Stability of simple – complex classification with contrast and extra-classical receptive field modulation in macaque V1

Christopher A. Henry and Michael J. Hawken

Center for Neural Science, New York University, New York, New York 10003, USA

Number of Pages: 31
Number of Figures: 10

Running Title: Simple-complex classification: contrast and eCRF modulation

Corresponding Author:
Michael J. Hawken
E-mail: mjh2@nyu.edu
Address: Center for Neural Science
New York University
4 Washington Place, Room 809
New York, NY 10003
Phone: 212-998-7777
Fax: 212-995-4860
ABSTRACT

A key property of neurons in primary visual cortex (V1) is the distinction between simple and complex cells. Recent reports in cat visual cortex indicate the categorization of simple and complex can change depending on stimulus conditions. We investigated the stability of the simple/complex classification with changes in drive produced by either contrast or modulation by the extra-classical receptive field (eCRF). These two conditions were reported to increase the proportion of simple cells in cat cortex. The ratio of the modulation depth of the response (F1) to the elevation of response (F0) to a drifting grating (F1/F0 ratio) was used as the measure of simple/complex. The majority V1 complex cells remained classified as complex with decreasing contrast. Near contrast threshold an equal proportion of simple and complex cells changed their classification. The F1/F0 ratio was stable between optimal and large stimulus areas even for those neurons that showed strong eCRF suppression.

There was no discernable overall affect of surrounding spatial context on the F1/F0 ratio.

Simple – complex cell classification is relatively stable across a range of stimulus drives, either produced by contrast or eCRF suppression.

Keywords: primate V1, simple and complex cells, contrast, eCRF
INTRODUCTION

Neuronal receptive fields underlie perceptual interpretation of the visual world. The most important receptive field dichotomy in visual cortex is between simple and complex cells (Hubel and Wiesel 1962). Simple cells are central to signaling the position and sign of oriented luminance and chromatic border segments. Complex cells do not provide signals that are strongly sensitive to position and sign of luminance edges. Some recent studies report that the classification of neuronal populations into simple and complex cells is dependent on the stimulus conditions prevailing during categorization (Bardy et al. 2006; Crowder et al. 2007; van Kleef et al. 2010). The potential lability of the simple/complex categorization has major implications for understanding of how processing proceeds in the visual pathway. If members of the neuronal population dynamically change their fundamental properties depending on the properties of the visual scene, then circuit and computational models will need to take into account the scene-dependent nature of processing within the visual pathway.

Hubel and Wiesel showed that neurons in primary visual cortex of both cat (Hubel and Wiesel 1962) and primate (Hubel and Wiesel 1968) could be classified as simple or complex. There are a number of features of the receptive fields of simple and complex cells that differentiate them; one that has been adopted in many studies is the ratio of the modulated to unmodulated response to drifting grating stimuli, the F1/F0 ratio (Skottun et al. 1991). Furthermore, the F1/F0 ratio has been shown to correlate strongly with other traditional measures of the receptive field properties of simple and complex cells, such as summation within and spatial separation between subfields (Dean and Tolhurst 1983; Mata and Ringach 2005). Recent studies in cat visual cortex reported that the F1/F0 ratio was dependent on the nature of the visual stimulus (Bardy et al. 2006; Crowder et al. 2007; van Kleef et al. 2010) making the distinction between the simple and complex neurons a dynamic classification based on stimulus conditions. When the responses of neurons were probed with a low contrast stimulus, or when the suppressive surround was activated in neurons that showed extra-classical receptive field (eCRF) suppression, then complex cells became more “simple-like” while few simple cells changed their classification (Bardy et al. 2006; Crowder et al. 2007). This means that the F1/F0 ratios of neurons classified as complex based on high contrast stimuli or with stimuli restricted to their classical receptive fields (CRF) tend to
increase with suboptimal stimuli such that some complex cells change category and become reclassified as simple cells. These results have important implications for understanding how receptive fields are generated and how cortical circuits operate.

We sought to determine if the classification of simple and complex cells in primate visual cortex was similarly stimulus-dependent as it was reported to be in cat visual cortex, hence testing the generality, across species, of the dynamic nature of receptive field properties. Experiments were performed in the primate visual cortex using stimulus paradigms intended to differentially alter thalamocortical and intracortical activity to examine their influence on neurons’ F1/F0 ratios. It has been reasoned that changing the contrast of a small, spatially-restricted stimulus will be effective in altering the relative ratio of the drive from the LGN to the cortex compared to the intracortical drive (Chance et al. 1999). Consequently, it has been proposed that complex cells should become more simple-like at low contrast (Crowder et al. 2007), particularly in the thalamic recipient zones layers 4c and 6. To test this reasoning we measured the F1/F0 ratio at different contrasts for stimuli in patches restricted to the CRF as a means of changing responses with a dominant thalamocortical component. Additionally, many V1 neurons suppress their responses to an optimal stimulus when it is either increased in size or embedded in a spatially-extended context. Most, but not all, of the suppression in the eCRF is orientation dependent (DeAngelis et al. 1994; Levitt and Lund, 1997; Cavanaugh et al. 2002b; Xing et al. 2005) and exhibits interocular transfer in most binocular cells (DeAngelis et al. 1994; Webb et al. 2005) which suggests a cortical origin. We used eCRF suppression to determine the effects on the F1/F0 ratio of changing the response via a dominant cortical component. To test whether effects from the eCRF were orientation dependent we used stimuli that were at both collinear and orthogonal orientations relative to the preferred orientation in the CRF.

There was little effect of contrast on the F1/F0 ratio in macaque V1. As a population, the majority of macaque V1 cells classified as complex with a high-contrast stimulus did not tend towards becoming significantly more simple-like with decreasing contrast. Of the minority of neurons that did change approximately equal proportions of complex cells became “simple-like” and simple cells became “complex-like”. Furthermore, the F1/F0 ratio was also remarkably stable with changes in stimulus size, even for those neurons that showed strong eCRF suppression. There was no discernable overall effect of surrounding
spatial context on the F1/F0 ratio. In summary, receptive field organization at the level of the simple/complex cell dichotomy appears to be largely invariant with stimulus conditions in monkey V1.
MATERIALS AND METHODS

Preparation

Adult male old-world monkeys (*M. fascicularis*) were used in acute experiments in compliance with National Institutes of Health and New York University Animal Use Committee regulations. The animal preparation and recording were performed as described in detail previously (Hawken et al. 1996; Ringach et al. 2002; Xing et al. 2005). Anesthesia was initially induced using ketamine (5-20 mg/kg, i.m.) and was maintained with isoflurane (1-3%) during venous cannulation and intubation. For the remainder of the surgery and recording, anesthesia was maintained with sufentanil citrate (6-18 µg/kg/h, i.v.). After surgery was completed, muscle paralysis was induced and maintained with vecuronium bromide (Norcuron, 0.1 mg/kg/h, i.v.) and anesthetic state was assessed by continuously monitoring the animals’ heart rate, EKG, blood pressure, expired CO₂, and EEG. At the end of recording sessions, animals were deeply anesthetized with sodium pentobarbital (60 mg/kg, i.v.) and were transcardially exsanguinated with heparinized lactated Ringer, followed by 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). Electrode penetrations were located in histological sections and layer assignment of recorded neurons was carried out as described previously (see Hawken et al. 1988; Ringach et al. 2002).

Characterization of visual properties of V1 Neurons

We recorded extracellularly from single units in V1 using glass-coated tungsten microelectrodes. Action potentials were discriminated using custom software running on a Silicon Graphics O2 and time stamped at a resolution of 0.1 ms. We identified single unit activity using the criteria of a fixed action potential shape and an absolute refractory period between individual action potentials. Each single neuron was stimulated monocularly through the dominant eye (with the non-dominant eye occluded). The steady-state response to drifting gratings was determined to provide an initial characterization of visual response properties. The initial measurements were orientation tuning, spatial and temporal frequency tuning, contrast response with achromatic gratings, and color sensitivity followed by area summation and annulus summation curves. Receptive fields were located at eccentricities between 1 and 6 deg. Stimuli were presented using custom software on either a Sony Trinitron GDM-F520 CRT monitor (mean luminance 90-100 cd/m²) or an Iiyama
HM204DT-A CRT monitor (mean luminance 60 cd/m²). The monitors’ luminance was calibrated using a spectroradiometer (Photo Research PR-650) and linearized via a lookup table using custom software. Stimuli were displayed at a screen resolution of 1024x768 pixels, a refresh rate of 100 Hz, and a viewing distance of 115 cm.

The following three experiments were used for evaluating the stability of neurons’ cellular classification (simple vs. complex) under dynamic changes in visual stimulation.

Contrast response

The response as a function of contrast was determined for contrasts ranging from 2% to 100% in 0.5 octave steps (Fig. 1A). A blank condition (screen of mean grey luminance) of the same duration as the stimulus presentation was shown at the beginning of each sequence and interleaved between each contrast presentation. The contrasts were shown in ascending order to avoid adaptation and to minimize hysteresis (Bonds 1991). Each grating presentation lasted for a minimum of 4 temporal cycles, often more, and was at least one second in duration. At least three repeats of the contrast sequence were given. Neurons that fired a mean stimulus-driven rate of at least 5 spikes/sec above their spontaneous activity and had identified laminar locations were selected for subsequent analysis of their contrast response functions.

Area summation

The response was measured as a function of stimulus area for a circular patch of grating of optimal spatial frequency, temporal frequency, orientation and direction of drift at a contrast of about 90% of the contrast that produced the maximum response (Fig. 1B). Initially the center of the CRF was estimated by moving an optimal drifting grating with a small aperture (usually 0.1 to 0.2 degrees in radius) until the maximum discharge rate was judged by the experimenter. The patches of grating were centered on the x-y coordinates of the CRF center. A range of sizes from 0.05 or 0.1 degree up to 4 degrees radius were shown; the step between successive sizes was a factor of \(\sqrt{2}\) (0.5 octave). Stimuli were shown in pseudorandom order for each repeat of the sequence. The number of repeats was at least three. A blank stimulus, the same duration as the stimulus was shown between each repeat.
Spatial Context

An optimal stimulus was shown in a stimulus patch covering the CRF while a second grating was shown in the eCRF. The size of the CRF was estimated from the area summation experiment (Fig. 1B), and taken as the radius of the smallest stimulus that produced the maximal response. For area summation functions that showed suppression at larger areas, this value was the radius that gave the peak response; if there was no suppression it was the smallest radius where the response first reached about 90% of the maximum response. The inner border of the eCRF region was determined in an annular summation experiment, where the response was measured as a function of the diameter of the mean grey region in the center of an 8 deg diameter square patch of grating (Fig. 1C). As the central grey patch’s diameter increased then the width of the outer annular grating region decreased correspondingly. This annular summation experiment was used to determine the size of the inner radius of the eCRF region – the region where no response was elicited from the surround region when the center was masked by a grey region (Cavanaugh et al. 2002a). This is the region beyond the radius marked by the vertical arrow in Fig. 1C. We used the data collected from these two summation experiments to determine the size of the stimuli in the subsequent experiments. In the contextual modulation experiments the radius of the stimulus for the CRF was chosen to be the radius that evoked the peak response in the area summation experiment, shown by the vertical arrow at a radius of 0.2 deg in Fig. 1B. The eCRF stimulus was an annular region with an outer radius of 8 degrees and an inner radius derived from the annular summation experiment, shown by the vertical arrow at a radius of 0.5 deg in Fig. 1C. The outer radius of the center stimulus was always smaller than the inner radius of the surround region, and the annular region between these two stimulus areas was mean grey.

To measure response modulation (F1/F0 ratio) in the CRF in the presence of stimuli in the eCRF, an optimal stimulus, at a contrast eliciting 90% of the neuron’s maximum response, was presented to the CRF simultaneously with gratings of different contrast and orientation confined to the eCRF. Gratings in the eCRF were presented at collinear, orthogonal, and opposite directions of motion relative to the central stimulus patch, across contrast ranges from 5 – 80% in octave steps.
Data Analysis

Modulation Analysis

For all conditions, responses were the mean firing rate (F0) taken over the duration of the stimulus presentation, and the amplitude of the first harmonic response (F1). The spontaneous baseline firing rate was subtracted from the stimulus-driven F0 component before computing the F1/F0 ratio. The drift rate of the grating in the CRF and eCRF regions were always the same and were set to the optimal temporal frequency for the CRF alone assessed from a temporal frequency response tuning function. To generate error bounds on the F1/F0 ratio for each condition, a bootstrap analysis was performed in which we randomly sampled (with replacement) from the set of responses to each temporal cycle of the stimulus and computed the F1/F0 ratio on this resampled data. This was repeated $10^6$ times to generate an empirical distribution of the F1/F0 ratio for each stimulus condition. Significance tests for stimulus-dependent changes in the F1/F0 were conducted on these empirical distributions in the following manner. Comparisons were made between draws from the F1/F0 distributions for two stimulus conditions; this procedure was repeated a large number of times ($10^6$) and comparisons were reported as significant when one value was greater at least 95% of the time. An additional test was carried out since, for a finite number of stimulus repeats, a lower average firing rate is positively correlated with an increase in the measured F1 component of the response, even for an entirely random process (Crowder et al. 2007). Thus, for each dataset, we generated an artificial dataset containing the same distribution of firing rates across stimulus cycles as the original, but within each cycle the spike times were uniformly distributed. Bootstrapping of this artificial dataset gave us a distribution of F1 components with which to test whether a given stimulus condition elicited a F1 component of the response significantly greater than that of a ‘rate-equated’ random process.

Contrast Response

The F1/F0 modulation ratio was compared at low and high contrast relative to the contrast response function for each neuron. Because neurons differed in their contrast response functions, the low and high contrasts for the analysis of the F1/F0 ratio were chosen based on the individual contrast response functions. Each neuron’s contrast threshold was
determined to be the lowest contrast in which the average firing rate was significantly greater
(p < .05) than the spontaneous activity. Across the population, the F1/F0 ratio was
estimated for threshold contrast, √2 times threshold, 2 times threshold contrast, and high
(90-99%) contrasts. In the few neurons that showed supersaturation at high contrasts, the
F1/F0 ratio at the highest contrast was similar to that at the stimulus contrast evoking the
maximum response.
RESULTS

The contrast response function was determined for 462 neurons from all layers of V1. The F1/F0 ratio was calculated at each level of contrast from threshold to high contrast and it was determined if the F1/F0 ratio changed as a function of contrast. Next the response was measured as a function of stimulus area and the F1/F0 ratio determined as a function of area for 66 neurons. Finally the response to a constant stimulus in the CRF was measured for gratings with collinear, orthogonal, and opposite directions of drift in the eCRF. A comparison of the F1/F0 ratio was made between these different eCRF stimulus conditions for 47 neurons.

Changing Stimulus Contrast

For each neuron the mean response amplitude (F0) and the amplitude of the first harmonic (F1) at the same temporal frequency as the drift rate was determined. Neurons classified as simple based on F1/F0>1 showed a substantial modulation of their firing rate at the same temporal rate as the stimulus modulation (Fig. 2A, example simple cell). Neurons that were classified as complex based on F1/F0<1 increased their response as contrast increased without substantial modulation at the stimulus drift rate, although some cells showed a small modulation along with the unmodulated increase in discharge (Fig. 2D, example complex cell). We determined whether the F1/F0 ratio changed as a function of stimulus contrast. The F1/F0 ratio for the example complex cell was invariant with contrast (Fig. 2E, F). The simple cell showed a larger F1 than F0 response at high contrast (Fig. 2B; F1/F0 ratio 1.54). The response developed at relatively low contrast, around 4%, but rose without showing significant saturation. The cell’s F1/F0 ratio remained constant across all contrasts that elicited a response (Fig. 2C). The maintained discharge rate of the complex cell rose from a threshold of about 3% contrast to saturate at just about 10% contrast (Fig. 2E solid black line). The F1 modulation amplitude was small in this neuron at the highest contrast and remained relatively low across all contrasts (Fig. 2E dashed grey line). For most neurons, at a contrast twice threshold there was a robust and reliable response even though this contrast was near the lower region of the contrast response function. Therefore, we compared the F1/F0 ratio at twice threshold contrast and high contrast for the entire population of 462 neurons tested. High contrast was the highest contrast that was used for determining the contrast response function; it was greater than 90%, typically 96% or 99%.
Figure 3 shows a summary of F1/F0 ratio comparisons between high and low (two times threshold) contrasts for both complex (Fig. 3A) and simple (Fig. 3B) cell populations as classified based on responses to a high contrast stimulus. As a population, there was a statistically significant difference in F1/F0 measures at the two contrasts for both complex (p<0.001) and simple cells (p<0.006, Wilcoxon signed-rank test). However, for both cell classes, the modulation ratio of the majority of neurons did not significantly change in response to lowered luminance contrast of the stimulus (78% of complex cells (180/230) and 63% of simple cells (146/232)). Significance testing of individual neurons for changes in F1/F0 was based on a bootstrap analysis (see Methods). For those simple cells that showed a change in their modulation ratio (Fig. 3B, black circles), the proportions of cells showing an increase (18%, 41/232) versus a decrease (19%, 45/232) were about equal. The complex cells that did change their ratios significantly tended to show an increase at low contrasts. However, as described in the Methods section, even an entirely phase-invariant neuron would show a relatively larger F1 component of the response to a stimulus of lowered contrast, purely due to the overall decrease in firing rate. For this reason, we compared each neuron’s F1 response to that of a random process with equal numbers of spikes in order to determine whether each neuron produced a significant F1 component of the response. Overall 17% (40/230) of complex cells showed an increase in F1/F0 ratio at low contrasts, with 13% (30/230) showing a significant F1 component (Fig. 3A, black circles). A comparison of complex cells’ F1/F0 ratios at high contrast showed those cells that significantly increased their modulation ratios at low contrast had significantly higher F1/F0 ratios at high contrast compared to those cells that did not show significant increases at low contrast (Wilcoxon rank-sum test, p<0.002). The 13% of complex cells that did show significant changes in F1/F0 with contrast and significant F1 components in their responses tended to have F1/F0 ratios nearer 1 than the overall complex cell population. The change in phase sensitivity near threshold constituted a small shift in the population response but the majority of neurons (87%) did not change significantly. Thus it seems unlikely that there will be an overall alteration in the cortical representation of visual information with changing contrast.
Proportion of cells that changed their simple/complex classification

The majority (78% of complex cells (Fig. 3A) and 63% of simple cells (Fig. 3B)) of the V1 neurons in our sample had stable modulation ratios in response to stimuli of both high contrast and a lower contrast that was twice the neuron’s contrast threshold. Within the complex cell population that showed significant changes in the F1/F0 ratio, only 7% (17/230) crossed the category boundary from a ratio of less than one to a ratio of greater than one, so that they would be classified as simple cells at low contrast. The histograms in Figure 3 illustrate the distribution of F1/F0 ratios across a broad range of contrasts for simple (Fig. 3G-J) and complex cells (Fig. 3C-F), as classified based on high contrast stimuli.

Across most of the neurons’ operating ranges, the F1/F0 distributions remained similar to those at high contrast; only those distributions of simple and complex cells at contrast threshold appeared markedly different (Fig. 3F,J). Responses at contrast threshold were by definition weak, and measurement noise needs to be considered. While 32% (73/230) of complex cells showed an increase in F1/F0 at contrast threshold, only 5% (12/230) showed a significant F1 component in their response. Thus the apparent shift in F1/F0 distribution at contrast threshold was largely a consequence of elevated estimates of the F1 component due to low firing rates and finite data, and the shift would be similar for a model, phase-invariant neuron.

The comparison of responses based on stimulus contrast relative to threshold gave a picture of the magnitude of the neural response without taking into account gain or slope of the contrast response function for individual neurons. A given suprathreshold contrast could have elicited a saturated response in one neuron while only eliciting an intermediate response in another if there was a difference in the gain of their contrast response functions. To account for differences in intrinsic drive, the normalized driven response was calculated for each neuron and each stimulus by subtracting the spontaneous firing rate from all stimulus-driven responses and then taking the ratio of the response at the chosen contrast over that of the response at the highest contrast presented. This procedure gave a normalized measure whereby a response of 1 was similar to the neuron’s response at high contrast, and a response close to 0 was near the neuron’s firing threshold (note: this normalized measure exceeded a value of 1 when the maximum response was to a contrast lower than the highest
contrast). Figure 4 shows population data on how the modulation ratio changed at given contrasts relative to high contrast as a function of the amount of drive that each contrast provided to the neurons. Data points are included from each neuron for all conditions in which the stimulus contrast is above the neuron’s contrast threshold. For simple cells, on average the modulation ratio showed no systematic deviation across the operating range of the neurons (Fig. 4B). For complex cells (Fig. 4A), the modulation ratio was relatively unchanged across most of the operating range (25% of the maximum response and higher) but increased and became more simple-like in the range near firing threshold (0-25% of the maximum response). The running average of all data points is shown in each figure (solid black line, mean change; shaded grey region, ±1 s.d.). Analysis of neurons’ responses at low contrast showed that the elevation in F1 was often a consequence of low spike rates (or drive) and not significantly different from a random process with a matched low spike rate (see Methods). Data for stimulus conditions in which complex cells showed a significant F1 component of their response along with a significant change in F1/F0 ratio are plotted as black points in Figure 4A. While in the majority of stimulus conditions complex cells showed no significant change in the F1 component of their response (grey points) many showed an increase in F1/F0 ratio at low drive due to lowered average firing rates. For most of the operating range (>25% maximum firing rate) both simple and complex cells’ modulation ratios remained relatively constant, indicating that the stimulus related F1/F0 measure of spatial phase-selectivity of the neural population as a whole was stable across substantial changes in stimulus contrast.

While the population of simple cells showed no systematic changes in modulation ratio on average, subpopulations of simple cells showed significant increases or decreases in modulation ratio at lowered contrasts. To determine whether these changes in modulation ratio were systematic and reliable across contrast, we compared the responses of simple cells that showed significant changes at a contrast twice threshold with those same cells’ responses at the next higher contrast tested (2√2 above threshold). Figure 5A plots these data for simple cells showing both significant increases (black) and decreases (grey) in modulation ratio. Changes in modulation ratio were correlated across neighboring contrasts (p<0.001) for both subclasses of cells, indicating that these changes were consistent. Furthermore, for both groups of cells, observed changes in modulation ratio were lower at
the contrast $2\sqrt{2}$ times threshold compared to 2 times threshold, as would be expected if lowering contrast introduced systematic changes in F1/F0 ratio compared to high contrast. Figure 5B shows that the relative amount of change in modulation ratio at low contrast was correlated with neurons’ modulation ratios at high contrast (p<0.001); cells with F1/F0 near 1 at high contrast showed larger proportional changes in modulation ratio than cells with F1/F0 near 2 at high contrast. For the subpopulations of simple cells that either increase (41/232) or decrease (45/232) their F1/F0 ratio at threshold contrast compared to high contrast, the direction of the change was the same at twice threshold and at $2\sqrt{2}$ times threshold indicating the change was robust in these subpopulations. The degree of change in the F1/F0 ratio for the majority of simple cells that had significant changes in their F1/F0 ratio was relatively small (<25%). Because most simple cells’ F1/F0 ratios were distributed around the ratio of 1.57 (characteristic of a half-wave rectification) at high contrast a small change meant that only 4% (9/232) of simple cells significantly decreased their F1/F0 ratio to below 1 and would consequently be reclassified as complex at lower contrasts that are twice their threshold.

**Laminar organization:**

The analyses shown so far have pooled data across all cortical layers. Neurons’ response properties often differ markedly with regard to their laminar location and place within the cortical circuit. The separate layers of primary visual cortex differ with regard to their feedforward (thalamocortical) and recurrent (intracortical) connectivity, with the strongest LGN input in macaque V1 found in layer 4c. To determine whether the differences in intralaminar circuitry lead to differences in stimulus-dependent classification of simple and complex cells in different layers, we analyzed the contrast data as a function of cortical layer. Figure 6 shows for simple and complex cells within each layer the proportion of cells whose F1/F0 ratio at low contrast (twice threshold) was either similar to (black) or significantly different from (grey) the F1/F0 ratio measured at high (>90%) contrast. For cells that did significantly change their ratio, the populations are further broken down into those that showed an increase (+) or a decrease (-) in F1/F0 ratio. Within each cortical layer, the majority of neurons did not show significant changes in F1/F0 at low contrasts, for both simple and complex cells (Fig. 6, black bars). Furthermore, comparison of the profile across layer shows a similar trend for both cell types; layers 2/3 and 5 showed the most stability in
F1/F0 and layer 4c showed a greater tendency for changes in F1/F0 ratio with contrast.

There was a significant difference in the proportion of neurons showing stable F1/F0 ratios across layers (p<0.001, chi-square test for equal proportions). For those cells that did change significantly, the trend across layers was similar to that seen in the scatter plots of Figure 3; simple cells were equally likely to have an increase or decrease in F1/F0 and complex cells tended to have an increase in F1/F0, due at least in part to an effect of low firing rates.

**Changing Stimulus Size**

Studies in cat area 17 revealed that stimulation of the eCRF resulted in some complex cells changing their F1/F0 ratio, tending to show a higher ratio than when their CRF alone was stimulated. In the current study we compared the F1/F0 ratio for neurons using optimal stimulus spatial frequency, temporal frequency, orientation and drift-direction through circular apertures of different sizes. All neurons showed summation as the aperture size was increased until an optimal size was reached where the response was maximal (Fig. 7A, C). Most neurons showed an attenuation of their response as the aperture was increased in size beyond the optimal (Fig. 1B, Fig. 7A, C). For each neuron the optimal aperture size was determined from the area summation curve and the F1 and F0 of the response determined for all stimulus sizes (Fig. 7A, C). The F1/F0 response ratio for both example complex and simple cells remained relatively constant across aperture size (Fig. 7B, D). To test the generality of this finding a comparison was made of the F1/F0 ratio at the optimal aperture size and the F1/F0 ratio for a stimulus aperture 2.5x the optimal size (Fig. 8) for a population of neurons. Across the F1/F0 range there was no significant deviation from the equality line shown by the moving average of the data in grey (Fig. 8). Neuronal firing rates were on average quite suppressed by the larger gratings (suppression index of 0.34 ± 0.23, mean ± 1s.d.), with the suppression index defined as $(R_0-R_N)/R_0$, where $R_0$ is the response to an optimal stimulus and $R_N$ is the response to a non-optimal stimulus. However, there were no significant differences between the measures of F1/F0 at the two sizes for either simple or complex cells (Wilcoxon signed-rank test, p>0.6 and p>0.1, respectively). Finally, there was no correlation between the amount of suppression and the change in modulation ratio ($r$=0.19, p>0.1).
Changing Stimulus Context

One of the pronounced features of stimuli outside the classical receptive field is that they provide a strong modulation of the response to an optimal stimulus inside the CRF yet the stimulus in the non-classical surround does not, itself, evoke a response. The area summation and annulus experiments were used to delineate the CRF and the eCRF (see Methods). Four different experimental conditions were interleaved so that the response to a stimulus in the CRF alone could be compared to responses with stimuli co-presented in the eCRF at collinear, orthogonal, or opposite directions of drift (Fig. 9A), in order to examine the effects of context on the F1/F0 ratio. In these experiments the major effect of presentation of a stimulus in the eCRF was contrast dependent suppression, as shown for example simple (Fig. 9B) and complex (Fig. 9C) cells. Contextual suppression was most often maximal for collinear stimuli. Nonetheless the F1/F0 ratio was invariant with collinear stimulus context.

To analyze the population we selected the stimulus context that gave the maximal suppression, and then compared the F1/F0 ratios for the maximal suppression condition with the condition of stimulating only the CRF (Fig. 10). There was no difference in F1/F0 ratios between conditions across the population as shown by the running average across all values of F1/F0 (Fig. 10, grey line); the modulation ratios remained stable despite the strong suppression caused by stimuli in the eCRF (suppression index of 0.48 ± 0.23, mean ± 1 s.d.). Neither simple nor complex cells showed significant shifts in their modulation ratios in the presence of eCRF stimuli (Wilcoxon signed-rank test, p>0.2 and p>0.4, respectively). There was no correlation between the strength of suppression and changes in modulation ratio (r=0.16, p>0.3). Finally, none of the neurons classified as complex with an optimal stimulus switched their classification to simple due to changes in F1/F0 with eCRF suppression.
DISCUSSION

This simple/complex classification scheme, based on functional properties and receptive field structure (Hubel and Wiesel 1962), has been shown to be in strong agreement with a classification scheme based on the ratio of modulated (F1) to unmodulated (F0) responses to a drifting sinusoidal grating (Skottun et al. 1991). In the current study, we demonstrated that the modulation ratios of neurons in macaque V1 were generally stable across multiple changes in stimulus attributes. The stable F1/F0 ratio suggests that cell classification under optimal stimulus conditions generalizes well to neuronal responses under sub-optimal stimulation conditions.

F1/F0 Invariance to Changes in Firing Rate

The F1/F0 ratios of most neurons remained constant despite large reductions in firing rate due to manipulations of the visual stimuli used to drive the cells. Moreover, this reduced drive was likely brought about through different neurophysiological mechanisms in the various experiments in this study. Lowering the contrast of a relatively small stimulus restricted to a neuron’s CRF would likely produce a larger change in the feedforward thalamocortical drive compared to the recurrent drive via intracortical connections. Altering an optimal stimulus by increasing its size beyond the CRF or embedding it in a large spatially-extended context will recruit both lateral and feedback connections intracortically. Regardless, in the face of manipulations that produced large decreases in stimulus-driven firing rates, cortical circuitry appeared organized to keep neurons’ modulation ratios relatively invariant to such changes in the network drive.

Studies in cat area 17 and 18 (Crowder et al. 2007) reported changes in F1/F0 for complex cells in all layers (2-6). However, they reported that a large proportion of their complex cells became ‘simple-like’ at low contrasts, whereas only 13% (30/230) of our population shows increased modulation. Further, Crowder et al. (2007) report no changes in F1/F0 for their simple cell population, whereas we see similar lability in F1/F0 with layer between simple and complex cells. Their study possessed a small sample (22/205, 11%) of simple cells. It is unclear whether Crowder et al.’s observed differences between simple and complex cells, unlike the lack of difference in the current study, were due to the small sample size of simple cells, pooling of neuronal populations across area (17 and 18), or a species difference. Our
study in macaque V1 suggests that characterization of neurons based on F1/F0 ratio is largely stable for simple and complex cells with similar dependency on location in the cortical circuit.

Consequence of Low Firing Rates

If the average firing rate drops low enough, and given a finite number of stimulus presentations, even a simulated purely phase-invariant model neuron with no response modulation to a drifting grating showed an increase in F1/F0 ratio. This result occurred because as the mean number of spikes decreased, the ratio of first harmonic to mean increased, on average, simply due to chance. This result was fully laid out in a previous study (Crowder et al. 2007). We adopted the analysis method of Crowder et al. (2007) for determining whether a neuron’s F1 response was significantly greater than that of a model phase-invariant neuron firing at the same mean rate. The majority of our complex cell population (200/230, 87%) did not show significant increases in their F1/F0 with significant F1 responses as a function of lowered contrast, suggesting that, across the range of contrasts that neurons respond to, their responses to a sinusoidal grating were invariant with the spatial phase. For the small population of complex cells (13%) that significantly increased their F1/F0 ratio at low contrasts, the degree to which this increased phasic response impacts downstream cortical processing will be strongly dependent on the organization of convergent inputs. This increased phase sensitivity only occurred at low response rates near a neuron’s firing threshold. If the neuron's responses were pooled with those of other neurons that have higher contrast sensitivities, the stronger responses would dominate in the pool. Furthermore, to the extent that a downstream neuron receives input from more than one complex cell, their increased-phase biases at low contrast would have to be aligned in register for such contrast-dependent phase signals to propagate. Given the relatively small number of cells showing significant changes and the likely pooling of multiple V1 neurons in downstream receptive fields, we think such contrast-dependent phenomena are unlikely to play a major role in functional cortical processing. The fact that we observed even less lability in F1/F0 ratios for simple and complex cells in the major output layer 2/3 compared to that of the input layer 4c may be reflective of such convergent pooling of signals.
Comparison with Other Studies

In the past decade, many studies have challenged the strict hierarchical view of cortical organization originally proposed by Hubel and Wiesel in which simple cells are constructed out of LGN inputs and complex cells are formed by pooling inputs of V1 simple cells. One study (Alonso and Martinez 1998) recorded from complex cells that received direct monosynaptic input from the LGN. Further, it has been shown both theoretically (Mechler and Ringach 2002) and experimentally (Priebe et al. 2004) that a sharply bimodal F1/F0 distribution of spiking responses can arise from a more uniform and unimodal distribution of underlying membrane potential responses, providing evidence for a more continuous, rather than discrete, view of cellular classification. Multiple studies using computational models of intracortical connectivity (Chance et al. 1999; Wielaard et al. 2001; Tao et al. 2004; Zhu et al. 2009) have shown ways in which the strength of recurrent intracortical activity can give rise to simple and complex cell classes. In such models, the degree of recurrent connectivity is responsible for creation of complex cell responses; cells with stronger recurrent connectivity average over a greater number of inputs and produce more phase-invariant responses. Wielaard et al. (2001) demonstrated that a purely feedforward convergence of LGN inputs did not produce a linear receptive field (due to nonlinear distortion of LGN responses), and that intracortical inhibition in their model served to suppress these nonlinearities and created more linear simple-cell receptive fields. Interestingly, we showed that a proportion of simple cells responded differently to a stimulus of reduced contrast, with the cells that changed the most showing a decrease in F1/F0 ratio and more nonlinear behavior (Fig. 3B). In our study, similar proportions of simple and complex cells showed some stimulus-dependent influence upon their F1/F0 ratios. Further, not only were these proportions well-matched within each cortical layer but they also differed across the cortical layers (Fig. 6), suggesting that the specific local intralaminar circuitry played some role in influencing this aspect of both simple and complex cell receptive fields.

Recent studies investigating the mapping of receptive field response properties with multiple stimulus sets have shown that the recovered spatiotemporal maps of V1 neurons can be strongly dependent upon the mapping method and stimuli used (Sharpee and Victor 2009; Victor et al. 2009; Yeh et al. 2009). Basic receptive field properties in V1 such as orientation...
and spatial frequency tuning have been shown to be dynamically shaped by multiple
mechanisms with varying spatial extents, thought to reflect aspects of the underlying
anatomical (feedforward, recurrent) circuits (Xing et al. 2005). Given this, it is perhaps not
surprising that receptive field maps may differ according to the method of visual stimulation.
Stimulus sets that differ in luminance contrast, spatial resolution, visual extent, and
correlational structure may provide differential drive to the multiple underlying functional
circuits that shape a neuron’s receptive field properties. It has been shown that neurons
classified as simple or complex can be differentiated further with regard to temporal
response nonlinearities and location within the cortical circuit (Williams and Shapley 2007;
Williams et al. 2007), suggesting that subclasses of neurons may represent qualitatively
different signals within the visual pathway. Studies in both anaesthetized (Mata and Ringach
2005) and awake (Chen et al. 2009) macaque V1 have measured both F1/F0 responses to
high contrast drifting gratings as well as mapped receptive field overlap using sparse noise
stimuli, which weakly drive a cell’s receptive field and may be considered as a stimulus of low
effective contrast. If complex cells’ receptive field structure generally became more simple-
like at low contrasts, we would expect either poor correlation or a strong bias between
F1/F0 and measures of subunit discreteness or overlap, which neither study showed. This
suggests that while other detailed receptive field measures may change with stimulus set, the
basic organization of subunit separability or overlap may remain largely stable. In support of
the stability of receptive field structure, a recent study in macaque V1 reported that static
receptive field mapping with lower stimulus contrast did not appreciably alter the
arrangement of RF subunits and that complex cells showed stability in their classification at
low contrasts on the basis of subunit overlap (Durand et al. 2012).

While we demonstrated that some cells of both classifications (simple and complex) did
change their modulation ratio at lowered contrasts, we emphasize that the proportion is
relatively small, that very few cells changed enough to be reclassified as the other type (7%
of complex cells and 4% of simple cells), and those cells that altered their F1/F0 ratios most
tended to have intermediate F1/F0 values (0.7-1.3) when classified at high contrast, which is
relatively uncommon in the population distribution as a whole (69/462, 15%). Recent
studies in cat visual cortex (Crowder et al. 2007, van Kleef et al. 2010) reported that many
complex cells become ‘simple-like’ at low contrast whereas simple cells showed no change in
phase selectivity. It is unclear whether or not the difference between the current study in
macaque and the studies in cat cortex are due to a species difference or some other factors.
The study of Crowder et al. (2007) differed from ours in two respects; they sampled neurons
from both area 17 and area 18 in the cat and simple cells comprised only a small proportion
of their overall sample population (22/205, 11%) whereas in our study half the neurons were
simple (232/462, 50%) and the whole population was from V1. In the study of van Kleef et
al. (2010) that recorded exclusively from area 17, only 10% of their complex cell population
(8/77) became reclassified as simple at low contrast (Figure 4A), whereas Crowder et al.
found a proportion closer to ~50%. The results of van Kleef et al. (2010) resemble ours, in
that only a small minority of complex cells switch their classification to simple at low
contrast, and that these tended to be complex cells that already contained a moderate
amount of phase selectivity (F1/F0>0.5) at high contrasts. Further, they reported that on
average the simple cell population did not change however, individually some of their simple
cells did show increases or decreases in F1/F0 that appear qualitatively similar to our results;
6/16 of their simple cells have F1/F0 ratios less than 1 at low contrast. In our study only a
very small proportion of the neuronal population switched their cell-type classification, the
switch tended to be most frequent in the minority of cells that already contained a mixture
of phase-selective and phase-invariant responses, and only occurred at very low response
rates. We interpret these findings to indicate that lowering of stimulus contrast is unlikely to
substantially alter this property of cortical signaling.

We found that a large reduction in neuronal firing rates induced by presenting spatially
extended stimuli had no effect on the F1/F0 ratio of neurons’ responses in macaque V1,
suggesting that the cellular classification established by local intracortical circuitry was not
modified by strong activation of the eCRF. This is in marked contrast to the results of Bardy
et al. (2006) in cat V1 which showed most complex cells (and some simple cells) increased
their F1/F0 ratio with activation of eCRF suppression. The difference in results is unlikely
to be due to sampling bias; most of our neurons were strongly suppressed by the stimuli of
large size and spatial context, and the average amount and distribution of suppression across
our population was similar to that of a large population of cells in another study (Cavanaugh
et al. 2002a). Furthermore, we found no correlation between suppression strength and
increase in F1/F0 ratio for complex cells. In the study of Bardy et al. (2006) the neurons
showing strong increases had F1/F0 values in the range of 0.5 – 1.2, and thus contained a mixture of modulated and unmodulated responses. As we show in Figure 3, this range is precisely where the dip occurred in our population distribution of F1/F0 values; thus, even if such cells showed a similar trend, it would be at most a minority of the V1 population. Additionally, many of the cells in the Bardy et al. study were suppressed such that they only fired a few spikes per second. As Crowder et al. (2007) showed and we confirmed, the F1/F0 statistic becomes biased at lowered firing rates. Bardy et al. (2006) do not take this bias into account, so there is the potential that some of their observed increase in F1/F0 was produced by lowered overall firing rates.

**Implications for visual processing:**

The invariance of neuronal properties with contrast and context means that processing of images with different scene statistics can be processed in the same manner by the cortical population. It is of particular interest that simple cells, that comprise 50% of the population of 462 neurons we studied for contrast, were mostly stable in the F1/F0 ratio across a wide range of contrasts, suggesting that edge information conveyed by the simple cell population would be relatively constant independent of the local contrast of the edge. The implication for visual processing of an increased F1/F0 ratio for a small proportion of complex cells, about 13%, at near threshold contrast is difficult to predict. As pointed out earlier, neurons have different contrast thresholds, so that although some of the 13% of complex cells that became more ‘simple like’ may potentially contribute to processing, they would have low spike rates so their overall contribution to processing in the circuit may be relatively low. Consequently, in terms of visual processing, the ratio of simple to complex cell contribution in primates is relatively invariant with contrast and context.
ACKNOWLEDGEMENTS

GRANTS
This work was supported by NIH grants EY017945, EY08300 & EY P31-13079.

DISCLOSURES
The authors declare no competing financial interests.


FIGURE CAPTIONS

Figure 1: The contrast response, area summation and annulus tuning for an example complex cell. A: contrast response function for a stimulus confined to the CRF. B: area response function with a stimulus of preferred spatiotemporal frequency and direction of drift. The size of the stimulus in the CRF was chosen to be the smallest size evoking the optimal response (vertical arrow). C: response as a function of the size of an annular region of optimal grating. The central mean grey area of the stimulus expands as the inner radius of surround grating increases. The stimulus at zero inner radius is equivalent to the largest radius in (B). As the inner radius increases the response decreases until there is no response from the CRF (vertical arrow). This is the inner radius chosen for the CRF-eCRF context experiments. All points are mean ± 1 s.d.

Figure 2: Contrast response data from example simple (A-C) and complex (D-F) cells. Peristimulus time histograms (PSTHs) to one stimulus cycle are shown for four stimulus contrasts (A, D). The black line in the PSTHs shows the half-wave rectified sum of the zeroth and first harmonic of the Fourier transform of the responses. Firing rates as a function of contrast are shown in (B, E) for both the F0 (solid black line) and F1 (dashed grey line) components of the response (mean ± 1 s.e.m.). The ratio of the F1/F0, the modulation ratio, as a function of contrast is shown in (C, F; mean ± 1 s.e.m.) and does not change systematically as a function of increasing contrast.

Figure 3: The F1/F0 ratio for the population at different contrast levels. A, B: F1/F0 ratio measured at high contrast (x-axis) against the ratio at a low contrast that is twice threshold (y-axis). The grey points show neurons that do not significantly change their modulation ratio. Black points show neurons that have a significant change in ratio; for complex cells (A) the black points indicate the subset of cells that had both a significant change in ratio and a significant F1 component in their response. A: there is a small increase in the F1/F0 for some complex (F1/F0 < 1) cells, but overall the ratio remains relatively constant. B: for simple cells (F1/F0 ratio > 1) the majority of do not show a significant change, but a small number increase or decrease their ratio. The histograms show F1/F0 ratios for cells classified as simple or complex based on high contrast stimuli. The high contrast distributions are shown in the top histogram (C, G). The rows below the top row show...
distributions for the complex and simple cells that were classified at high contrast. The
distributions of F1/F0 for complex and simple cells remain similar as contrast is lowered to
twice threshold (D, H) and √2 times threshold (E, I), but a small proportion of the
population change their classification. There is an average increase in F1/F0 for complex
cells at contrast threshold (F), but this is largely due to low firing rates (see Results); only a
small fraction of neurons (5%) possess an F1 component that is significantly greater than
that produced by a model phase invariant neuron firing at the same low mean rate. J: simple
cells as a population show a similar distribution at threshold as at higher contrasts.

Figure 4: Population data showing how the change in F1/F0 ratio is related to the amount of
response drive (normalized to the individual neuron’s firing rate at high contrast). A:
complex cells show little change in F1/F0 across 75% of their operating range (0.25 – 1), but
increase at firing rates below 25% of the maximum response. Points in black show cells and
conditions with a significant change in F1/F0 and a significant F1 component to the
response. For a majority of cases, the increase in F1/F0 ratio at low drive is not significant
and is due to the low firing rate. The solid black line shows the running average of all data
points (grey shaded region, ±1 s.d.) using a boxcar of 0.05 width. B: simple cells, as a
population, show no systematic change in F1/F0 on average across their operating range.

Figure 5: Analysis of the change in F1/F0 ratio shown by simple cells at different contrast
levels. A: change in F1/F0 at twice threshold is plotted against change at 2√2 times
threshold for simple cells showing significant increases (black) and decreases (gray) in
modulation ratio. The changes are correlated across contrasts and systematically lower at
higher contrast, indicating a consistent bias for a change in F1/F0 at lower contrasts. B:
changes in F1/F0 at twice threshold for the same cells in (A) are plotted in relation to the
cells’ modulation ratio at high contrasts. Cells with a F1/F0 near 1 tend to show larger
relative changes at low contrast compared to cells with F1/F0 near 2.

Figure 6: Changes in F1/F0 with cortical layer based on measurements at twice threshold
contrast compared to high contrast. Numbers in parentheses give the number of complex
and simple cells, respectively, within each layer. Black bars indicate proportion of cells in
30

each layer showing no significant change in F1/F0 at lower contrast; gray bars represent
proportion of cells showing significant changes, for either increases (+) or decreases (-). The
majority of cells in all layers show no significant changes in F1/F0 at lower contrasts. For
both simple and complex cells, layers 2/3 and 5 have the most cells with stable F1/F0 ratios,
and layer 4c shows the most cells with significant changes in modulation ratio.

Figure 7: Size tuning data for an example simple (A, B) and complex (C, D) cell. Firing rates
(A, C) are shown as a function of stimulus radius for F0 (solid black circles) and F1 (open
grey circles) components of the response. Both neurons show an initial summation followed
by a suppression at stimulus diameters beyond the optimal. The F1/F0 ratios (B, D) of both
cells remain largely invariant with changing stimulus aperture. The optimal size (open arrow)
and 2.5 times the optimal size (filled arrow) are shown in (A, C).

Figure 8: A comparison F1/F0 ratio measured at the optimal stimulus aperture (x-axis)
against the F1/F0 ratio for a stimulus aperture 2.5 times the optimal size. The solid grey line
shows the running average (of the nearest 5 data points) which follows the line of equality
(dashed black line). There is no systematic deviation of the ratio for either complex (F1/F0
< 1) or simple cells (F1/F0 > 1) when the size of the aperture is increased, even though for
the majority of neurons there is response suppression in the larger size aperture.

Figure 9: Stimuli in the eCRF do not change the F1/F0 ratio. A: stimulus conditions for
contextual experiments. Responses to an optimal grating confined to the CRF were
compared to responses with stimuli presented simultaneously in the eCRF at collinear,
orthogonal, and opposite directions of drift (indicated by white arrows) to the CRF grating.
B,C: the response to an optimal stimulus in the CRF is modulated by different contextual
stimulus configurations and contrasts in the eCRF for a simple (B) and a complex (C) cell.
The unmodulated F0 (filled black circles) and modulated F1 (open grey circles) components
of the response are shown in each graph (mean ± 1 s.e.m., error bars are often obscured by
the data points). For each condition the contrast of the stimulus in the eCRF was varied. The
0% contrast condition is the response to the stimulus in the CRF alone (Fig. 9A, optimal).
The bottom rows of (B,C) show that modulation (F1/F0) ratios for each condition remain
invariant to manipulations of eCRF contrast and orientation that induce strong suppression.
Figure 10: F1/F0 ratios for the population measured with the optimal stimulus (x-axis) or the most suppressive contextual stimulus (y-axis) chosen across eCRF orientation, drift direction and contrast from the experiments that are shown in Fig. 9. The solid grey line shows the running average (of the five nearest data points) which follows the line of equality (dashed black line). There is no systematic deviation of the ratio as the size of the aperture increases, even though for the majority of neurons there is a strong response suppression to the contextual stimulus in the eCRF.
Figure 1
Figure 2
Figure 4

![Graph showing the relationship between Fraction Maximum Driven Response and ∆ ln (F1/F0) for Complex and Simple Cells.](image_url)
Figure 5
Figure 6

Proportion within layer

Complex Cells

Simple Cells

Layer 2/3
Layer 4b
Layer 4c
Layer 5
Layer 6

(71,52)
(60,46)
(32,54)
(34,24)
(33,56)

Proportion within layer

0 0.5 1

0 0.5 1

0 - + 0 - + 0 - + 0 - + 0 - +
Simple Cell

A

Complex Cell

C

Firing Rate (spikes/sec)

Radius (deg)

Modulation Ratio (F1/F0)

Radius (deg)

F0

F1

Figure 7
Figure 8
Figure 9
Figure 10

Figure 10 displays a graph titled "F1/F0 at Optimal Stimulus + eCRF." The x-axis represents "F1/F0 at Optimal Stimulus," and the y-axis represents a range from 0 to 2. The graph includes a trend line and data points, with a note indicating "n = 47."