform to connection probabilities determined experimentally using paired recordings. Convergence values were also varied systematically as described in the results. Synaptic conductances were constructed as described above.

Hybrid network

Hybrid networks were constructed by using the dynamic clamp to mediate real-time interactions between real and simulated barrel neurons. In effect, we removed one of the simulated RS neurons from a 50 neuron network simulation and inserted a biological RS neuron from the *in vitro* slice recording in its place (Fig. 1A).

Spike times from the real RS neuron were taken to be at the peak of recorded action potentials, and were passed to the simulated neurons to generate simulated synaptic conductances as described
below. Spikes in simulated RS or FS neurons that were connected to the real neuron evoked synaptic
conductances scaled to match excitatory or inhibitory post-synaptic potential (EPSP or IPSP) amplitudes
and variability as described below, and applied to the in vitro RS neuron using the dynamic clamp with an
update rate of 10 kHz.

Individual neuron response measures

For each network condition, we assessed the responses of each neuron to input volleys across the
three timing distributions (fast (F), medium (M), and slow (S)) each having 5 different magnitudes for a
total of 15 volleys. We quantified responses of individual neurons in terms of response threshold, latency,
and variability. Response threshold was defined as the minimum number of input spikes required to
evoke an output spike within 50 ms of stimulus onset on 50% of the trials. We obtained the response
threshold by fitting a linear regression over spike generation probabilities between 10% and 90% in
response to the medium time distribution, and interpolated to find the number of spikes that would
generate a response with a probability of 50%. We define response latency as the time to first spike after
stimulus onset, measured at time of the peak of the first action potential. We define response variability
as the standard deviation of latency measured over 25 trials using the same thalamic input volley
parameters but with new thalamic spike times.

We quantified the sensitivity of each response measure (threshold, latency, variability) to each
input parameter (timing, magnitude) using multivariate linear regression analysis on a cell by cell basis
(Matlab Statistics Toolbox). The sensitivity of response threshold to input timing was quantified as the
slope of the regression line relating the two. The sensitivity of response latency to input timing was
quantified as the slope of the regression plane measured along the input timing axis. The sensitivity of
latency to input magnitude was quantified as the absolute value of the slope of the plane measured along
the input magnitude axis. The sensitivity of response variability to input timing and magnitude was
measured the same way.
Excitatory population response measures

Population measures focused on the RS population since these represent the output of the layer 4 barrel circuit. Population measures were quantified in terms of spikes per stimulus per neuron in a 50 ms window following the arrival of the simulated thalamic volley. Population measures from real neurons were constructed by combining responses from all neurons using the same stimulus conditions; each stimulus condition was applied 25 times. Population measures from simulated neurons were constructed by combining responses from the 35 simulated neurons in the network over 25 repetitions of each stimulus condition.

The sensitivity of population responses to input timing and magnitude was quantified as the absolute values of the two corresponding slopes of the regression plane fit to the excitatory activity (spikes/stimulus) over the input timing (F=2 ms, M=5 ms, S=8 ms) and input magnitudes T, T+3, and T+6. T-3 is included in figures for a subthreshold comparison, and is not included in the regression analysis.

All in vivo data are taken from previously published results (Pinto et al., 2000).

Randomization of network properties

For each stimulus presentation, simulated neurons and networks were constructed probabilistically by varying parameters to generate responses that conform to experimental data at the level of both the barrel network and barrel neurons. Membrane conductance values and individual synaptic strengths are drawn from normal distributions centered on mean values such that simulated individual neural responses have the same mean and variance as real neurons. Network connections were assigned randomly, but with convergence values in accord with the known connectivity estimates of the barrel cortex network. In effect, a new set of barrel neurons and a barrel-like network was randomly constructed for each instance of the simulation. This strategy ensures that each instance of our simulated and hybrid networks is unique and that our results are robust to heterogeneities (Skinner et al., 2005).
the same time, however, both the neurons and network of each simulation closely approximates real
features of barrel circuitry to the extent of our present knowledge.

Software and statistics

Our network simulation software was written using C++ and compiled into a dynamically shared
library that was used in offline network simulations in Matlab as well as the real-time hybrid network
simulations within the dynamic clamp using Labview. Importantly, simulated and hybrid networks as
well as the dynamic clamp interface used the same library to simulate neurons, networks, and
conductances. The dynamic clamp was implemented on a custom-built PC with an Intel Core 2 Duo
E6850 that was stably overclocked to 3.4 GHz. This allowed us to simulate up to 200 neurons (up to 5
differential equations each) in real-time with 10 kHz sample rate. However, the stability of real-time
interactions decreased with more network connections and/or spiking activity. Thus, we used networks of
50 neurons so that stability could be maintained for all network conditions we examined. Numerical
integration was with 4th order Runge-Kutta with a 100 µs integration step size, matching the 10 kHz
sample rate of the dynamic clamp.
RESULTS

Hybrid network enhances differences between input conductance timing distributions

Utilizing the dynamic clamp to apply simulated synaptic conductances to layer 4 RS neurons in *vivo*, we first examine the summed conductance in response to thalamic input (Fig. 1F) or thalamic input as well as synaptic input from the simulated barrel network (Fig. 1G). We define the total synaptic conductance onto a single RS neuron as the sum of each individual synaptic conductance from thalamic, excitatory, and inhibitory synapses from the simulated network:

\[G_{syn} = g_{th} + g_E + g_I \]

We also consider the effective synaptic reversal potential:

\[E_{syn} = (g_{th}E_{AMPA} + g_EE_{AMPA} + g_IE_{GABA})/G_{syn} \]

(Fig. 1H). Note that both quantities vary over time and depend on activity in the hybrid network.

When the neuron is acting without the hybrid network (Fig. 1F), the total synaptic conductance is due solely to thalamic input. Both the rate of rise and the peak magnitude depend on the timing of the input volley. The cumulative sum of synaptic conductance (i.e. the area under each curve) is consistent across all input timing distributions. Because of the lack of inhibition, the synaptic reversal potential is constant, resulting in a constant depolarizing synaptic drive to the subthreshold membrane potential (Fig. 1H, left).

In the presence of the hybrid network, the total synaptic conductance is shaped by the combination of thalamic input as well as local excitatory and inhibitory synapses. Importantly, neurons in the barrel-like hybrid network require more thalamic input to reach threshold compared to neurons acting without the network. Because the simulation parameters were set so that the cell spiked, the total synaptic conductance is larger, resulting in a bigger difference in both the rate of rise and in the peak conductance magnitude between fast and slow inputs (Fig. 1F).

The presence of late inhibition further increases the synaptic conductance, as well as rapidly hyperpolarizing the synaptic reversal potential just after the thalamic conductance reaches its maximum (Fig. 1H, right). Excitatory synapses from recurrent excitation have little effect on the late component of
the net conductance waveform, but serve to slightly depolarize the late component (>5 ms for fast inputs, >10 for slow inputs) of the synaptic reversal potential. Interestingly, since fast stimuli evoke stronger inhibition (Pesavento et al., 2010), the changes in driving force occur earlier for fast inputs (Fig. 1H). This effectively shortens the duration in which rapid thalamic input can generate an action potential in excitatory neurons, which in turn requires more thalamic input to reliably generate a response. Thus, fast inputs will generate responses that occur more reliably and with shorter latency than slow inputs in the presence of network connections.

Individual neuron responses to hybrid network input

We examined the responses of 39 RS barrel neurons recorded *in vitro* in response to simulated thalamic input, with and without the presence of simulated barrel network connections via the hybrid network. Figure 2 shows example traces and measures from an example *in vitro* RS neuron in response to three timing distributions of thalamic input at the threshold input magnitude T. In the presence of the hybrid network, spikes occur earlier and with less variability than with thalamic input alone (Fig. 2A). The same neuron required more thalamic input to reach threshold T in the presence of network connections versus the absence (24 versus 15 input spikes, respectively). When embedded in the network, the input threshold is less sensitive to changes of input magnitude and more sensitive to changes of input timing (Fig. 2B). Moreover, both the spike latency (Fig. 2C) and spike variability (Fig. 2D) decrease in the presence of network connections.

We compiled similar data from 39 *in vitro* RS neurons and 35 simulated RS neurons both while isolated and while embedded in a hybrid network (Table 1). In the presence of network connections, the mean threshold and threshold sensitivity to input timing are significantly higher than in with thalamic input alone. The unexpectedly lower threshold sensitivity to timing in the simulated neuron can be explained by the lack of dendrites in the computational model. The sharp rise of sensitivity in the real neuron compared to the simulated neuron is likely due to dendritic shunting, in which a slow current
applied at the soma has a greater propensity to be shunted by the dendrites than a fast input would. Our simulated neurons do not have dendrites, so would not experience this shunting effect. Latency, variability, and the sensitivities of each to input timing and input magnitude are reduced in the presence of network connections. All changes of response measures are similar between \textit{in vitro} and simulated RS neurons.

Taken together, our results suggest that neurons embedded in barrel circuits require more thalamic input to reach threshold, but fire earlier and with less variability than neurons acting alone. In all of our measures, with the exception of the previously noted threshold sensitivity to input timing, the effect of network connections on the responses of both real and simulated neurons of the hybrid network was the same (Table 1).

\textbf{Population response of connected versus individual excitatory barrel neurons}

One of the primary goals of this study is to examine how the presence of local excitatory and inhibitory input alters the population response to transient thalamic input. We combine the responses from the same 39 \textit{in vitro} RS neurons to the different simulated thalamic inputs in the presence or absence of hybrid network connections. The additional transient synaptic conductances significantly altered the ensemble response to different input conditions.

Population spike density histograms, showing the pooled spike times from 39 RS neurons \textit{in vitro}, indicate the temporal distributions of responses to simulated thalamic input. Responses for each neuron are aligned to input threshold (T) (Fig. 3A-B). When acting within the hybrid network (thalamic + network input), \textit{in vitro} population responses are less temporally distributed but are more sensitive to input timing (compare rows) and less sensitive to input magnitude (compare columns) then when acting individually (thalamic input only). Hybrid network responses are similar to responses observed \textit{in vivo} (Pinto et al., 2000), specifically in the difference of response magnitude across input timing (Fig. 3C). However, the \textit{in vivo} responses have a broader temporal distribution than those observed with the \textit{in vitro}
hybrid network responses. Despite the temporal difference, it is likely that the downstream neurons integrate the responses from layer 4 RS neurons, indicating the importance of spike count across the population.

As described in Methods, we quantify RS neuron population responses as spikes per stimulus for the different simulated synaptic input conditions (Fig. 3D-F). In the absence of network connections, excitatory RS neurons are sensitive to both input magnitude (the distance between lines for responses across magnitudes) and input timing (the slopes of the lines) (Fig. 3D), consistent with our previous findings for individual neurons (Pesavento et al., 2010). In the presence of network connections, RS excitatory responses are less sensitive to input magnitude but more sensitive to input timing (Fig. 3E).

A comparison of the hybrid network population responses and the in vivo responses show many similarities, in particular high sensitivity to input timing and low sensitivity to input magnitude. In our data, the in vivo neurons typically generate up to two spikes per stimulus, compared to the in vitro one spike per stimulus. This may be a result of the lack of spatial interactions by applying simulated conductances directly to the soma in vitro, as opposed to the dendritic arbor as happens naturally in vivo. In particular, the soma will be refractory after the initial spike, while charge from the dendritic inputs would continue to facilitate a second spike within the in vivo network. This would also explain the wider temporal profile with the in vivo spike density histogram (Fig. 3C). It is also important to note that some studies have found more sparse spiking responses to whisker deflections in vivo (de Kock et al., 2007; Brecht and Sakmann, 2002). Many of those observed differences of in vivo spike count can be attributed to differences in whisker stimulation.

Population sensitivity measures elucidate how changes of input conditions, such as timing and magnitude, affect the excitatory population response. The presence of the hybrid network significantly increases the population sensitivity to different input timing distributions (p<0.001) (Fig 3G) and significantly decreases the sensitivity to input magnitude (p<0.001) (Fig 3H). Both of these measures are
comparable to the sensitivity measures calculated from excitatory neuron responses in vivo. In addition, we also found that neurons embedded in networks require more thalamic input to reach threshold (Fig. 3I). This is consistent with the known damping properties of barrel circuitry (Pinto et al., 2003). Taken together, these data suggest the sufficiency of network interactions in shaping the local network response to thalamic input.

Effect of connectivity on population response sensitivity

Next, we examined the effect of synaptic convergence on population response sensitivity. We combined the responses of 10 in vitro RS neurons while varying the convergence probabilities of feedforward inhibition and recurrent excitation in the hybrid network. Our data suggest that the increased sensitivity to timing in ensemble responses depends mainly on feedforward inhibition (IE); recurrent excitation with relatively low convergence probabilities has little effect on sensitivity to timing (Fig. 4). However, decreased sensitivity to magnitude depends on the balance of both recurrent excitation and feedforward inhibition. Due to the time required to obtain data from multiple network connectivity patterns while holding a cell in vitro, we restricted the hybrid networks to no local connectivity (thalamic input only), and four combinations of feedforward inhibition and recurrent excitation: normal IE (0.7), weak IE (0.3), normal EE (0.15), and strong EE (0.5).

When IE is decreased from “normal” to “weak”, the population responses are less sensitive to the timing of thalamic inputs and are more sensitive to input magnitude (Fig. 4B-C). Increasing the strength of recurrent excitation in both the normal and weak IE networks shows little effect on the sensitivity to timing, but has significant effect on the sensitivity to input magnitude (Fig. 4D-E). We quantified response sensitivity as the slope of the line of best fit through the data, and we confirmed that increasing the EE convergence has no effect on the population response sensitivity to input timing (Fig. 4F, hatched versus open bars), while increases the sensitivity to magnitude for both normal and weak IE networks.
Importantly, high convergence of feedforward inhibition is sufficient to enhance network selectivity to fast versus slow thalamic inputs (Fig. 4F, white versus gray bars).

Network connectivity in simulated networks

While the hybrid network allows us to examine the effect of different network configurations on the response properties of real barrel neurons, the number of networks we can explore is limited by how long we can hold each cell. Therefore, to more thoroughly explore the effect of network connectivity, we examined purely simulated networks over a broad range of values for both feedforward inhibition convergence (IE) and recurrent excitation convergence (EE) values.

Figure 5A-B compares the population responses of simulated RS neurons acting alone (thalamic input) versus synaptically connected (thalamic + network input). As with the *in vitro* neurons (c.f. Fig. 5D-E), network connections result in population responses that are more sensitive to thalamic input timing and less sensitive to input magnitude.

To understand the specific effects of different convergence probabilities, we change the convergence probability of one class of connections while holding the others constant within the simulated network. While holding recurrent excitation constant at barrel-like levels (see Methods), the sensitivity to thalamic input timing increases as the convergence probability of inhibitory to excitatory synapses (IE) increases (Fig. 5C, black). The simulated RS neuron population shows slightly lower sensitivity than the *in vitro* population responses (Fig. 5C, red). Increasing IE also results in a decrease of sensitivity to thalamic input magnitude (Fig. 5E). While holding feedforward inhibition constant, increasing the strength of recurrent excitation has little effect on the population sensitivity to input timing (Fig. 5D); again, there is a notable decrease in sensitivity to timing in the simulated population response compared to the *in vitro* population. Increasing recurrent excitation significantly increases the sensitivity to input magnitude (Fig. 5F). We show the sensitivity to input timing and input magnitude over the full range of convergence probabilities (Fig 5G,H). The sensitivity to timing is almost bowl shaped, with a
high sensitivity with high EE and IE convergence probabilities, with the IE convergence dominating the overall shape of the surface (Fig. 5G). The sensitivity to input magnitude is predictably high for high EE and low IE, and falls off as EE decreases or IE increases (Fig 5H).

Network damping

Previous studies have examined the role of strong intracortical inhibition in rendering a net suppressive or damping effect on layer 4 barrel responses to thalamic input (Gabernet et al., 2005; Wilent and Contreras, 2004; Pinto et al., 2003). Moreover, theoretical models have shown that damping circuits are selectively responsive to fast inputs (Pinto et al., 2003). The methods used in the present study allow a more detailed investigation of the role of network damping on thalamocortical response sensitivity.

We define *network gain* as the mean excitatory population response in the presence of network connections divided by the mean excitatory population response without network connections. Values less than one indicate that the overall effect of connectivity is inhibitory, or damping, while values greater than one indicate that the overall effect is excitatory or amplifying.

Consistent with previously published results using reduced models (Pinto et al., 2003), we find that damping networks exhibit responses that are more sensitive to timing and less sensitive to magnitude than networks that are amplifying. We show the response sensitivities of a representative damping network and amplifying network. In the presence of network connections the damping network is significantly more sensitive to input timing than the amplifying network (Fig. 6A). The damping network also exhibits a significantly reduced sensitivity to input magnitude, while the amplifying network shows a significant increase of sensitivity to input magnitude (Fig 6B).

To describe the effect of the network on the response sensitivity to input timing or magnitude, we define *network sensitivity gain* as the ratio of sensitivity to input timing or magnitude with the network on divided by the sensitivity with the network off. A network sensitivity gain equal to one indicates that the presence of network connections has no effect on response sensitivity to input conditions. We examined
the effect of network gain on network sensitivity gain by changing the IE and EE convergence probabilities (IE=0.1 to 1.0; EE=0.05 to 0.75) and thus systematically varying network gain. Simulated thalamic inputs were presented as before, and we recorded the network sensitivity gain of the subsequent responses. Thus, we can compare the functional effect of the network (damping versus amplifying) against the effect of the network in altering the sensitivity to input conditions.

We found that nearly all damping networks are more sensitive to the timing of transient synaptic inputs, while amplifying networks are more sensitive to the number of inputs received (Fig. 6C). Networks with low network gain (damping) exhibit high sensitivity to timing and low sensitivity to magnitude, regardless of the specific network configuration giving rise to the network gain. Conversely, amplifying networks exhibit high sensitivity to input timing and magnitude.

The relationship between response sensitivity and network function (damping versus amplifying) appears to be robust across a broad range of network convergence values. Observations of response sensitivity to both input timing and magnitude can serve as a way to determine the effect of network connections experimentally. For example, high values of both sensitivity to timing and magnitude may indicate an amplifying network, while high sensitivity to timing and low sensitivity to magnitude indicates that the network is predominantly inhibitory, or damping. Importantly, these results give a valuable insight for understanding the functional role of network connectivity – described as sensitivity to input timing, input magnitude, or a combination thereof – that is independent of specific synaptic convergence values.

Neuronal and network responses with inhibitory RS neurons

How much of the effect of the network relies on the difference of intrinsic membrane properties between RS and FS neurons? We create a network of 35 simulated RS and 15 simulated FS neurons (RS-FS network) and present it with simulated thalamic inputs in the presence or absence of local synaptic
connections. Previous results have found that in the absence of synaptic inputs from the local network, RS and FS neurons exhibit different input thresholds, latencies, and variability, resulting from their having different intrinsic membrane properties (Pesavento et al., 2010). In a different set of simulations, we replace all FS neurons in the model with RS neurons while retaining their inhibitory synapses, yielding inhibitory RS (RSi) neurons, i.e., a RS-RSi network. Thus, all neurons in the network have identical intrinsic membrane properties but different network-level effects. Here, we show that differences in the intrinsic properties of FS vs RS neurons are crucial for enhancing the network’s sensitivity to input timing. This is illustrated with example networks in Figure 7.

The presence of fast inhibition increases the thalamic input threshold; the increased number of input spikes results in reduced temporal variability across both populations. In a simulated RS-FS network, FS neurons spike approximately 5 ms prior to RS neuron responses in both the absence and presence of network connections (Fig. 7A). In the RS-RSi network, inhibitory neurons respond concurrently with the excitatory neurons both in the absence and presence of network connections; this remains consistent for all thalamic input timing distributions (Fig. 7F). RSi neurons exhibit a slight increase of spike probability later in time, suggesting that these late responses are enhanced by disynaptic feedforward excitation from the RS neurons (Fig. 7F, right). Thus, the input threshold of excitatory RS neurons is slightly higher with than without network input. Because of the transient nature of the stimuli used, these later interactions have no effect on initial RS neuron responses.

Again we utilize the total synaptic conductance envelopes to visualize the timing of each class of input received, as well as estimated synaptic reversal potential as before (c.f. Fig. 1G,H). In the RS-FS network, thalamic synapses (g_{thal}) generate the initial rapid increase of conductance, with inhibition (g_I) peaking within 5 ms for fast inputs (Fig. 7B). Strong and rapid inhibition immediately but incompletely hyperpolarizes the effective synaptic reversal potential (\hat{E}_{syn}) (Fig. 7C). Recurrent excitatory conductances slow membrane hyperpolarization, but more preferentially to fast versus slow inputs (Fig. 7D, arrow). In the RS-RSi network, thalamic inputs are solely responsible for the initial conductance,
with inhibition peaking approximately 10 ms after stimulus initiation for fast thalamic inputs (Fig. 7G), much later than inhibition in the RS-FS network (cf. Fig. 7B). In comparison to the RS-FS network, E_{syn} of an excitatory neuron in the RS-RSi network remains depolarized for longer, and is rapidly hyperpolarized to the GABA reversal potential (-80 mV) for all three thalamic input timings (Fig. 7H).

The inhibitory neurons in the network exhibit different synaptic conductances than the excitatory, with the difference of synaptic convergence readily obvious. Inhibitory FS neurons in our barrel-like network receive feedforward excitatory input (EI) with 0.5 convergence probability, and recurrent inhibitory input with 0.2 convergence probability, as in the Methods. Strong thalamic input is enhanced in duration by feedforward excitation (Fig. 7G). It is clear that the excitatory input from RS neurons is highly dependent on the timing of thalamic input, with high amplitude and duration excitatory conductance in response to fast thalamic inputs, and very little response to slow inputs. Because FS neurons respond early, the recurrent inhibition occurs prior to the start of feedforward excitation for all thalamic input timing. The estimated synaptic reversal potential for FS neurons exhibits a initially depolarizing drive, followed by hyperpolarization from recurrent inhibition (Fig. 7E). The third wave of synaptic conductance is from the slow excitatory neurons, keeping the driving force depolarized. The relative amount of time depolarized varies between different thalamic input timing distributions, more so than with RS neurons (eg Fig 7D). From these results, it is apparent that RS and FS neurons receive different inputs in context of the connected network. The second half of this study aims to identify the role of membrane properties in shaping connected population responses to thalamic input.

To examine the effects of identical intrinsic membrane properties in modulating population responses, we utilize the hybrid network and embed *in vitro* RS neurons into both the RS-FS and RS-RSi networks. Figure 8 presents data from 10 *in vitro* RS neurons, showing their pooled responses to both network conditions. As observed previously (cf. Fig 3), population responses of *in vitro* neurons in the presence of hybrid network virtual synapses are more sensitive to input timing and less sensitive to input magnitude than with the connections off (Fig 8A,B). The calculated values of sensitivity to input timing
and input magnitude are shown in Figs. 8E and 8F (FS), respectively. In contrast, networks with RSi neurons in place of FS neurons do not show notable change between networks with or without connections (Fig. 8C,D). The sensitivity to input timing in RSi networks increases slightly when connectivity is added (Fig 8E, RSi, not significant), but this change is significantly lower than that observed in FS networks (Fig 8E). RSi networks exhibit a slight decrease in sensitivity to input magnitude (Fig. 8F, RSi). This decrease in sensitivity to input magnitude is not significantly different from FS networks, suggesting the importance of the properties of RS neurons in network processing.

It is clear that by removing the differential effects of FS neuron single cell properties, the processing of the network is significantly altered. However, the changes were not consistent across each measure, suggesting different roles of the membrane properties between RS and FS neurons. Next, we examine how changes in input resistance and membrane time constant, altered directly via the passive leak conductance, affects population input sensitivity.

Effect of neuronal leak conductance on network-level processing

RS and FS neurons differ in a number of membrane properties. Our previous work suggests that the difference of input resistance is particularly important to account for differences in their responses to thalamic input (Pesavento et al., 2010). Here, we examine how changes in input resistance in both populations affect network level processing. Note that in our computational models, changes of input resistance are induced by varying the maximum leak conductance. All other membrane parameters are held constant, while maximum synaptic conductances (g_{syn}) are scaled to maintain the same PSP amplitude as in the canonical models.

We examine the responses of 11 RS barrel neurons embedded in hybrid barrel networks while systematically varying the leak conductance of both the excitatory RS and inhibitory FS neurons in the simulated network (Fig. 9). Our results demonstrate that the effect of network interactions depends strongly on the leak conductance of inhibitory neurons and only marginally on the leak conductance of
excitatory neurons. As discussed previously, network connections under normal conditions enhance response sensitivity to input timing and decrease sensitivity to magnitude (compare Fig. 9A, B).

Decreasing the leak conductance in the excitatory RS neurons (gleakE) has little effect on the role of the network (compare Fig. 9B, C). However, if we also increase the leak conductance in the inhibitory neurons (gleakI), the enhancement of response sensitivity due to network connections is lost (compare Fig. 9C, D).

We compare the sensitivity to timing and sensitivity to magnitude of in vitro RS neurons across a subset of networked population leak conductance conditions and the baseline condition without network connections. The number of conditions examined was limited by how long we could reliably hold each neuron using whole cell patch. Nonetheless, the gleakE and gleakI conditions we examined exhibit complex interactions in their effects on population sensitivity to input timing. While decreasing gleakE alone has little effect on the sensitivity to input timing, the addition of high gleakI decreases response sensitivity to input timing, substantially lower than responses in the absence of network connections (Fig. 9E). This combination of membrane conductances negates the influence of the network, decreasing the population sensitivity to input timing. In addition, high values of gleakE with low gleakI enhance RS neuron sensitivity to timing (Fig 9E, far right bar). Sensitivity to magnitude is less affected by the differences of leak conductance between the neuronal subpopulations (Fig 9F). Decreasing gleakE slightly increases the sensitivity to input magnitude, regardless of inhibitory leak conductance (Fig. 9F, light gray bars). Note that these effects are after adjusting the synaptic conductances to maintain the same PSP amplitude as used in the null (o) condition; the effects observed are not a direct result of synapse efficacy.

These results indicate that the network’s sensitivity to input timing depends in part on the fact the input resistance of inhibitory neurons is lower than that of excitatory neurons.

Network sensitivity gain
While the hybrid network allowed us to examine the effect of different networks on the response properties of real barrel neurons, the number of networks we were able to explore was limited by how long we could hold each cell. Therefore, to examine the effect of neuronal leak conductances more thoroughly, we used simulated networks having a broad range of values for leak conductance in excitatory (gleakE) and inhibitory (gleakI) neurons. Our simulated results indicate that both gleakE and gleakI alter the effect of the network on response sensitivity (Fig. 10). Increasing values of gleakI decrease the effect of the network on sensitivity to input timing; predictably, changing gleakI has no effect on excitatory population responses in the absence of network connections (Fig. 10A). Increasing values of gleakE increase the sensitivity to input timing both in the presence and absence of the network (Fig. 10B).

To quantify better how intrinsic properties influence the role of the network, we define a measure of network sensitivity gain as the ratio of the response sensitivity (to timing or magnitude) when the network is present divided by the response sensitivity when the network is absent. A network sensitivity gain of 1 indicates that the presence of the network has no effect on the response sensitivity; a gain less than 1 indicates that network reduces response sensitivity and a gain greater than one indicates that the network increases response sensitivity. Network sensitivity gain to input timing depends strongly on the leak conductance of inhibitory neurons but only weakly on the leak conductance of excitatory neurons (Fig 10C-D). By measuring the regression line and testing whether the slope is significantly different from zero, we found that increasing the inhibitory leak conductance significantly reduces the network sensitivity gain to input timing in simulated RS neurons (p<1e-4) (Fig. 10C). Increasing the excitatory leak conductance weakly reduces network sensitivity gain (p<0.01) (Fig. 10D). By contrast, the network sensitivity gain to input magnitude is modified by changes of gleakE but not gleakI. Increasing inhibitory leak conductances has no significant effect on network sensitivity gain to input magnitude (p>0.05) (Fig. 10E). However, increasing excitatory leak conductances serves to significantly decrease the network sensitivity gain to magnitude (p<1e-4) (Fig. 10F). These results suggest separate roles of excitatory and
inhibitory subpopulation excitability in shaping the response selectivity to thalamic input, as modulated by leak conductance.

Why is the leak conductance of inhibitory neurons a critical parameter in altering the excitatory network sensitivity gain to input timing? To answer this, we examined model RS and FS neuron single cell response measures of s in order to distinguish changes in threshold, latency, or variability across changes of inhibitory leak conductance across the simulated barrel network (Fig. 11). Changing g_{leakI} has no effect on RS neurons in the absence of network connections; therefore we only show the data for RS neurons in the presence of network connections (Fig 11, top row). High leak conductance FS neurons exhibit an increase of spike threshold in both the absence (net off) and presence (net on) of network connections (Fig. 11D). Across increasing g_{leakI}, surprisingly we did not observe changes of spike latency (Fig. 11E), but spike variability showed substantial changes with both network off and on. The FS variability graphs have been separated for visual clarity. With the network off, increasing g_{leakI} results in a decrease of FS neuron spike variability, particularly in response to slow inputs (Fig. 11G). In contrast, the presence of network connections results in an increase of spike variability as g_{leakI} increases (Fig. 11F). This may occur as a result of feedback inhibition from early FS neuronal responses increasing the variability of membrane conductance and thus broaden the distribution of spike times without altering the mean latency.

Inhibition from high leak conductance FS neurons effectively decreases the spike threshold in RS neurons, decreasing the threshold sensitivity to timing (the distance between the different input timing lines) primarily through a substantial decrease of threshold for slow inputs (Fig. 11A). Notably, this decrease occurs concomitantly with an increase of FS response variability. RS response latency and variability remain unchanged for increasing values of inhibitory leak conductance (Fig. 11B,C). It is clear that changing g_{leak} on FS neurons exhibits complex actions on single cell and population responses of RS neurons.
Using a conductance clamp, we embedded *in vitro* RS neurons within a simulated barrel-like network. This hybrid network gives unique opportunity to control the timing and magnitude of synaptic inputs seen by the neuron’s soma. This allows the experimenter a unique chance to explore how the presence of simulated network input alters the response properties of neuronal subpopulations to different input, neuronal, and network conditions. By creating a biologically plausible, heterogeneous network simulation and applying its synaptic output to *in vitro* neurons, we demonstrate the effectiveness of barrel-like conditions at enhancing selectivity to input timing. We defined the sensitivity to input timing as the change of population response magnitude (spikes per stimulus) as the median of the thalamic input latency increases. We defined the sensitivity to input magnitude as the change of population response magnitude as the number of active thalamic synapses increases. These metrics quantify how the network excitatory output transforms transient input. We then examine the effects of local network connectivity, dependence on the differences between neuronal subclass membrane properties, and how leak conductance can modulate the effects of network connectivity.

Studies that examined the anatomical and electrophysiological characteristics of barrel neurons (McCormick et al., 1985; Pesavento et al., 2010) as well as their synapses and connectivity (Gibson et al., 1999; Beierlein et al., 2003) allow us to constrain neuronal and network simulations with known biological values and variability, adding to the robustness of our findings. Importantly, the synaptic parameters (e.g. PSP amplitude) were not tuned to give population responses that accurately represent those observed *in vivo*; nonetheless, our results closely approximate known response measures from anesthetized animals (cf. Fig. 3G-H; Pinto et al., 2000). By matching observed single cell responses (Pesavento et al., 2010) and adding network connectivity, we were able to take significant steps forward in understanding the mechanisms that underlie the selectivity of population responses in the *in vivo* animal.
Barrel-like connectivity enhances temporal selectivity

Embedding in vitro RS neurons in the barrel-like hybrid network enhances the response selectivity to fast versus slow inputs. When responding to transient thalamic input in context of the network, neurons have a higher probability of generating an action potential in response to fast temporally correlated inputs than when the neuron receives only thalamic input (Fig 2B, Fig. 3D-E). Strong feedforward inhibition is sufficient to enhance the sensitivity to input timing (Fig.4F), while simultaneously decreasing the sensitivity to the number input magnitude (Fig. 4G). Governed by synaptic convergence between neuronal subtypes, the balance of excitation and inhibition can modify the processing modality of the cortical circuit. However, different network connectivity patterns give rise to identical functional effects (e.g. damping, sensitive to input timing) independent of the specific synaptic connectivity (Fig. 6C). Thus, the synaptic convergence probabilities between neuronal subtypes can determine the temporal selectivity and magnitude selectivity within the thalamocortical transformation.

The interplay between required thalamic input magnitude and the timing of thalamic and local network input in generating a single action potential is complex, overlaying synaptic and cellular mechanisms that directly and indirectly modulate response probability. In order to overcome the effects of feedforward inhibition, more thalamic input is required to generate the same probability of output spike generation. In turn, this enhances the differences of responses to fast, medium, and slow thalamic inputs at the level of single neurons; specifically, the rate of total conductance rise of fast inputs is faster and earlier than that of slow inputs with identical input magnitude (Fig. 1F-G). Feedforward inhibition additionally sharpens these differences by rapidly hyperpolarizing the synaptic reversal potential and correspondingly decreasing the synaptic driving force (Fig. 1H). Recurrent excitatory input begins just after the inhibitory input, serving to slow the rapid hyperpolarization of synaptic reversal potential. These dynamics rely heavily on the relative timing of synaptic input from FS, RS, and thalamic neurons. FS
neurons respond earlier than RS neurons (Pesavento et al., 2010) and, consequently, feedforward inhibition almost always precedes recurrent excitation.

Across all convergence values examined, we find that response sensitivity to input timing depends primarily on feedforward inhibition; recurrent excitation has little effect so long as the network has a net inhibitory effect. As EE increases beyond this threshold, the balance of excitation and inhibition is shifted to a positive feedback regime. The sensitivity of responses to both input magnitude and input timing both increase dramatically and/or the network exhibits unstable epileptiform activity in response to transient thalamic inputs (c.f. Fig. 5H). The sensitivity to input magnitude sharply increases as the strength of recurrent excitation increases and feedforward inhibition decreases, amplifying the strong excitatory thalamic inputs. With no fast inhibition, IE, the network responds easily to very few input spikes with little temporal correlation.

Note that the relative strengths of feedforward inhibition and excitation can shift the processing modality of the network. The connectivity within the local network can make a population of excitatory neurons sensitive to: 1) input timing alone, 2) input magnitude alone, 3) both, or 4) neither. The local network accomplishes these processing modalities by altering the convergence probabilities within local excitatory and inhibitory populations.

The hybrid network also bridges the gap in understanding the structure and function of the network. As observed in single neurons, where a broad range of covarying maximum channel conductances give rise to similar functional outputs (Prinz et al., 2004), a broad range of covarying network parameters can also give rise to the same functional effect of the network. Here, we focused on the convergence probabilities of feedforward inhibition and recurrent excitation, and found that multiple combinations of these parameters result in similar selectivity to input conditions (Kyriazi and Simons, 1993). In particular, damping networks are more sensitive to input timing and less sensitive to input magnitude, regardless of the specific synaptic convergence (Fig. 6C). Other parameters that could be
manipulated are total neuron number, ratio of excitatory and inhibitory neurons, and excitatory/inhibitory
PSP amplitude. Although these manipulations may alter the fine-scale results, the general principles
elucidated here will hold true.

The fast, reliable, and broadly tuned responses of FS neurons (Pesavento et al., 2010) are an
essential component of transforming the temporal signature of thalamic input into a spike count (Pinto et
al., 2003, 2000). Confirming earlier results, FS neurons respond earlier than RS neurons (Pesavento et
al., 2010), giving rise to strong inhibition occurring 5-10 ms after initiation of thalamic input (Fig 1G).
This requires more excitatory thalamic inputs to be able to generate a response within this narrow window
of opportunity. Fast thalamic inputs have more spikes within the early portion of the response, so are able
to withstand the rapid and strong inhibition from FS neurons. Conversely, slow inputs are more
temporally distributed, and although feedforward inhibition will still lag behind the majority of excitatory
thalamic synapses, it requires a proportionally much greater number of input spikes to generate a response
of the same probability as with the fast inputs (Fig 2B). Thus, strong temporal correlation of thalamic
input will result in a higher probability of response from the excitatory neuronal population. The results
shown here confirm and extend the results from previous studies (Wilent and Contreras, 2004; Arabzadeh
et al., 2003) by explicitly showing the contributions of feedforward inhibition, recurrent excitation, and
the timing of thalamic input in the shaping of cortical responses.

Neuronal membrane properties modulate effect of network connectivity

The layer 4 barrel network responds preferentially to fast correlated input from thalamus,
exhibiting reduced sensitivity to input magnitude (Fig.3; Pinto et al, 2000). This is in contrast to
observations of individual neurons acting outside the context of a connected network (Pesavento et al.,
2010). Here, by altering the intrinsic membrane properties of neuronal subpopulations, we have been able
to elucidate a crucial role of neuronal properties in shaping the population responses of excitatory barrel
neurons to thalamic input.

Few studies have examined the reciprocal effect of how the membrane properties of participating
neurons affect the response properties of the network. Our results suggest that network connections serve
to modify response properties already inherent in individual neurons. The presence of network
connections serves to shape the input received by a single neuron; that neuron will then respond in a
manner dictated by its intrinsic membrane properties (Pesavento et al., 2010). By altering the mean leak
conductance of a neuronal subpopulation, we alter how it responds to excitatory and inhibitory synaptic
input. To capture this idea, we introduced the concept of network sensitivity gain, which elucidates how
the intrinsic properties of individual neurons shape the effect of the local network in processing transient
stimuli.

The difference of RS and FS intrinsic membrane properties within the barrel network is sufficient
to establish the network’s preference for input timing versus input magnitude. When excitatory and
inhibitory neurons have identical membrane properties (RS-RSi network), network connections have little
effect on network function. Such networks exhibit sensitivity to input timing and magnitude similar to
those in neurons without network connections (Fig 8B, C).

A key difference between RS and FS neuron intrinsic membrane properties is input resistance
(Pesavento et al., 2010). The hybrid network allowed us to manipulate the leak conductance in simulated
neurons, thus directly altering the membrane input resistance and time constant of all neurons within a
subpopulation. Simulated FS neurons with high leak conductance were associated with a decrease of
sensitivity to input timing of in vitro RS neurons embedded in the hybrid network. Interestingly,
increasing the difference of leak conductance between RS and FS values (via low gleakE and high gleakI)
resulted in RS neuron sensitivities to input timing below values observed without network input (Fig. 9E).
Confirming this result, simulations showed that the input resistance of inhibitory neurons, as controlled
by leak conductance, modulates network sensitivity to input timing within the excitatory neuronal population (Fig. 10C). Thus, changing the relative leak conductances between the excitatory and inhibitory populations bestows the ability to substantially shift sensitivity to input timing. In combination with the role of excitatory leak conductance in shaping sensitivity to input magnitude (Fig. 10F), it is apparent that input resistance within a given neuronal subpopulation plays a direct part in modulating the role of the network’s response to transient input.

The leak conductance of the inhibitory FS neuronal subpopulation plays a significant role in shaping the network responses; however, the dynamics underlying this mechanism are subtle. To clarify these interactions, we examined the effect of leak conductance on single cell response properties. We originally expected that lower leak conductance (higher input resistance, longer membrane time constant) would result in an increase of inhibitory spike latency, yielding responses similar to those observed with the inhibitory RS (RSi) neurons. However, we did not observe a significant change of inhibitory latency (Fig. 11E). Unexpectedly, networks with high inhibitory leak conductance (low input resistance) in the presence of network connections exhibited increased spike time variability (Fig 11F). This is in contrast to observations where high leak conductance in the absence of network connections resulted in a decrease of spike variability (Fig. 11G).

Inhibitory FS neurons typically respond rapidly, reliably, and with little preference to the timing of thalamic inputs (Pesavento et al., 2010), resulting in narrow spike timing distributions (cf. Fig 7A), which are then propagated to excitatory RS neurons via feedforward inhibition. It is clear that networks containing inhibitory neurons with high leak conductance have reduced threshold sensitivity to timing, which in turn results in reduced network sensitivity to input timing. This stems from the increased spike time variability in high leak conductance FS neurons, and the corresponding equalization of input threshold across different input times. With higher temporal variability of synaptic feedforward inhibition, fewer active thalamic synapses are required to generate an action potential. This reduces the difference of RS neuron input thresholds between fast, medium, and slow inputs (Fig. 11A), effectively decreasing the
threshold sensitivity to input timing within single neurons (Pesavento et al., 2010). This, in turn, tends to
equalize population spike probability across input timing distributions (c.f. Fig. 9D) and decreases the
role of the network in facilitating temporal selectivity. Thus, increased variability of inhibitory neurons
resulting from increased leak conductance will reduce the network selectivity to high temporal correlation
present in thalamic inputs (Fig 10C).

In our simulated RS and FS cortical neurons, the leak conductance parameter directly alters the
input resistance and membrane time constant. A multitude of mechanisms can persistently change the
input resistance in specific neuronal subpopulations. Balanced excitatory and inhibitory synaptic input
increases membrane permeability (Paré et al., 1998; Destexhe and Paré, 1999) and can alter the efficacy
of excitatory inputs (Mainen and Sejnowski, 1995; Prescott and De Koninck, 2003). Anesthesia can affect
neuronal excitability and input resistance through a multitude of mechanisms (MacIver and Roth, 1987;
Kendig et al., 1991; Ishizawa, 2007). Typically, general anesthetics reduce excitability by opening K+
channels (Ishizawa, 2007), thus reducing membrane input resistance. The norepinephrine system, via the
locus coeruleus, can modulate neuronal excitability by modifying the input resistance of neuronal
subpopulations and thus the transformation of information within a local network (Bergles et al., 1996;
Constantinople and Bruno, 2011). Many other potential mechanisms may directly alter a neuron’s
membrane resistance, including persistent sodium channels, ion channel trafficking, and the effects of
other neuromodulators, including acetylcholine, dopamine, and serotonin.

It must be noted that we have not exhaustively examined differences between RS and FS neurons.
In this study, we focused on how differences in the leak conductance between RS and FS neurons is
important, but RS and FS neurons have many other differences that are likely to also be important. For
example, RS and FS neurons have different radii for the soma, spike properties, and firing rate adaptation.
Although we are presenting our synaptic conductances as they are observed at the soma, RS and FS
neurons are likely to integrate synaptic input differently within their dendritic arbors.
Utility and restrictions of the hybrid network

The use of a hybrid network allows a unique comparison of biological neuronal responses to predictions from simulations. However, there are several notable differences between our simulated barrel-like network and an *in vivo* network. For instance, the spatial distribution of synapses along the dendritic processes can explain some of the differences in our results compared to those *in vivo*. Rather than depolarizing the soma all at once, as in current clamp stimulation within whole-cell recordings, dendritic processing would result in thalamic input arriving at the soma in a form that is more spatially diffuse, allowing time for a multiple spike response within the soma (Williams and Stuart, 2003). Due to the nature of the transient input from thalamus, our network does not include: low-threshold spiking (LTS) neurons which largely do not receive direct thalamic input (Gibson et al., Beierlein et al., 2003), short term synaptic depression or facilitation (Chance et al., 1998; Sun et al., 2006; Beierlein et al., 2003; Cruikshank et al., 2007), NMDA receptor dynamics (Hull et al., 2009), or gap junction coupling between inhibitory interneurons (Mancilla et al., 2007; Gibson et al., 1999). Most of these component responses occur over longer time scales than we are examining here. The presence of gap junctions would serve to facilitate synchrony within the FS population, but would do so in response to ongoing activity and would have minimal contribution to shaping the timing of feedforward inhibition for the responses we observe.

Background synaptic activity is not present in the simulated network; that is, we do not induce spontaneous action potentials and thus activation of synaptic conductances. This is largely not present within the *in vitro* neurons, as previously discussed in Methods. The network used would most closely approximate that observed with an anesthetized animal. In such a preparation, there is a very low level of background activity within the barrel circuit (Brecht and Sakmann, 2002). The presence of balanced background excitatory and inhibitory conductances serves to reduce the input resistance of each neuron (Destexhe et al., 1999, 2001), which will have similar effects to what we have shown in this study.
Other caveats with the use of dynamic clamp to present simulated synaptic input have been discussed elsewhere (Pesavento et al., 2010). For example, we are not simulating short-term synaptic depression or facilitation, and the current applied on the soma may act differently than synaptic current distributed across the dendritic arbor. Despite these caveats, we feel that our method for simulating thalamic and cortical network input provides a realistic probe for comparing the responses of neurons when acting alone versus when they are functioning as part of the barrel circuit.

Although it may not be surprising that neuronal population responses depend on both neuronal and network properties, few studies have examined the reciprocal regulation of response selectivity as we have done. Many studies focus either on single neuron response properties or on network level interactions. Our results, however, suggest that neither approach is sufficient to fully understand circuit function. Network connections serve to modify response properties already apparent in individual neurons. Moreover, networks are more plastic than individual neurons, enabling the system to adapt its responses to different conditions. On the other hand, the effect of the network also depends on the membrane properties of participating neurons; when all of the neurons are the same, the network effects are significantly reduced. Moreover, when the properties of one subclass are altered within the network—as with leak conductance in FS neurons—such a change can modulate the timing and coherence of inhibition, thus altering the effect of the local network. The properties of neuronal subpopulations thus modulate the role of local network synapses, which in turn shape the output of the individual neurons.

Ultimately, the effect of the network comes down to how it shapes the input to individual neurons via the timing and strength of excitatory and inhibitory synapses. Neurons, in turn, respond to the total input both from thalamus and the local network in a manner consistent with their own properties. The novel approach used here allows us to explain how the effect of feedforward inhibition depends on the properties of single neurons, namely that RS neuron response latencies are more sensitive to the timing of input compared to the responses of inhibitory FS neurons (Pesavento et al., 2010). The intrinsic membrane properties of neuronal subpopulations are doing two things: shaping the input they receive
from the network via local synaptic convergence properties, and determining how the cell responds to that input via membrane properties. Although the underlying mechanisms are reciprocally intertwined, this constitutes a simple mechanism by which a neuron filters and responds to input, providing multiple degrees of fine control over the processing abilities of cortical networks.
FIGURE LEGENDS

Figure 1: Hybrid networks and simulating whisker-evoked volleys of thalamic input in vitro.

(A) Conductance-based computational models of excitatory (E) and inhibitory (I) barrel neurons receive simulated synaptic conductances from thalamic inputs. Synaptic conductances are summed and passed to an in vitro (R) neuron via a conductance clamp. The in vitro neuron receives synaptic conductances from either thalamic inputs alone (left panel), or thalamic inputs as well as synaptic conductances from the simulated barrel neurons (center panel). Synaptic conductances are also applied from the real neuron back to the simulated network. The hybrid network allows easy alteration of membrane parameters across a neuronal subclass, such as giving all inhibitory cells the same membrane properties as RS neurons (right panel). (B) Population spike time histograms from in vivo neurons (n=63) in response to caudal whisker deflections at three different velocities (fast, 2300°/s; medium, 1666°/s; slow, 800°/s), with 630 responses per histogram (adapted from Pinto et al., 2000). (C) Probability density functions (PDF) used to generate thalamic input spike times, quantified by the median time of the skewed distribution. Spike density histograms with 600 spikes per distribution are shown in panel (D), and show similar characteristics to in vivo thalamic responses. (E) An example of the evoked excitatory post-synaptic potential of an RS neuron in vitro in response to a single simulated synaptic input. (F) Average synaptic conductance envelopes presented to an in vitro neuron with 15 thalamic input spikes (at threshold T) from 25 repetitions of fast, medium, and slow thalamic input distributions. (G) Average total (Gsyn, black) and component synaptic conductance envelopes presented to an in vitro neuron with 26 thalamic input spikes (at threshold T). Strong inhibition (gI, red) follows the thalamic inputs (gthal, blue), with weak recurrent excitation (gE, green) occurring just after the inhibition. (H) The estimated synaptic reversal potentials (Esyn) for thalamic input alone (left) and thalamic + network input (right). With thalamic input alone, only excitatory synapses are activated, giving rise to a constant reversal potential (EAMPA). In the presence of network connections, the timing of inhibitory input sharply hyperpolarizes the reversal potential, decreasing the driving force.
Figure 2: Effect of network connectivity on single neuron response measures.

(A) Voltage traces of an example in vitro RS neuron over fast, medium, and slow simulated thalamic inputs at threshold T in the absence (thalamic input) or presence (thalamic+network) of hybrid network connections. The presence of strong feedforward inhibition is apparent in the hyperpolarization in the presence of network connections. (B) The probability of action potential generation for each thalamic input magnitude (the abscissa), input timing (fast, blue; medium, red; slow, green), and absence (dashed, hollow) or presence (solid, filled) of local hybrid network connections, averaged over 25 trials. Input threshold (T) for thalamic input alone (gray arrow) and thalamic+network input (filled arrow) are shown at the magnitudes yielding spike probabilities closest to 0.5 for the medium timing. The presence of network connections serves to increase the input threshold T, increases the dynamic range of input magnitudes, and separates the probability of action potential generation over thalamic input timing. (C) Mean response latency across input timing in the absence (gray) or presence (black) of hybrid network connections. Input magnitude is at threshold T. (D) Mean response variability across input timing, as in (C). The presence of network connections decreases response latency and variability for this example RS neuron.

Figure 3: Effect of hybrid network connections on in vitro excitatory population responses.

(A-C) Population spike density plots of 39 in vitro RS neurons with thalamic inputs (A), thalamic and network inputs (B), and in vivo (C), in response to thalamic inputs varied over timing (Fast, Medium, and Slow) and magnitude; simulated thalamic inputs are centered around input threshold T, while in vivo magnitudes are defined by the whisker displacement angle (Pinto et al., 2000). Spike counts are normalized by the number of spikes per stimulus that occur within a 100 µs bin. (D-F) The mean population responses of excitatory RS neurons for the same network conditions as in A-C. Lines connect
responses to stimulus presentations of a given magnitude (T-3, green; T/2.6°, blue; T+3/4.5°, red; T+6/7.4°, black) over the input timing, quantified as the time to the median of the thalamic input distribution (2 ms, fast; 5 ms, medium; 8 ms slow). Data in panels C and F are based on Pinto et al 2000.

(G) Sensitivity to input timing, defined as the timing slope of the linear plane fit over the data shown in panels D-F. Sensitivity to input timing is significantly higher in the presence of local hybrid network input (t-test, p<0.001), while the in vivo sensitivity is similar to the responses we observe with the hybrid network. (H) Sensitivity to input magnitude, defined as the magnitude slope of the linear plane fit over the data in D-F. Sensitivity to input magnitude is significantly lower local hybrid network input (t-test, p<0.001). (I) The average population input threshold in the absence and presence of local network input; the threshold is significantly higher with the hybrid network (t-test, p<0.001). Error bars are ±SEM.

Figure 4: Effect of connectivity on hybrid network neuron population response.

Population responses in spikes per stimulus of excitatory RS neurons (n=10) for thalamic input alone, normal (IE=0.7, o) and low (IE=0.3, -) feedforward inhibition, and normal (EE=0.15, o) and high (EE=0.5, +) recurrent excitation (EE) convergence probabilities. (A, B) RS population responses in the hybrid network with network connections off and on (black and open, respectively, in panels F-G). (C) Population responses with weak IE and normal EE (solid gray in panels F-G); note the broadening of responses between different input magnitudes. (D) Population responses with normal IE and strong EE (striped white in panels F-G). (E) Population responses with weak IE and strong EE (striped gray in panels F-G); note the flatter lines across timing and broadening of responses between magnitudes. (F) Comparison of population sensitivity to input timing over the five hybrid network conditions. Population sensitivity to input timing with weak IE (gray) is significantly lower than with normal connectivity (white) (t-test, p<0.001 for both). Increasing EE does not have a significant effect. (G) Comparison of population sensitivity to input magnitude. Population sensitivity to input magnitude with weak IE and
strong EE (striped green) is significantly higher than normal connectivity (red) (t-test, p<0.001). Error bars are ±SEM.

Figure 5: Simulated barrel network response sensitivity to changes in synaptic convergence.

Population responses of 35 simulated RS neurons in response to simulated thalamic input alone (A) and connected in the local network (B). Population responses are comparable to those observed in real RS neurons (cf. Fig 3D-E). Panels C-F show response sensitivity in both simulated (black) and hybrid (red) excitatory populations over different feedforward inhibition (IE) and recurrent excitation (EE) convergence probabilities. EE is fixed at 0.15 for C and E as IE changes; IE is fixed at 0.7 for D and F as EE changes. (C) Sensitivity to input timing increases as IE convergence increases over a broad range, matching the change of sensitivity observed in the hybrid networks. (D) Increasing EE convergence had no effect on either simulated or hybrid network response sensitivity to input timing. (E) Increasing IE convergence results in decreasing sensitivity to input magnitude, closely matching response sensitivity from the hybrid network. (F) Increasing EE convergence increases sensitivity to magnitude weakly over low values, and strongly for values greater than 0.5. (G) Surface plot of the sensitivity to input timing for different values of feedforward inhibition (IE) and recurrent excitation (EE) convergence values. Response sensitivity to input timing primarily depends on feedforward inhibition, so long as recurrent excitation is not too strong. (H) Surface plot of the sensitivity to input magnitude over different values of IE and EE. As IE decreases and EE increases, sensitivity to input magnitude increases dramatically. Further analysis of strong EE networks suggest that these are not damping networks (Pinto et al., 2003), and lead to multiple spikes and epileptiform activity. Error bars are ±SEM.
Figure 6: Effect of network gain on response sensitivity of simulated networks.

The upper panels show the response sensitivity to input timing \((A)\) and input magnitude \((B)\) for a damping network (network gain ratio=0.43, IE=0.9, EE=0.1), and an amplifying network (network gain ratio=1.17; IE=0.1, EE=0.35). In the presence of network connections (ON), the damping network exhibits significantly higher sensitivity to input timing (t-test, \(p<0.001\)), while there is no change in the amplifying network. The damping network is significantly less sensitive to input magnitude in the presence of network connections (t-test, \(p<0.001\)), while the amplifying network is significantly more sensitive (t-test, \(p<0.001\)). Error bars are ±SEM. (C) Scatter plot of the normalized sensitivity to input timing (blue) and input magnitude (red), as a function of the network gain for all network configurations examined. The sensitivity measures are normalized to the sensitivity with the network OFF; a value of 1 indicates no change, greater than one indicates an increase of sensitivity in the presence of network connections, less than one indicates a decrease of sensitivity. The arrows and black dots indicate the sensitivity based on the default “barrel-like” IE and EE connectivity values used (IE=0.7, EE=0.15).

Figure 7: Difference of simulated population activity with FS or RSi neurons.

(A) Spike raster plots and spike density graphs for simulated networks containing RS and FS neurons in the presence (thalamic + RS-FS) or absence (thalamic input alone) of simulated network connections. The spike raster plots show the responses of 35 simulated RS neurons and 15 simulated FS neurons in response to fast thalamic inputs at threshold \(T\), with spike times indicated by the dashes. The number of thalamic input spikes required to reach threshold is shown (\(T\)). The spike density graphs are aligned in time with the raster plots, and show the combined response of 35 simulated RS neurons (black) and 15 simulated FS neurons (red), pooled over 25 stimulus presentations of fast simulated thalamic inputs. Spike counts are normalized by number of spikes per stimulus within a 100 \(\mu\)s bin. (B) Average total \((G_{syn\text{, black}})\) and component synaptic conductance envelopes exemplify typical synaptic inputs presented to a simulated or RS neuron \(in vitro\). Thalamic conductance generated from 26 thalamic input spikes at threshold \(T\) \((g_{thal\text{, blue}})\), is closely followed by strong inhibition \((g_{I\text{, red}})\) and recurrent excitation \((g_{E\text{, red}})\).
green). Conductance envelopes are shown for fast, medium, and slow thalamic input distributions, with identical number of thalamic inputs. (C) Similar to B, showing the average synaptic conductance envelopes presented to an FS neuron. (D) The estimated synaptic reversal potentials (E_{syn}) for fast, medium, and slow thalamic inputs. The timing of recurrent excitation slows the hyperpolarization of the reversal potential, particularly for fast inputs (arrow). (E) Similar to D. Note the sustained depolarization and increased difference of hyperpolarization return time across thalamic input timing. (F) Similar to A, except that the FS neurons have been replaced by RS neurons while retaining the same inhibitory synapses and network parameters as the FS neurons. Note that with thalamic input alone, the RSi neurons (red) display the same spike density profile as the RS neurons (black), as expected. In the presence of network input (thalamic + RS-RSi), the spike density profiles overlap, with increased late responses in the RSi neurons. (G) Similar to B. Note the late occurrence of g_{i} (red) relative to both thalamic (blue) and recurrent excitation (green) conductances. (H) Similar to D. The estimated synaptic reversal potential remains depolarized for longer than in C, and rapidly hyperpolarizes to the GABA reversal potential.

Figure 8: Effect of intrinsic membrane properties of inhibitory neurons on hybrid network excitatory population responses.

Excitatory population responses from 10 in vitro RS neurons embedded in either RS-FS hybrid networks (A and B) or RS-RSi hybrid networks (C and D) either in the absence (A and C) or presence (B and D) of simulated network connections. Lines connect responses to stimulus presentations of a given magnitude (T-3, green; T, blue; T+3, red; T+6, black) over the input timing, quantified as the time to the median of the thalamic input distribution (2 ms, fast; 5 ms, medium; 8 ms, slow). The top row is comparable to Figure 4A,B. (E) Sensitivity to input timing, measured as the slope over timing of the plane fit to the population response data shown in A. Networks with FS neurons show significantly higher sensitivity to input timing in the presence of network connections ($p<0.001$, t-test), while RSi networks do not show a significant change. (F) Sensitivity to input magnitude, calculated as the slope over magnitude of the plane
fit to the population response data in A. FS networks exhibit a significant decrease of sensitivity to input magnitude (p<0.001, t-test), while RSi networks exhibit a reduction of the sensitivity to input magnitude (p=0.013, t-test). Error bars are ±SEM.

Figure 9: Effect of leak conductance on hybrid network population responses.
Averaged excitatory population responses from 11 *in vitro* RS neurons embedded in hybrid networks in the absence (A) or presence of network connectivity (B-D). Leak conductance values are as follows (in mS/cm²): gleakE, normal=0.057, low= 0.025, high=0.11; gleakI, normal=0.25, low=0.1, high=0.4. (B)
Under barrel-like leak conductance (gleak) for both excitatory and inhibitory populations, the network exhibits sensitivity to input timing (slope of lines) and reduced sensitivity to input magnitude (spacing of lines). (C) Excitatory leak conductance (gleakE) is reduced in all simulated RS neurons, resulting in little apparent change of population response. (D) In combination with the low gleakE, inhibitory leak conductance (gleakI) is increased, resulting in relative insensitivity to input timing. We quantify the population sensitivity to input timing (E) and input magnitude (F) for the same 11 *in vitro* RS neurons across all conductance conditions. A circle (o) indicates normal barrel-like leak conductances, minus (-) indicates low gleak, plus (+) indicates high gleak. Bar shading matches the direction of excitatory leak conductance (gleakE). Error bars are ±SEM.

Figure 10: Effect of leak conductance on simulated network response sensitivity
Sensitivity to input timing of 35 simulated RS neurons over changes of inhibitory leak conductance (gleakI) (A) or changes of excitatory leak conductance (gleakE) (B), in the absence (dashed, hollow) or presence (solid, filled) of network connections. Note that in (B), changes of gleakE have a direct effect on sensitivity to input timing in both the presence or absence of network connections. To isolate the effect of the network, we normalize the measure to that with the network off, giving us the network sensitivity gain.
for input timing (C-D) and input magnitude (E-F). Linear regression lines are drawn through each plot, and the significance of the regression slope is given (p-value of ANOVA). Increasing gleakI significantly decreases the network’s effect on sensitivity to input (C) while having no effect on the sensitivity to input magnitude (E). Increasing gleakE slightly decreases the network sensitivity to input timing (D), and strongly decreases the sensitivity to input magnitude (F). Error bars are ±SEM.

Figure 11: Changes in gleakI alter single neuron response measures in simulation

Single neuron input threshold, spike latency, and spike variability of simulated RS and FS neurons were measured across fast (black), medium (red), and slow (blue) input timing distributions for increasing values of leak conductance of inhibitory neurons (gleak I). Simulated RS neurons in the presence of network connectivity (net on) showed (A) a decrease of input threshold to slow inputs and a slight increase to fast inputs, with little change of latency (B) or variability (C). With increasing gleakI, simulated FS neurons showed (D) an increase of input threshold for both network off (net off; dashed lines, hollow shapes) and network on (net on; solid lines and shapes). (E) In the absence of network connections, spike latency slightly decreased with increasing gleakI, while in the presence of network connections slightly increased for slow thalamic inputs. (F) The presence of local network synapses increases spike variability, especially for slow thalamic inputs. (G) The absence of network synapses decreases spike variability, as expected from the increase in input threshold. Error bars are ±SEM.
Table 1: Comparison of real and simulated single neuron response measures

Single neuron response threshold, latency, and variability in real RS neurons (N=39) and simulated RS neurons (N=35) as a function of network connectivity (OFF versus ON). Values are mean ±SEM. An asterisk (*) indicates statistical significance (p<0.01, pairwise t-test) between network OFF and ON.

<table>
<thead>
<tr>
<th></th>
<th>in vitro</th>
<th>sim</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>net OFF</td>
<td>net ON</td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>threshold (# spikes)</td>
<td>16.7 ± 0.8</td>
<td>29.0 ± 1.7</td>
</tr>
<tr>
<td>latency (ms)</td>
<td>9.8 ± 0.4</td>
<td>6.8 ± 0.15</td>
</tr>
<tr>
<td>variability (ms)</td>
<td>1.95 ± 0.17</td>
<td>1.11 ± 0.08</td>
</tr>
<tr>
<td>sens. input timing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>threshold (# spikes)</td>
<td>0.41 ± 0.02</td>
<td>3.11 ± 0.33</td>
</tr>
<tr>
<td>latency (ms)</td>
<td>1.27 ± 0.10</td>
<td>1.00 ± 0.03</td>
</tr>
<tr>
<td>variability (ms)</td>
<td>0.28 ± 0.04</td>
<td>0.19 ± 0.02</td>
</tr>
<tr>
<td>sens. input magnitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>latency (ms)</td>
<td>0.56 ± 0.15</td>
<td>0.02 ± 0.012</td>
</tr>
<tr>
<td>variability (ms)</td>
<td>0.24 ± 0.11</td>
<td>0.03 ± 0.011</td>
</tr>
</tbody>
</table>
REFERENCES

Figure 1
A thalamic input thalamic + network

fast

medium

slow

B

C

D

figure 2
A thalamic input
T+6 T+3 T T-3
Fast
Med
Slow

B thalamic + network
T+6 T+3 T T-3

C in vivo
7.4* strong
4.5* med
2.6* weak

D E F
input timing (ms)
0.0 0.2 0.4 0.6 0.8 1.0
input timing (ms)
0.0 0.2 0.4 0.6 0.8
input timing (ms)
0.0 1.0 1.5 2.0

G H I
sensitivity to input timing
(spk per stim/ms)
thal thal + net in vivo

sensitivity to input magnitude
(spk per stim/spk)
thal thal + net in vivo

input threshold
(# spikes)
thal thal + net

figure 3
figure 4
Figure 5
figure 6
figure 7
A thalamic input

B thalamic + network

C

D

E sensitivity to input timing

F sensitivity to input mag

figure 8
A thalamic input

B thalamic + network

C low gleakE

D low gleakE+high gleakI

E sensitivity to timing

F sensitivity to magnitude

figure 9
sensitivity to input timing

A

B

network sensitivity gain, input timing

C

D

network sensitivity gain, input magnitude

E

F

figure 10
figure 11
<table>
<thead>
<tr>
<th></th>
<th>in vitro</th>
<th>sim</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>net OFF</td>
<td>net ON</td>
</tr>
<tr>
<td>mean threshold (# spikes)</td>
<td>16.7 ± 0.8</td>
<td>29.0 ± 1.7 *</td>
</tr>
<tr>
<td>latency (ms)</td>
<td>9.8 ± 0.4</td>
<td>6.8 ± 0.15 *</td>
</tr>
<tr>
<td>variability (ms)</td>
<td>1.95 ± 0.17</td>
<td>1.11 ± 0.08 *</td>
</tr>
<tr>
<td>sens. input timing</td>
<td>threshold (# spikes)</td>
<td>0.41 ± 0.02</td>
</tr>
<tr>
<td>latency (ms)</td>
<td>1.27 ± 0.10</td>
<td>1.00 ± 0.03 *</td>
</tr>
<tr>
<td>variability (ms)</td>
<td>0.28 ± 0.04</td>
<td>0.19 ± 0.02 *</td>
</tr>
<tr>
<td>sens. input mag</td>
<td>latency (ms)</td>
<td>0.56 ± 0.15</td>
</tr>
<tr>
<td>variability (ms)</td>
<td>0.24 ± 0.11</td>
<td>0.03 ± 0.011 *</td>
</tr>
</tbody>
</table>