Title:
Neural integrators for decision making: A favorable tradeoff between robustness and sensitivity

Abbreviated Title:
Neural integrators for decision making

Authors:
Nicholas Cain, Department of Applied Mathematics, University of Washington
Andrea K. Barreiro, Department of Applied Mathematics, University of Washington
Michael Shadlen, Department of Physiology and Biophysics, University of Washington
Eric Shea-Brown, Department of Applied Mathematics, University of Washington

Corresponding Author:
Eric Shea-Brown
Department of Applied Mathematics
Box 325420
Seattle, WA 98195-2420
etsb@uw.edu

Number of pages: 34
Number of figures: 19
Number of tables: 1
Number of words (Abstract): 220
Number of words (Introduction): 623
Number of words (Discussion): 1706

Conflict of Interest: None

Acknowledgements: We thank the reviewers for constructive comments and insights that improved this manuscript, and especially for pointing out that the link between the robustness operation and thresholding sets of correlated random variables. This research was supported by a Career Award at the Scientific Interface from the Burroughs-Wellcome Fund (ESB), the Howard Hughes Medical Institute, the National Eye Institute Grant EY11378, and the National Center for Research Resources Grant RR00166 (MS), by a seed grant from the Northwest Center for Neural Engineering (ESB and MS), by NSF Teragrid allocation TG-IBN090004, and in part by the University of Washington eScience Institute.
Abstract

A key step in many perceptual decision tasks is the integration of sensory inputs over time, but fundamental questions remain about how this is accomplished in neural circuits. One possibility is to balance decay modes of membranes and synapses with recurrent excitation. To allow integration over long timescales, however, this balance must be exceedingly precise. The need for fine tuning can be overcome via a “robust integrator” mechanism, in which momentary inputs must be above a preset limit to be registered by the circuit. The degree of this limiting embodies a tradeoff between sensitivity to the input stream and robustness against parameter mistuning. Here, we analyze the consequences of this tradeoff for decision making performance. For concreteness, we focus on the well-studied random dot motion discrimination task, and constrain stimulus parameters by experimental data. We show that mistuning feedback in an integrator circuit decreases decision performance, but that the robust integrator mechanism can limit this loss. Intriguingly, even for perfectly tuned circuits with no immediate need for a robustness mechanism, including one often does not impose a substantial penalty for decision making performance. The implication is that robust integrators may be well-suited to subserve the basic function of evidence integration in many cognitive tasks. We develop these ideas using simulations of coupled neural units and the mathematics of sequential analysis.

1 Introduction

Many decisions are based on the balance of evidence that arrives at different points in time. This process is quantified via simple perceptual discrimination tasks, in which the momentary value of a sensory signal carries negligible evidence but correct responses arise from summation of this signal over the duration of a trial. At the core of such decision making must lie neural mechanisms that integrate signals over time (Gold and Shadlen, 2007; Wang, 2008; Bogacz et al., 2006). The function of these mechanisms is intriguing, because perceptual decisions develop over hundreds of milliseconds to seconds, while individual neuronal and synaptic activity often decays on timescales of several to tens of milliseconds – a difference of at least an order of magnitude. A mechanism that bridges this gap is feedback connectivity tuned to balance – and hence cancel – inherent voltage leak and synaptic decay (Cannon and Robinson, 1983; Usher and McClelland, 2001).

The tuning required for a circuit-based or cellular mechanism to achieve this balance presents a challenge (Seung, 1996; Seung et al., 2000), illustrated in Figure 1A (top) via motion of a ball on a smooth energy surface. Here, the ball position $E(t)$ represents the total activity of a circuit (relative to a baseline marked 0); momentary sensory input perturbs $E(t)$ to increase or decrease. If decay dominates (upper-right), then $E(t)$ always has a tendency to “roll back” to baseline values, thus forgetting accumulated sensory input. Conversely, if feedback connections are in excess, then activity will grow away from the baseline value (center). If balance is perfectly achieved via fine-tuning, (left) temporal integration can occur. That is, inputs can then smoothly perturb network activity back and forth, so that the network state at any given time represents the time-integral of past inputs.

Koulakov et al. (2002) proposed an alternative, circuit-based model, equivalent to movement along a scalloped energy surface made up of neighboring “energy wells” (Figure 1A, bottom) (Pouget and Latham, 2002; Goldman et al., 2009; Fransén et al., 2006). Importantly, even without finely-tuned connectivity, network states can hold prior values without decay or growth, allowing integration of inputs over time. Thus, this mechanism is called a robust integrator. However, the energy wells imply a minimum input strength to transition between adjacent states, with inputs below this limit effectively ignored. Intriguingly, this loss of sensitivity is shared by a mechanism of integration that was discovered at the level of single cells. Egorov et al. (2002) observed integration and graded steady states in layer V cells of entorhinal cortex, and movement among these
states was only driven by stimuli stronger than a certain limit (as modeled in (Fransén et al., 2006; Loewenstein and Sompolinsky, 2003)).

These studies point to a general issue affecting integrator mechanisms: a loss of sensitivity to weak inputs. As made explicit in Koulakov et al. (2002); Goldman et al. (2003), this may arise in a tradeoff, in which robustness to parameter mistuning is gained. Here, we abstract the underlying mechanisms and present a general theoretical analysis of the tradeoff between sensitivity and robustness for decisions based on integrated evidence. We find that the tradeoff is favorable: decision speed and accuracy is lost when the integrator circuit is mistuned, but this loss is partially recovered by making the network dynamics robust. Thus, although the robust integrator discards the weakest portions of the evidence stream, enough evidence is retained to produce decisions that are faster and more accurate than would occur with unchecked over- or under-tuning of feedback (Figure 1). The implication is that cellular or circuit-based robust integrators may be remarkably well suited to subserve a variety of decision making computations.

[Figure 1 about here.]

2 Materials and methods

2.1 Model and task overview

To explore the consequences of the robust integrator mechanism for decision performance, we begin by constructing a two-alternative decision making model similar to that proposed by Mazurek et al. (2003). For concreteness, we concentrate on the forced choice motion discrimination task (Roitman and Shadlen, 2002; Mazurek et al., 2003; Gold and Shadlen, 2007; Churchland et al., 2008; Shadlen and Newsome, 1996; Shadlen and Newsome, 2001). Here, subjects are presented with a field of random dots, of which a subset move coherently in one direction; the remainder are relocated randomly in each frame. The task is to correctly choose the direction of coherent motion from two alternatives (i.e., left vs. right).

As in Mazurek et al. (2003) (see also Smith (2010)), we first simulate a population of neurons that represent the sensory input to be integrated over time. This population is a rough model of cells in extrastriate cortex (Area MT) which encode momentary information about motion direction (Britten et al., 1993; Britten et al., 1992; Salzman et al., 1992). We pool spikes from model MT cells that are selective for each of the two possible directions into separate streams, labeled according to their preferred “left” and “right” motion selectivity (see Figure 2). Two corresponding integrators then accumulate the difference between these streams, left-less-right or vice-versa. Each integrator therefore accumulates the evidence for one alternative over the other. The dynamics of these integrators embody the tradeoff between robustness and sensitivity that is the focus of our study (see “Neural integrator model and the robustness-sensitivity tradeoff” below).

Depending on the task paradigm, different criteria may be used to terminate accumulation and give a decision. In the reaction time task, accumulation continues until activity crosses a decision threshold: if the leftward evidence integrator reaches threshold first, a decision that overall motion favored the leftward alternative is registered. In a second task paradigm, the controlled duration task, motion viewing duration is set in advance by the experimenter. A choice is made in favor of the integrator with greater activity at the end of the stimulus duration.

Accuracy is defined as the fraction of trials that reach a correct decision. Speed is measured by the time taken to cross threshold starting from stimulus onset. Reaction Time (\(RT\)) is then defined as the time until threshold (decision time) plus 350 ms of non-decision time, accounting for other delays that add to the time taken to select an alternative (e.g. visual latencies, or motor preparation.
time, cf. (Mazurek et al., 2003; Luce, 1986)). The exact value of this parameter was not critical
to our results. Task difficulty is determined by the fraction of coherently moving dots C (Britten
et al., 1992; Mazurek et al., 2003; Roitman and Shadlen, 2002). Accuracy and RT across multiple
levels of task difficulty define the accuracy and chronometric functions in the reaction time task,
and together can be used to assess model performance. When necessary, these two numbers can be
collapsed into a single metric, such as the reward per unit time or reward rate. In the controlled
duration task, the only measure of task performance is the accuracy function.

![Figure 2 about here.]

2.2 Sensory input

![Figure 3 about here.]

We now describe in detail the signals that are accumulated by the integrators corresponding to
the “left” and “right” alternatives. First, we model the pools of leftward or rightward direction-
selective sensory (MT) neurons as 100 weakly correlated (Pearson’s correlation $\rho = .11$ (Zohary
et al., 1994; Bair et al., 2001)) spiking cells (see Figure 3). As in Mazurek and Shadlen (2002),
neural spikes are modeled via unbiased random walks to a spiking threshold, which are correlated
for neurons in the same pool. Increasing the variance of each step in the random walk increases
the firing rate of each model neuron; it was therefore chosen at each coherence value to reproduce
the linear relationship between coherence C and mean firing rate $\mu_{l,r}$ of the left and right selective
neurons observed in MT recordings:

\[\mu_{l,r}(C) = r_0 + b_{l,r}C. \]

Here the parameters r_0, b_l, and b_r approximate recordings from MT (Britten et al., 1993). $r_0 = 20,$
and if evidence favors the left alternative, $b_l = .4$ and $b_r = -.2$; if the right alternative is favored,
these values are exchanged.

Next, the output of each spiking pool was aggregated. Each spike emitted from a neuron in
the pool was convolved with an exponential filter with time constant 20 ms, an approximate model
of the smoothing effect of synaptic transmission. These smoothed responses were then summed to
form a single stochastic process for each pool (see Figure 3, right, and Smith (2010)).

We then approximated the smoothed output of each spiking pool by a simpler stochastic process
that captures the mean, variance, and temporal correlation of this output as a function of dot
coherence. We used Gaussian processes $I_l(t)$ and $I_r(t)$ for the rightward- and leftward-selective pools
(See Figure 3). Specifically, we chose Ornstein-Uhlenbeck (OU) processes, which are continuous
Gaussian processes generated by the stochastic differential equations

\[dI_{l,r} = \frac{\mu_{l,r}(C) - I_{l,r}}{\tau} dt + \sqrt{2\nu_{l,r}(C)/\tau} dW_t \]

with mean $\mu_{l,r}(C)$ as dictated by Equation 1, and noise contributed by the Wiener process W_t. The
variance $\nu_{l,r}(C)$ and timescale τ were chosen to match the steady-state variance and autocorrelation
function of the smoothed spiking process. As shown in Results, this timescale affects the speed and
accuracy of decisions under robust integration.

Our construction so far accounts for variability in output from left vs. right direction selective
neurons. We now incorporate an additional noise source into the output of each pool. These noise
terms ($\eta_l(t)$ and $\eta_r(t)$, respectively) could represent, for example, neurons added to each pool that
are nonselective to direction or intrinsic variability in the integrating circuit. Each noise source is modeled as an independent OU process with mean 0, timescale 20 ms as above, and a strength (variance) $\nu/2$. This noise strength is a free parameter that we vary to match behavioral data (see “A robust integrator circuit” and Figure 15). We note that previous studies (Shadlen et al., 1996; Mazurek et al., 2003; Cohen and Newsome, 2009) also found that performance based on the direction-sensitive cells alone can be more accurate than behavior, and therefore incorporated variability in addition to the output of “left” and “right” direction selective MT cells.

Finally, the signals that are accumulated by the left and right neural integrators are constructed by differencing the outputs of the two neural pools:

$$\Delta I_l(t) = [I_l(t) + \eta_l(t)] - [I_r(t) + \eta_r(t)]$$

$$\Delta I_r(t) = -\Delta I_l(t).$$

(3)

2.3 Neural integrator model and the robustness-sensitivity tradeoff

A central issue is the impact of variability in the relative tuning of recurrent feedback vs. decay in a neural integrator circuit. Below, we will introduce the mistuning parameter β, which determines the extent to which feedback and decay fail to perfectly balance. We first define the dynamics of the general integrator model on which our studies are based. This is described by the firing rates $E_{l,r}(t)$ of integrators that receive outputs from left-selective or right-selective pools $\Delta I_{l,r}(t)$ respectively. The firing rates $E_{l,r}(t)$ increase as evidence for the corresponding task alternative is accumulated over time:

$$\tau_E \frac{dE_{l,r}}{dt} = -E_{l,r} + (1 + \beta)E_{l,r} + \kappa \Delta I_{l,r}(t)$$

$$= \beta E_{l,r} + \kappa \Delta I_{l,r}(t)$$

(4)

The three terms in this equation account for leak, feedback excitation, and the sensory input (scaled by a weight $\kappa = 1/9$), with time constant $\tau_E = 20$ ms. When the mistuning parameter $\beta = 0$, leak and self-excitation exactly cancel, and hence the integrator is perfectly tuned. An integrator with $\beta \neq 0$ is said to be mistuned, with either exponential growth or decay fail to perfectly balance. We first define the dynamics of the general integrator model on which our studies are based. This is described by the firing rates $E_{l,r}(t)$ of integrators that receive outputs from left-selective or right-selective pools $\Delta I_{l,r}(t)$ respectively. The firing rates $E_{l,r}(t)$ increase as evidence for the corresponding task alternative is accumulated over time:

$$\tau_E \frac{dE_{l,r}}{dt} = \begin{cases}
0 & \text{if } |\beta E_{l,r} + \kappa \Delta I_{l,r}| \leq \kappa R \\
\beta E_{l,r} + \kappa \Delta I_{l,r} & \text{otherwise}
\end{cases}$$

All subsequent results are based on this simplified model, which captures the essence of the robust integration computation. The first line is analogous to the series of potential wells depicted in Figure 1: if the sum of the mistuned integrator feedback and the input falls below the robustness limit R, the activity of the integrator remains fixed. If this summed input exceeds R, the activity evolves as for the non-robust integrator in Equation 4. To interpret the robustness limit R, it is
convenient to normalize by the standard deviation of the input signal:

\[\hat{R} = \frac{R}{\sqrt{\text{Var}[\Delta I_{l,r}(t)]}} = \frac{R}{S} \]

where \(S = \sqrt{\text{Var}[\Delta I_{l,r}(t)]} \). In this way, \(\hat{R} \) can be interpreted in units of standard deviations of input OU process that are “ignored” by the integrator. This yields the final expression, which we reproduce for convenience:

\[
\tau_E \frac{dE_{l,r}}{dt} = \begin{cases}
0 & |\beta E_{l,r} + \kappa \Delta I_{l,r}| \leq \hat{\kappa} S \hat{R} \\
\beta E_{l,r} + \kappa \Delta I_{l,r} & \text{otherwise}
\end{cases} \tag{5}
\]

To summarize, Equation 5 defines a parameterized family of neural integrators, distinguished by the robustness limit \(\hat{R} \). As \(\hat{R} \to 0 \), the model reduces to Equation 4. When additionally \(\beta = 0 \), the (perfectly tuned) integrator computes an exact integral of its input: Equation 5 then yields \(E_{l,r}(t) \propto \int_0^t \Delta I_{l,r}(t') \, dt' \). We analyze this robust integrator model below.

2.4 Computational methods

Monte Carlo simulations of Equation 5 were performed using the Euler-Maruyama method (Higham, 2001), with \(dt = 0.1 \) ms. For a fixed choice of input statistics and threshold \(\theta \), a minimum of 10,000 trials were simulated to estimate accuracy and \(RT \) values. In simulations where \(\sigma_\beta > 0 \), results were generated across a range of \(\beta \) values and then weighted according to a normal distribution. The range of values was chosen with no less than 19 linearly spaced points, across a range of \(\pm 3 \) standard deviations around the mean \(\bar{\beta} \). Simulations were performed on NSF Teragrid clusters, and the UW Hyak cluster.

Reward rate values presented in “Reward rate and the robustness-sensitivity tradeoff” are presented as maximized by varying the free parameter \(\theta \); values were computed by simulating across a range of \(\theta \) values. The range and spacing of these values were chosen dependent on the values of \(\hat{R} \) and \(\beta \) for the simulation; the range was adjusted to capture the relative maximum of reward rate as a function of \(\theta \), while the spacing was adjusted to find the optimal \(\theta \) value with a resolution of \(\pm 0.1 \). Values of \(\theta \) and \(\nu_\gamma \) in the table included in Figure 15 were chosen to best match accuracy and chronometric functions to behavioral data reported in Roitman and Shadlen (2002). This was accomplished by minimizing the sum-squared error in data vs. model accuracy and chronometric curves across a discrete grid of \(\theta \) and \(\nu_\gamma \) values, with a resolution of 0.1.

Autocovariance functions of integrator input presented in ”Analysis: robust integrators and decision performance” were computed by simulating an Ornstein-Uhlenbeck process using the exact numerical technique in Gillespie (1996) with \(dt = 0.1 \) ms, to obtain a total of \(2^{27} \) sample values. Sample values of the process less than the specified robustness limit \(\hat{R} \) were set to 0, and the autocovariance function was computed using standard Fourier transform techniques.

[Figure 4 about here.]

3 Results

3.1 How do robustness and mistuning affect decision speed and accuracy?

A general issue affecting neural systems that integrate stimuli is the balance between mechanisms that lead their activity to decay versus grow over time (Figure 1A). If these are tuned to a perfect...
balance, the result is graded persistent activity that can accumulate and store inputs. Robust integrators provide an alternative to such fine-tuning, but at the cost of lost sensitivity to input signals – represented by the energy wells in Figure 1A.

Below we explore the costs and benefits of robust integration in terms of the general neural integrator model of Equation 5. This model summaries the underlying issues via two key parameters. The first, β, describes mistuning of the integrator away from “perfect” dynamics, so that its activity decays or grows autonomously (Figure 1A). We describe the extent of mistuning by σ_β, which represents standard deviation of β from the ideal value $\bar{\beta} = 0$. The second key parameter is the robustness limit \hat{R}. We emphasize dual effects of \hat{R}: as \hat{R} increases, the integrator becomes able to produce a range of graded persistent activity for ever-increasing levels of mistuning (see Figure 1A, where \hat{R} corresponds to the depth of energy wells). This prevents runaway increase or decay of activity when integrators are mistuned; intuitively, this might lead to better performance on sensory accumulation tasks. At the same time, as \hat{R} increases, a larger proportion of the evidence fails to affect the integrator (see Figure 1B, where \hat{R} specifies a limit within which inputs are “ignored”). Such sensitivity loss should lead to worse performance. This implies a fundamental tradeoff between competing desiderata: (i) one would prefer to integrate all relevant input, favoring small \hat{R}, and (ii) one would prefer an integrator robust to mistuning (e.g., $\sigma_\beta > 0$), favoring large \hat{R}. Thus it makes sense to assess the effect of robustness under different degrees of mistuning, as represented schematically in Figure 4.

To assess this performance, we consider relationships between decision speed and accuracy in both controlled duration and reaction time tasks. In the controlled duration task, we simply vary the stimulus presentation duration, and plot accuracy vs. experimenter-controlled stimulus duration. In the reaction time task, we vary the decision threshold θ — treated as a free parameter — over a range of values, thus tracing out the parametric curve for all possible pairs of speed and accuracy values. Here, speed is measured by reaction time (RT, see Materials and Methods). For both cases, we use a single representative dot coherence ($C=12.8$ in Equation 1); similar results were obtained using other values for motion strength (see Figure 19 in Appendix A).

We first establish the performance impact of mistuning in the absence of robustness. We begin with a case we call the “baseline” model (Figure 4), for which there is no mistuning or robustness: $\sigma_\beta = \hat{R} = 0$. Speed accuracy plots for this model are shown as filled dots in Figures 5A and B, for the controlled duration and reaction time tasks respectively. We compare the “baseline” model with the “mistuned” model, indicated by crosses, for which the feedback parameter has a standard deviation of $\sigma_\beta = 0.1$ (i.e., 10% of the mean feedback) and robustness $\hat{R} = 0$ remains unchanged. In the controlled duration task (Figure 5A) we observe that mistuning diminishes accuracy by as much as 10%, and this effect is sustained even for arbitrarily long viewing windows (Usher and McClelland, 2001; Bogacz et al., 2006). The same effect is apparent in the modeled RT task (Figure 5B): for a fixed RT, the corresponding accuracy is decreased.

While maintaining feedback mistuning, we next increase the robustness limit to $\hat{R} = 1.25$. We call this case the “recovery” model because robustness compensates in part for the performance loss due to feedback mistuning: the speed accuracy plots in Figure 6 for the recovery case, indicated by stars, lie above those for the “mistuned” model. For example, at the longer controlled task durations (Figure 6A) and reaction times (Figure 6B) plotted, 30% of the accuracy lost due to integrator mistuning is recovered via the robustness limit $\hat{R} = 1.25$. This degree of improvement underestimates the recovery attainable in some more realistic models. Indeed, a less simplified model of the integrator achieves a larger performance recovery (approaching $\approx 75%$; see Equation 22 and Figure 19 in Appendix A).
One possible reason for the modest recovery of accuracy in Figure 6 is that robustness itself reduces decision speed and accuracy. However, this does not appear to be a viable explanation. When the same degree of robustness accompanies a perfectly tuned integrator – the “robust” case in Figure 4 – there is negligible loss of performance. In particular, Figure 7 demonstrates that, when $\sigma_\beta = 0$, speed accuracy curves for $\hat{R} = 1.25$ almost coincide with those for the “baseline” case of $\hat{R} = 0$. We note that since \hat{R} measures ignored input in units of the standard deviation, the integrator circuit disregards as much as 75% of the input stimulus at low coherence values. Given this large amount of ignored stimulus, the fact that the robust integrator produces nearly the same accuracy and speed as the “baseline” case is surprising, as one might expect ignoring stimulus to be detrimental to performance. This implies that the “robust” model can protect against feedback mistuning, without substantially sacrificing performance when feedback is perfectly tuned.

To summarize, the robust integrator appears well-suited to the decision tasks at hand, counteracting some of the performance lost when feedback is mistuned. Moreover, even without mistuning, a robust integrator still performs as well as the “baseline” case that integrates all information in the input signal. In the next section, we begin to explain this observation by constructing several simplified models and employing results from statistical decision making theory.

3.2 Analysis: robust integrators and decision performance

3.2.1 Controlled duration task: temporally independent signals

We can begin to understand the effect of the robustness limit on decision performance by formulating a simplified version of the evidence accumulation process. We focus first on the controlled duration task, where the analysis is somewhat simpler. Readers preferring a brief statement of the underlying mechanisms may skip to the “Summary of analysis” and proceed to the rest of the paper from there.

Our first simplification is to consider a single accumulator E which receives evidence for or against a task alternative. Moreover, we consider increments of evidence that arrive both independently and discretely in time. The value of E on the i^{th} time step, E_i, is allowed to be either positive or negative, corresponding to accumulated evidence favoring the leftward or rightward alternatives, respectively. On each time step, E_i increments by an independent, random value Z_i with a probability density function (PDF) $f_{Z_i}(Z)$. We first describe an analog of the “baseline” model above (i.e., in the absence of robustness, $\hat{R} = 0$). Here, we take the increments Z_i to be independent, identical, and Gaussian distributed, with a mean $\mu > 0$ (establishing the preferred alternative) and standard deviation σ: that is, $Z_i \sim N(\mu, \sigma^2)$. After the n^{th} step, we have

$$E_n = \sum_{i=1}^{n} Z_i.$$

In the controlled duration task, a decision is rendered after a fixed number of time steps N, (i.e. $n = N$) and a correct decision occurs when $E_N > 0$. By construction, $E_n \sim N(n\mu, n\sigma^2)$, which implies that accuracy can be computed as a function of the signal-to-noise ratio (SNR) $s = \frac{\mu}{\sigma}$ of a sample:

$$\text{Accuracy} = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi N \sigma^2}} e^{-\frac{(x-N\mu)^2}{2N\sigma^2}} dx = \frac{1 + \text{Erf} \left(\sqrt{\frac{N}{2}} s \right)}{2}. \quad (6)$$
Next, we change the distribution of the accumulated increments Z_i to construct a discrete time analog of the robust integrator. Specifically, increasing the robustness parameter to $R > 0$ affects increments Z_i by redefining the PDF $f_Z(Z)$ so that weak samples do not add to the total accumulated “evidence”, precisely as in Equation 5. (Models where such a central “region of uncertainty” of the sampling distribution is ignored were previously studied in a race-to-bound model (Smith and Vickers, 1989); see Discussion). This requires reallocating probability mass below the robustness limit to a weighted delta function at zero (Figure 8A). Specifically:

$$f_{Z_R}(Z) = \delta(Z) \int_{-R}^{R} f_Z(Z') \, dZ' + \begin{cases} 0 & |Z| < R \\ f_Z(Z) & \text{otherwise} \end{cases}$$ \quad (7)

To estimate decision accuracy with robustness $\hat{R} > 0$, we sum N random increments from this distribution forming the cumulative sum $E_{N\hat{R}}$. As above, a correct decision occurs on trials where $E_{N\hat{R}} > 0$. As shown in Figure 9, the replacement of increments with zeros has negligible effect on accuracy when \hat{R} is less than $\sim .5$. For larger values of \hat{R}, accuracy diminishes faster for the discrete/independent model (gray curve) in comparison to the continuous/correlated model (black curve). Loss of accuracy is expected for both models as robustness effectively prevents stimulus information from affecting the decision. However, the continuous model suffers less than the discrete approximation, owing to the one important difference: the presence of temporal correlations in the evidence stream. We will return to this matter below. First, we give an explanation for the negligible effect of \hat{R} on decision accuracy for either model.

The central limit theorem allows us to approximate the new cumulative sum $E_{N\hat{R}}$ as a normal distribution (for sufficiently large N), with μ and σ in Equation 6 replaced by the mean and standard deviation of the PDF defined by Equation 7. As before, we normalize R by the standard deviation of the increment, $\hat{R} = \frac{R}{\sigma}$, and then express the fraction correct $\text{Accuracy}_{\hat{R}}$ as a function of \hat{R} and s. One can think of \hat{R} as perturbing the original accuracy function given in Equation 6. Although this perturbation has a complicated form, we can understand its behavior by observing that its Taylor expansion (See Appendix B.2 for more details) does not have first or second-order contributions in \hat{R}:

$$\text{Accuracy}_{\hat{R}}(N) \approx \text{Accuracy}(N) - \frac{\sqrt{N}s \left(1 + 2s^2 \right) e^{-\frac{(1+N)s^2}{2}}}{6\pi} \hat{R}^3 + O(\hat{R}^5).$$ \quad (8)

Thus, for small values of \hat{R} (giving very small \hat{R}^3), there will be little impact on accuracy. Equation 8 can therefore partially explain the key observation in Fig 7A that \hat{R} can be substantially increased while incurring very little performance loss.

Now we return to the comparison between the discrete/independent and continuous/correlated models, by setting the signal-to-noise ratio of the sampling distribution identical to the steady state distribution of the input signal to the neural integrator model (See Sensory Input). The interval between samples is set to match accuracy performance of the continuous time model at $\hat{R} = 0$. The gray line in Figure 9A shows the accuracy for the discrete time model, as the robustness limit \hat{R} is increased. The discrete time model predicts a decrease in accuracy at $\hat{R} = .5$; intriguingly, this is not seen in an analogous continuous time model. In the next section, we first describe this continuous time model, and explain how the discrepancy in the impact of robustness can be resolved by accounting for the temporally correlated structure of the continuous time signal.
3.2.2 Controlled duration task: temporally correlated signals

[Figure 9 about here.]

We next extend the analysis of the controlled duration task in the previous section to treat integration of temporally correlated signals. In particular, we consider the continuous time signals described in the section “Sensory Input” above (although our conclusions would apply to temporally correlated processes in discrete time as well). We follow the method developed in Gillespie (1996) to describe the mean and variance of the integral of a continuous input signal. The challenge here lies in the temporal correlations in the Gaussian OU input signal (see Methods, Sensory Input). As in the previous section, we describe the distribution of the integrated signal at the final time T.

We first replace the discrete input samples Z_i from the previous section with a continuous signal $Z(t)$, which we take to be a Gaussian process with a correlation timescale derived from our model sensory neurons (see Methods). We define the integrated process

$$\frac{dE}{dt} = Z(t) \rightarrow E(t) = \int_0^t Z(t') dt'.$$

with initial condition $E(0) = 0$.

Assuming that $Z(t)$ satisfies certain technical conditions that are easily verified for the OU process (wide-sense stationarity, α-stability, and continuity of sample paths (Gardiner, 2002; Billingsley, 1986; Gillespie, 1996)), we can construct differential equations for the first and second moments $\langle E(t) \rangle$ and $\langle E^2(t) \rangle$ evolving in time. We start by taking averages on both sides of our definition of $E(t)$, and, noting that $E(0) = 0$, compute the time-varying mean:

$$\frac{d\langle E(t) \rangle}{dt} = \langle Z(t) \rangle \quad \Rightarrow \quad \langle E(t) \rangle = t \langle Z(t) \rangle .$$

Similarly, we can derive a differential equation for the second moment of $E(t)$:

$$\frac{d\langle E^2(t) \rangle}{dt} = 2 \langle Z(t) E(t) \rangle .$$

The right-hand side of this equation can be related to the area under the autocovariance function $A(\tau) \equiv \langle Z(t) Z(t + \tau) \rangle - \langle Z(t) \rangle^2$ of the process $Z(t)$:

$$\langle Z(t) E(t) \rangle = \left\langle Z(t) \int_0^t Z(s) ds \right\rangle = \int_0^t \langle Z(t) Z(s) \rangle ds$$

$$= \int_0^t \langle Z(t) Z(t - \tau) \rangle d\tau$$

$$= \int_0^t A(\tau) + \langle Z(t) \rangle^2 d\tau .$$

We now have an expression for how the second moment evolves in time. We can simplify the result via integration by parts and the fact that $\langle Z(t) \rangle$ is constant in time:

$$\langle E^2(t) \rangle = 2 \int_0^t \int_0^s A(\tau) + \langle Z(t) \rangle^2 d\tau ds = 2 \int_0^t (t - \tau) A(\tau) d\tau + t^2 \langle Z(t) \rangle^2$$

$$\Rightarrow \quad \text{Var}[E(t)] = 2 \int_0^t (t - \tau) A(\tau) d\tau .$$
Because $E(t)$ is an accumulation of Gaussian random samples $Z(t)$, it will also be normally distributed, and hence fully described by the mean (Equation 10) and variance (Equation 13) (Billingsley, 1986).

To model a non-robust integrator, we take $Z(t)$ to be a OU process with steady-state mean and variance μ and σ^2, and time constant τ. For the robust case, we can follow Equation 5 and parameterize a family of processes $Z_R(t)$ with momentary values below the robustness limit \hat{R} set to zero. (Here, we again normalize the robustness limit by the standard deviation of the OU process.) We numerically compute the autocovariance functions $A_R(\tau)$ of these processes, and use the result to compute the required mean and variance, and hence time-dependent signal-to-noise ratio $\text{SNR}(t)$, for the integrated process $E(t)$. This yields

$$\text{SNR}_R(t) = \frac{\langle E(t) \rangle}{\sqrt{\text{Var}[E(t)]}} = \frac{tE[Z_R(t)]}{\sqrt{2 \int_0^t (t-\tau) A_R(\tau) d\tau}}.$$ \hspace{1cm} (14)

Under the assumption that $E(T)$ is approximately Gaussian for sufficiently long T (which can be verified numerically), we use this SNR to compute decision accuracy at T:

$$\text{Accuracy}_R(T) \approx 1 + \text{Erf} \left(\frac{1}{\sqrt{2} \text{SNR}_R(T)} \right).$$ \hspace{1cm} (15)

This function is plotted for $T = 500$ ms as the black line in Figure 9A. The plot shows that accuracy remains relatively constant until the robustness limit \hat{R} exceeds ≈ 1.25, a longer range of \hat{R} values than for the discrete time case (compare gray curve vs. black curve in Figure 9A).

Why does the robustness limit appear to have a milder effect on degrading decision accuracy for our temporally correlated vs. independent input signals? We can get some insight into the answer by examining the autocovariance functions $A_R(\tau)$, which we present in Figure 9B. When normalized by their peak value, the autocovariance for $\hat{R} > 0.5$ falls off more quickly with respect to the time lag τ (see inset in Figure 9B), indicating that subsequent samples become less correlated in time. Thus, there are effectively more “independent” samples that are drawn over a given time range T, improving the fidelity of the signal and hence decision accuracy. Such an improvement clearly has no room to occur when samples are already independent, as in the preceding section. Interestingly, this argument – that, all else being equal, the sum of samples with lower correlation will yield better decision accuracy – is the same as that applied to samples pooled across neural populations by (Zohary et al., 1994; Averbeck et al., 2006).

The impact of the robustness limit on temporally correlated signals can be visualized by considering how robustness transforms a set of correlated (gaussian) random variables, each representing the value of the signal at a nearby point in time (Fig. 10). As proven by (Lancaster, 1957) and applied in a different context by (de la Rocha et al., 2007; Dorn and Ringach, 2003), the nonlinear, thresholding action of this function must reduce the correlation of these variables – Fig. 10 demonstrates this explicitly. This is the mechanism behind the decrease in autocorrelation above.

As pointed out to us by a reviewer, the same setup leads to a complementary view of why the robustness operation can have minimal impact on decision accuracy. The more correlated a set of random samples is, the greater the chance that they will have the same deviation from the mean – i.e., that nearby samples in time will all provide evidence in favor of the same task alternative. The limited effect of robustness on decision accuracy suggests that, even if some of these samples are rectified to zero, other (correlated) samples remain that lead to the same final decision.
Summary: Our analysis of decision performance for the controlled duration task shows that two factors contribute to the preservation of decision performance for robust integrators. The first is that the momentary SNR of the inputs is barely changed for robustness limits up to $R \approx 0.5$. The second is that, as R increases, the signal $Z_R(t)$ being integrated becomes less correlated in time. This means that (roughly) more independent samples will arrive over a given time period.

3.2.3 Reaction time task

In the context of threshold crossing in the reaction time task, the accumulation of increments toward decision thresholds can be understood as the sequential probability ratio test, where the log-odds for each alternative are summed until a predefined threshold is reached (Wald, 1945; Gold and Shadlen, 2002; Luce, 1963; Laming, 1968). Wald (1944) provides an elegant method of computing decision accuracy and speed (RT). The key quantity is given by the moment generating function (MGF, denoted $M_Z(\omega)$ below) for the samples Z (see Luce (1986), Link and Heath (1975), and Doya (2007)). Under the assumption that thresholds are crossed with minimal overshoot of the accumulator on the final step, we have the following expressions:

\[
\text{Accuracy} = \frac{1}{1 + e^{\theta h_0}} \quad (16)
\]

\[
RT = \frac{\theta}{E[Z]} \tanh \left(-\frac{\theta}{2} h_0 \right) \quad (17)
\]

where h_0 is the nontrivial real root of the equation $M_Z(\omega) = 1$ and θ is the decision threshold.

We first consider the case of a non-robust integrator, for which the samples Z are again normally distributed. In this case, we must solve the following equation to find $\omega = h_0$:

\[
M_Z(\omega) = E[Z] e^{\omega z} = \int_{-\infty}^{\infty} f_Z(z) e^{\omega z} dz = e^{\frac{\omega^2 \sigma^2}{2} + \omega \mu} = 1.
\]

It follows that $\omega = 0$ and $\omega = h_0 = -2 \frac{\mu}{\sigma^2}$ provide the two real solutions of this equation. (Wald’s Lemma ensures that there are exactly two such real roots, for any sampling distribution meeting easily satisfied technical criteria.)

When the robustness limit $R > 0$, we can again compute the two real roots of the associated MGF. Here, we use the increment distribution $f_{Z_R}(Z)$ given by Equation 7, for which all probability mass within R of 0 is reassigned to 0. Surprisingly, upon plugging this distribution into the expression $M_Z(\omega) = 1$, we find that $\omega = 0, h_0$ continue to provide the two real solutions to this equation regardless of R, as depicted in Figure 11A.

This observation implies that (i) accuracies (Equation 16) are unchanged as R is increased, and (ii) reaction times (Equation 17) only change when $E[Z_R]$ changes. In other words, the integrator can ignore inputs below an arbitrary robustness limit at no cost to accuracy; the penalty will be incurred in terms of reaction time, and this will only be significant when $E[Z_R]$ changes appreciably. This result holds for any distribution for which:

\[
f_Z(z) = f_Z(-z) e^{-h_0 z}; \quad (19)
\]

it is straightforward to verify that the Gaussian satisfies this property (see Appendix B.1 for more details).
How much of an increase in R is necessary to decrease $E[Z_R]$, the key quantity that alone controls performance loss? After substituting $\hat{R} = \frac{R}{\sigma}$, we again find only one term up to fifth order in \hat{R},

$$E[Z_R] = E[Z] - \mu \sqrt{\frac{2}{9\pi}} e^{-\frac{1}{2} \left(\frac{\mu}{\sigma} \right)^2} \hat{R}^3 + O(\hat{R}^5) + ..., \quad (20)$$

indicating that modest amounts of robustness lead to only small changes in $E[Z_R]$ (This is similar to the controlled duration case, where small values of \hat{R} will have little effect on $\text{Accuracy}_R(N)$, cf. Equation 8; see Appendix B.2 for more details). This property, in combination with the constancy of h_0, allows us to reason about the trade off speed versus accuracy under robustness. Under symmetrically bounded drift-diffusion, accuracy is determined by θ and h_0, whereas the mean decision time is determined by θ, h_0, and $E[\hat{Z}]$. Since h_0 is fixed for all values of R, the predicted effect of robustness is a slowing of the decision time owing to the small change in $E[Z_R]$ (Equation 20).

This effect is depicted in Figure 10B. The solid curve is a locus of speed-accuracy combinations achieved by varying θ under no robustness. As in the previous section, the signal-to-noise ratio of the independent sampling distribution is identical to the continuous time model (and performance at $R = 0$ is matched to Figure 7B by varying the time inter-sampling time, here 37 ms). Performance begins to decrease at $R = .5$, and is much lower at $R = 1$ than the continuous time model with correlated evidence streams. As in the preceding section, robustness serves to decorrelate this input stream, effectively giving more independent samples and preserving performance beyond that predicted by the independent sampling theory.

Summary of analysis: In the preceding three sections we have analyzed the impact of the robustness limit on decision performance. For both the controlled duration and reaction time tasks, we first studied the effect of this limit on the evidence carried by momentary values of sensory inputs. In each task, this effect was more favorable than might have been expected. In the controlled duration case, the signal-to-noise ratio of momentary inputs was preserved for a fairly broad range of R, while in the reaction time task, R affected speed but not accuracy at fixed decision threshold. These results provided a partial explanation for the impact of robustness on decisions. The rest of the effect was attributed to the fact that the robustness mechanism serves to decorrelate input signals in time, further preserving decision performance by providing the equivalent of more independent evidence samples in a given time window.

3.3 Reward rate and the robustness-sensitivity tradeoff

[Figure 12 about here.]

Up to now, we have examined performance in the reaction time task by plotting the full range of attainable speed and accuracy values. The advantage of this approach is that it demonstrates decision performance in a general way. An alternative, more compact approach, is to assume a specific method of combining speed and accuracy into a single performance metric. This approach is useful in quantifying decision performance, and rapidly comparing a wide range of models.

Specifically, we use the reward rate (RR) (Gold and Shadlen, 2002; Bogacz et al., 2006):

$$RR = \frac{\text{Accuracy}}{\langle RT \rangle} + T_{\text{del}}, \quad (21)$$

the number of correct responses made per unit time, where a delay T_{del} imposed between responses to penalizes rapid guessing. Implicitly, this assumes a motivation on the part of the subject which
may not be true; in general, human subjects seldom achieve optimality under this definition as they tend to favor accuracy over speed in two-alternative forced choice trials (Zacksenhouse et al., 2010). Here, we simply use this quantity to formulate a scalar performance metric that provides a clear, compact interpretation of reaction time data.

Figure 12A shows accuracy vs. speed curves at 4 levels of \hat{R}. The heavy solid line corresponds to the “baseline” model with robustness and mistuning set to zero (see Figure 4). The lighter solid line corresponds to the “mistuned” model with $\sigma_\beta = 1$. The remaining broken lines correspond to the “recovery” model for three increasing levels of the robustness limit \hat{R}. Also plotted in the background as dashed lines are RR level curves – that is, lines along which RR takes a constant value, with $T_{del} = 3$ sec. On each accuracy vs. speed curve, there exists a RR-maximizing (RT, accuracy) pair. This corresponds to a tangency with one RR level curve, and is plotted as a filled circle. In general, each model achieves maximal RR via a different threshold θ; values are specified in the legend of Panel B. (A general treatment of RR-maximizing thresholds for drift-diffusion models is given in Bogacz et al. (2006).)

In sum, we see that mistuned integrators with a range of increasing robustness limits \hat{R} achieve greater RR, as long as their thresholds are adjusted in concert. The optimal values of RR for a range of robustness limits \hat{R} are plotted in Figure 12B. This figure illustrates the fundamental tradeoff between robustness and sensitivity. If there is variability in feedback mistuning ($\sigma_\beta > 0$), increasing \hat{R} can help recover performance — but only to a point. Beyond a certain level, increasing \hat{R} further starts to diminish performance, as too much of the input signal is ignored. Overall, the impact on levels of RR is small: often $\sim 1\%$.

3.4 Biased mistuning towards leak or excitation

[Figure 13 about here.]

We next consider the possibility that variation in mistuning from trial to trial could occur with a systematic bias in favor of either leak or excitation, and ask whether the robustness limit has qualitatively similar effects on decision performance as for the unbiased case studied above. Specifically, we draw the mistuning parameter β from a Gaussian distribution with standard deviation $\sigma_\beta = 1$ as above, but with various mean values $\bar{\beta}$ (see Methods). In Figure 13A we show reward rates as a function of the bias $\bar{\beta}$, for several different levels of the robustness limit \hat{R}. At each value of $\bar{\beta}$, the highest reward rate is achieved for a value of $\hat{R} > 0$; that is, regardless of the mistuning bias, there exists an $\hat{R} > 0$ that will improve performance vs. the non-robust case ($\hat{R} = 0$). We note that this improvement appears minimal for substantially negative mistuning biases (i.e., severe leaky integration), but is significant for the values of $\bar{\beta}$ that yield the highest RR. Finally, the ordering of the curves in Figure 13A shows that, for many values of $\bar{\beta}$, this optimal robustness limit is an intermediate value less than $\hat{R} = 2$.

While Figure 13 only assesses performance via a particular performance rule (RR, $T_{del} = 3$ sec.), the analysis in “Reward rate and the robustness-sensitivity tradeoff” suggests that the result will hold for other performance metrics as well. Moreover, Figure 13B demonstrates the analogous effect for the controlled duration task: for each mistuning bias $\bar{\beta}$, decision accuracy increases over the range of robustness limits shown.

3.5 Bounded integration as a model of the fixed duration task

We have demonstrated that increasing the robustness limit \hat{R} can improve performance for mistuned integrators, in both the reaction time and controlled duration tasks. In the latter, a decision was
made by examining which integrator had accumulated more evidence at the end of the time interval. In contrast, Kiani et al. (2008) argue that decisions in the controlled duration task may actually be made with a decision threshold, much like the reaction time task. That is, evidence accumulates until an absorbing bound is reached, causing the subject to ignore any further evidence and simply wait until the end of the trial to report the decision.

Figure 14 demonstrates that our observations about how the robustness limit can recover performance lost to mistuned feedback carry over to this model of decision making as well. Specifically, Panel 14A shows how setting \(\hat{R} > 0 \) improves performance in a mistuned integrator. In fact, more of the lost performance is recovered than in the previous model of the controlled duration task (cf. Figure 6A). Panel 14B extends this result to show that some value of \(\hat{R} > 0 \) will recover lost performance over a wide range of mistuning biases \(\bar{\beta} \) (cf. Figure 13B).

3.6 Parameterizing and comparing the robust integrator model with behavioral data

We have demonstrated that robustness serves to protect an integrator against the hazards of runaway excitation and leak, and that the cost of doing so is surprisingly small. Yet it is hard to know whether the range of effects is compatible with known physiology and behavior. Without better knowledge of the actual neural mechanisms that support integration and decision making, it is not possible to directly reconcile the parameters of our analysis with physiology. However, in this study we required that the free parameter values in the models that we analyzed were compatible with measured psychophysics.

To accomplish this, we fit accuracy and chronometric functions from robust integrator models to reaction time psychophysics data reported in Roitman and Shadlen (2002). This fit is via least squares across the range of coherence values, and requires two free parameters for each integrator model: additive noise variance \(\nu \) and the decision bound \(\theta \) (see Methods). Such noise and bound parameters are standard in fitting accumulator-type models to behavioral data. Figure 15 shows the results. Panels A and B display accuracy and chronometric data together with fits for various integrator models, with \(\hat{R} = 0 \). The solid line shows a close fit for the “baseline” model (i.e., with no feedback mistuning or robustness, see Figure 4) to the behavioral data, in agreement with prior studies (Mazurek et al., 2003). The broken lines give analogous fits for mistuned models (\(\sigma_\beta = 0.1 \)), with three values of bias in feedback mistuning (\(\beta \)).

Panels C and D show the corresponding results for robust integrators. For all cases in these panels, we take the robustness limit \(\hat{R} = 1.25 \). We fix levels of additive noise to values found for the non-robust case above, in order to demonstrate that by adjusting the decision threshold, one can obtain approximate fits to the same data. This is expected from our results above: Figure 6 shows that, while accuracies at given reaction times are higher for mistuned robust vs. non-robust models, the effect is modest on the scale of the full range of values traced over an accuracy curve. Moreover, for the perfectly tuned case, accuracies at given reaction times are very similar for robust and non-robust integrators (Figure 7, with a slightly lower value of \(\hat{R} \)). Thus, comparable pairs of accuracy and RT values are achieved for robust and non-robust models, leading to similar matches with data. In sum, the accuracy and chronometric functions in Figure 15 show that all of the models schematized in Figure 4 —“baseline”, “mistuned”, “robust”, and “recovery” — are generally compatible with the chronometric and accuracy functions reported in Roitman and Shadlen (2002).
A limitation of our analysis concerns the distribution of RT. Above we considered the effects of robustness on mean decision time, but not on the shape of the distributions. The standard DDM predicts a longer tail to the RT distribution than is seen in data, thereby necessitating modifications to the simple model (Ditterich, 2006; Ratcliff and Rounder, 1998; Churchland et al., 2008). The most compelling modification in our view is a time dependent reduction in the decision threshold θ. Our experience suggests that such modifications can also be implemented under robustness with and without mistuning. However, we did not attempt to fit the RT distributions from the experiments, and leave the matter for future investigation.

4 Discussion

A wide range of cognitive functions require the brain to process information over time scales that are at least an order of magnitude greater than values supported by membrane time constants, synaptic integration, and the like. Integration of evidence in time, as occurs in simple perceptual decisions, is one such well studied example, whereby evidence bearing on one or another alternative is gradually accumulated over time. This is formally modeled as a bounded random walk or drift-diffusion process in which the state (or decision) variable is the accumulated evidence for one choice and against the alternative(s). Such formal models explain both the speed and accuracy of a variety of decision-making tasks studied in both humans and nonhuman primates (Ratcliff, 1978; Luce, 1986; Gold and Shadlen, 2007; Palmer et al., 2005), and neural correlates have been identified in the firing rates of neurons in the parietal and prefrontal association cortex (Mazurek et al., 2003; Gold and Shadlen, 2007; Churchland et al., 2008; Shadlen and Newsome, 1996; Schall, 2001; Shadlen and Newsome, 2001; Kim et al., 2008). The obvious implication is that neurons must somehow integrate evidence supplied by the visual cortex, but there is mystery as to how.

This is a challenging problem because the biological building blocks operate on relatively short time scales. From a broad perspective, the challenge is to assemble neural circuits that can sustain a stable level of activity (i.e., firing rate) and yet retain the capability to increase or decrease firing rate when perturbed with new input (e.g., momentary evidence). A well known solution is to suppose that recurrent excitation might balance perfectly the decay modes of membranes and synapses (Cannon and Robinson, 1983; Usher and McClelland, 2001). However, this balance must be fine tuned (Seung, 1996; Seung et al., 2000), or else the signal will either dissipate or grow exponentially (Figure 1A, top). Several investigators have proposed biologically plausible mechanisms that mitigate somewhat the need for such fine tuning (Lisman et al., 1998; Goldman et al., 2003; Goldman, 2009; Romo et al., 2003; Miller and Wang, 2005; Koulakov et al., 2002). These are important theoretical advances because they link basic neural mechanism to an important element of cognition and thus provide grist for experiment.

Although they differ in important details, many of the proposed mechanisms can be depicted as if operating on a scalloped energy landscape with relatively stable (low energy) values, which are robust to noise and mistuning in that they require some activation energy to move the system to a larger or smaller value (Figure 1A, bottom; cf. Pouget and Latham, 2002; Goldman et al., 2009)). The energy landscape is a convenient way to view such mechanisms – which we refer to as robust integrators – because it also draws attention to a potential cost. The very same effect that renders a location on the landscape stable also implies that the mechanism must ignore information in the incoming signal (i.e., evidence). Here, we have attempted to quantify the costs inherent in this loss. How much loss is tolerable before the circuit misses substantial information in the input? How much loss is consistent with known behavior and physiology?

We focused our analyses on a particular well-studied task because it offers critical benchmarks to
assess both the potential costs of robustness to behavior and a gauge of the degree of robustness that might be required to mimic neurophysiological recordings with neural network models. Moreover, the key statistical properties of the signal and noise (to be accumulated) can be estimated from neural recordings.

We first imposed a modest amount of mistuning in recurrent excitation, and asked whether robustness could protect against loss of decision making performance. We found that it could. Although in general this protection is only partial (Figures 6, 19), for the controlled duration task it can be nearly complete depending on the presence of a decision bound (Figure 14A, controlled duration > 3 sec.). In absolute terms, effect sizes are small for the task and mistuning levels that we modeled. A few percentage points of accuracy are lost due to mistuning and recovered due to robustness; this leads to only a small benefit in performance measures such as reward rate.

However, our most surprising result is not the subtle improvement that robustness can confer in our simulated task, but the fact that levels of robustness can be quite high before they begin to degrade decision making performance. Both in the presence and in the absence of mistuning, ignoring a large part of the motion evidence either slightly improved performance or produced an almost negligible decrement. This was the case even when more than a full standard deviation of the input distribution is ignored; in fact, this is the level of robustness that produced the best performance in the presence of mild mistuning.

We can appreciate the impact of robust integration by considering the distribution of random values that would increment the stochastic process of integrated evidence. Instead of imagining a scalloped energy surface, we simply replace all the small perturbations in integrated evidence with zeros. Put simply, if a standard integrator would undergo a small step in the positive or negative direction, a robust integrator instead stays exactly where it was. In the setting of drift-diffusion, this is like removing a portion of the distribution of momentary evidence (the part that lies symmetrically about zero) and replacing the mass with a delta function at 0. At first glance this appears to be a dramatic effect – see the illustration of the distributions in Figure 8 – and it is surprising that it would not result in strong changes in accuracy or reaction time or both.

Three factors appear to mitigate this loss of momentary evidence. First, setting weak values of the input signal to zero can reduce both its mean and standard deviation by a similar amount, resulting in a small net change to the input signal-to-noise ratio. Second, surprisingly, the small loss of signal-to-noise that does occur would not result in any loss of accuracy if the accumulation were to the same bound as for a standard integrator. The cost would be to decision time alone. Third, even this slowing is mitigated by the temporal dynamics of the input. Unlike for idealized drift diffusion processes, real input streams possess finite temporal correlation. Interestingly, removing the weakest momentary inputs reduces the temporal correlation of the noise component of the input stream. This can be thought of as allowing more independent samples in a given time period, thereby improving accuracy at a given response time.

While we used a simplified characterization of the robust integration operation in our study, we noted that there are many different ways in which this could be realized biologically (Koulakov et al., 2002; Nikitchenko and Koulakov, 2008; Goldman et al., 2003; Goldman et al., 2009; Fransén et al., 2006; Loevenstein and Sompolinsky, 2003; Egorov et al., 2002). In Appendix A we make this connection concrete, for one such mechanism based on bistable neural pools. An intriguing finding presented there (Figure 19) is that the robustness mechanism provided by the circuit-based bistable model produces an even more favorable effect of robustness for decision making than the simplified model in the main text. This demonstrates the generality of our results and points to an intriguing area of future study, focusing on the impact of more detailed circuit- and cell-level dynamics.

Our robust integrator framework shares features with existing models in sensory discrimination.
The interval of uncertainty model of Smith and Vickers (1989) and the gating model of Purcell et al. (2010) ignore part of the incoming evidence stream, yet they can explain both behavioral and neural data. We suspect that the analyses developed here might also reveal favorable properties of these models. Notably, some early theories of signal detection also featured a threshold, below which weaker inputs fail to be registered – the so called high threshold theory (reviewed in (Swets, 1961)). The primary difference in the current work is to consider single decisions made based on an accumulation of many such thresholded samples (or a continuous stream of them).

Although they are presented at a general level, our analyses make testable predictions. For example, they predict that pulses of motion evidence added to random dot stimulus would affect decisions in a nonlinear fashion consistent with a soft threshold. Such pulses are known to affect decisions in a manner consistent with bounded drift diffusion (Huk and Shadlen, 2005) and its implementation in a recurrent network (Wong et al., 2008). A robust integration mechanism further predicts that brief, stronger pulses will have greater impact on decision accuracy than longer, weaker pulses containing the same total evidence. Beyond pulses with different characteristics, it is possible that an analogous thresholding effect could be seen for periods of strong and weak motion evidence in the random dots stimuli themselves, though this would require further study to assess.

However, we believe that the most exciting application of our findings will be to cases in which the strength of evidence changes over time, as expected in almost any natural setting. One simple example is for task stimuli that have an unpredictable onset time, and whose onset is not immediately obvious. For example, in the moving dots task, this would correspond to subtle increases in coherence from a baseline of zero coherence. Our preliminary calculations agree with intuition that robust integrator mechanism will improve performance: in the period before the onset of coherence, less baseline noise would be accumulated; after the onset of coherence, the present results suggest that inputs will be processed with minimal loss to decision performance. This intuition can be generalized to apply to a variety of settings with non-stationary sensory streams.

Many cognitive functions evolve over time scales that are much longer than the perceptual decisions we consider in this paper. Although we have focused on neural integration, it seems likely that many other neural mechanisms are also prone to drift and instability. Hence, the need for robustness may be more general. Yet, it is difficult to see how any mechanism can achieve robustness without ignoring information. If so, our finding may provide some optimism. Although we would not propose that ignorance is bliss, it may be less costly than one would expect.
Appendix

A A Derivation of the Abstracted Robust Integrator Model from the Dynamics of Neural Subunits

In this section, we demonstrate one method to construct a circuit-based robust integrator with the properties described in Figure 1 and described by the abstracted integrator model of the main paper (Equation 5). We emphasize that this is not the only possible way that these integrator dynamics could be implemented, and that the aim of the below is to provide a single, concrete example. For related approaches see Koulakov et al. (2002); Nikitchenko and Koulakov (2008), and also the behavior of single-cell integrators that are insensitive to weak fluctuations (for example (Egorov et al., 2002; Fransén et al., 2006)).

Our construction follows closely that of Koulakov et al. (2002) and Goldman et al. (2003). Accordingly, robustness arises from the bistability of multiple self-excitatory subpopulations (or subunits). The dynamics of each subunit are governed by one of \(N \) differential equations. Depending on the activity in the rest of the network, each individual subunit can be become bistable, so that its eventual steady-state value (i.e., “On” or “Off”) depends on its past. This effect, known as hysteresis, underlies several robust integrator models (Koulakov et al., 2002; Goldman et al., 2003).

The circuit integrates inputs via sequential activation of subunits, in an order determined by graded levels of “background” inputs (or biases) to each subunit. Following Goldman et al. (2003), we collapse the \(N \) differential equations that describe individual subunits into an equation that approximates the dynamics of the entire integrator. This expression for the total firing rate \(\hat{E}(t) \) averaged over all subpopulations reduces to the robust integrator analyzed in the main text (Equation 7).

A.1 Firing rate model

The firing rate \(r_i(t) \) of the \(i \)th bistable subunit \((i \in \{1, 2, ..., N\}) \) is modeled by a firing rate equation:

\[
\tau E \frac{dr_i}{dt} = -r_i + r^- + (r^+ - r^-)H \left[pr_i + q(1 + \beta) \sum_{i \neq j} r_j + a\Delta I - b_i \right]
\]

(22)

\[
\hat{E} = \frac{1}{N} \sum_{i=1}^{N} r_i
\]

(23)

[Figure 16 about here.]

Figure 16A demonstrates the firing rate dynamics of a circuit composed of a single subunit \((N = 1) \). We plot the identity line, corresponding to the first “decay” term in Equation 22, and the “feedback” line, corresponding to the second. Since \(N = 1 \), this simplifies to \(f(r_1) \). The two intersections marked \(c_0 \) and \(c_1 \) are stable fixed points (which we refer to as “On” and “Off” respectively). Thus, the subunit shown is bistable. Importantly, however, the location of the step in \(f(\hat{E}) \) varies with changes in the input signal (as per Equation 22). In particular, substantial values of \(\Delta I(t) \) will (perhaps transiently) eliminate one of the fixed points, forcing the subunit into either the “On” or the “Off” state with \(r_i = r_+ \) or \(r_i = r_- \), respectively. Moreover, the change is self-reinforcing via the recurrent excitation \(pr_i \). The range over which a given subunit displays
bistability is affected by the mistuning parameter β, which scales the total recurrent excitation from the rest of the circuit.

The firing rate dynamics, $\hat{E}(t)$, are obtained by summing both sides of Equation 22 over i:

$$\tau_E \frac{d\hat{E}}{dt} = -\hat{E} + G(\hat{E})$$

(24)

where

$$G(\hat{E}) = r^- + \frac{(r^+ - r^-)}{N} \sum_{i=1}^{N} H\left[(p-q(1+\beta))r_i + Nq(1+\beta)\hat{E} + a\Delta I - b_i \right].$$

(25)

At this point, we almost have a differential equation for a single variable, $\hat{E}(t)$. However, Equation 25 still depends on the N activities r_i of the individual subunits, and at any particular time their values are not uniquely determined by the value of \hat{E}; we can only bound their values as $r^- \leq r_i \leq r^+$.

A.2 Bias term

The bias term for the i^{th} subunit, b_i, is set by determining the range of values of \hat{E} for which the exact value of the feedback function $f(r_i)$ is unknown. In the case of an integrator composed of only a single subunit, the bias term causes the positive input needed to force the unit to be on, and the negative input needed to force the unit to be off, to take the same values. This yields $b_1 = \frac{p(r^+ + r^-)}{2}$.

The general case of N subunits is more complicated. Now the feedback contribution of the i^{th} unit, $f(r_i)$, is no longer a simple function of the population activity \hat{E}. Instead, it has additional dependence on its own activity r_i. We see this clearly in Equation 25, where the values of r_i that contribute to the definition of $G(\hat{E})$ are unspecified. However, we do know that each r_i is trapped between r^+ and r^-. Therefore, we can plot $G(\hat{E})$ as the sum of a sequence of bivalued functions of \hat{E}; see Figure 16B and (Goldman et al., 2003). The contribution from each pool is then represented by the shaded region. Finally, the bias terms are chosen to center these shaded boxes over the identity line:

$$b_i = p\left(\frac{r^- + r^+}{2}\right) + q((i-1)r^+ + (N-i)r^-).$$

(26)

A.3 Fixation lines

We next define the “fixation” lines ($\hat{G}^+(\hat{E})$ and $\hat{G}^-(\hat{E})$), which are the consequence of the multi-valued property of the integrator. These lines define a region (the fixation region) that runs across the outermost corners of the “stacked boxes” in Figure 17.

$$\hat{G}^+(\hat{E}) = \hat{E}(1+\beta) + \frac{a\Delta I}{Nq} - \frac{\beta r^+}{N} + \frac{p(r^+ - r^-)}{2Nq}$$

(27)

$$\hat{G}^-(\hat{E}) = \hat{E}(1+\beta) + \frac{a\Delta I}{Nq} - \frac{\beta r^-}{N} - \frac{p(r^+ - r^-)}{2Nq}.$$

(28)

The term fixation region refers to the following property: if the input ΔI is such that the identity line lies within the fixation region, then the integrator will possess a range of closely spaced fixed
points (where \(\hat{E} = G(\hat{E}) \)). Thus, \(\hat{E} \) is not expected to change from its current value and integration of \(\Delta I \) will not occur. Recall that \(\Delta I \) acts to shift these boxes leftward or rightward relative to the identity line, just as in the analysis of Figure 16. As a consequence, it is weak inputs that fail to be integrated.

From this analysis, we can see that integration by the system as a whole relies on two concepts. The first is a condition on \(\Delta I \) necessary to eliminate fixed points; we call this the “fixation condition.” The second is the question of how quickly to integrate once this condition is no longer satisfied.

A.4 Integration

Based on the analysis above, we derive a reduced model that approximately captures the dynamics of the “full” model indicated by Equation 24. We call this the “effective” model. The rate of change of \(\hat{E} \) – i.e., the rate of integration – is given by the distance between the current value of \(G(\hat{E}) \) and the identity line. We approximate this by the distance between the middle of the fixation lines, which we define as \(\tilde{G}(\hat{E}) \), and the identity line. This is pictured in Figure 17B, and yields:

\[
\tau_E \frac{d\hat{E}}{dt} = -\hat{E} + G(\hat{E}) \approx -\hat{E} + \tilde{G}(\hat{E}) \tag{29}
\]

\[
\tilde{G}(\hat{E}) = (1 + \beta)\hat{E} + \frac{a\Delta I}{Nq} - \frac{\beta(r^+ + r^-)}{2N} \tag{30}
\]

We emphasize that integration by this equation only occurs when the “fixation” condition is no longer satisfied, i.e. when the fixation lines no longer bound the identity line.

[Figure 18 about here.]

[Figure 19 about here.]

A.5 Fixation condition

The last step in defining the 1-dimensional “effective” model is determining the fixation condition. We must solve for the values of \(\hat{E} \) that cause the feedback line to lie between the two fixation lines:

No Change in \(\hat{E} \) \iff \(\tilde{G}^-(\hat{E}) < \hat{E} < \tilde{G}^+(\hat{E}) \)

\[
\iff \tilde{G}(\hat{E}) - \frac{(r^+ - r^-)(p - q\beta)}{2Nq} < \hat{E} < \tilde{G}(\hat{E}) + \frac{(r^+ - r^-)(p - q\beta)}{2Nq} \tag{32}
\]

\[
\iff \left| \beta\hat{E} + \frac{a\Delta I}{Nq} - \frac{\beta(r^+ + r^-)}{2N} \right| < \frac{(r^+ - r^-)(p - \beta q)}{2Nq} \tag{33}
\]

If this condition is violated with \(\Delta I = 0 \), the integrator displays runaway integration (\(\beta > 0 \)) or leak (\(\beta < 0 \)). If it is satisfied when \(\Delta I = 0 \), we have a condition on the level of \(\Delta I \) that must be present for integration to occur. This yields a piecewise-defined differential equation, corresponding to when integration can and cannot occur:

\[
\tau_E \frac{d\hat{E}}{dt} \approx \begin{cases}
0 & \text{if } \left| \beta\hat{E} + \frac{a\Delta I}{Nq} - \frac{\beta(r^+ + r^-)}{2N} \right| < \frac{(r^+ - r^-)(p - \beta q)}{2Nq} \\
\beta\hat{E} + \frac{a\Delta I}{Nq} - \frac{\beta(r^+ + r^-)}{2N} & \text{otherwise}
\end{cases} \tag{34}
\]
We now simplify this equation; we assume that \(p \sim O(N) \) and \(a \sim O(N) \), i.e. the local feedback term and input weight can be increased as \(N \) is increased. With all other terms held constant, we relabel \(\kappa = \frac{a}{Nq} \) and \(R = \frac{(r^+ - r^-)p}{2a} \); here \(R \) is the robustness parameter in the main text, and can be decreased or increased by adjusting \(p \). This yields the central relationship of the main text:

\[
\tau_E \frac{dE}{dt} = \begin{cases}
0 & \text{if } |\beta E + \kappa \Delta I| \leq \kappa R \\
\beta E + \kappa \Delta I & \text{otherwise}
\end{cases} \tag{35}
\]

Figure 18 compares the integrators defined by Equations 22 and 35 at three different values of the normalized robustness limit \(\hat{R} \), in response to a fixed realization of \(\Delta I(t) \) for comparison. As \(\hat{R} \) increases, the extent to which the effective model tracks the full model decreases. The quality of the reduction can be quantified by examining the relative error between the full and effective models:

\[
\epsilon_t = \frac{\hat{E}(t) - E(t)}{\hat{E}(t)} \tag{36}
\]

Histograms of \(\epsilon_t \) evaluated at \(t = 500 \text{ ms} \) are included as insets. The average agreement of the two models is within roughly 20% across a range of robustness values \(\hat{R} \). This agreement on the basis of individual trials is sufficient for the purpose of demonstrating the connection between the simplified integrator model we analyze, and one of its many possible neural substrates. A performance comparison between these models is included in Figure 19 (top panels).

B Additional mathematical details

B.1 Derivation of Equation 19

In this section we derive a necessary and sufficient condition on the probability density function (PDF) of a random variable (RV) in order for a key property to hold. This is that the nontrivial real value where its moment generating function (MGF) is equal to one does not change, when its PDF is modified so that samples with absolute value less than a given threshold are set to zero. More concretely, let \(X \) be a RV with PDF \(f(x) \), and let \(h_0 \) be value in question for \(X \)'s MGF:

\[
\int_{-\infty}^{\infty} f(x) e^{h_0x} dx = 1. \tag{37}
\]

We next define a new random variable \(\tilde{X} \) with a PDF \(\tilde{f}(x) \) constructed by reallocating probability mass below a threshold \(R \) to a weighted delta function at zero:

\[
\tilde{f}(x) = \delta(x) \int_{-R}^{R} f(x') dx' \begin{cases}
0 & |x| < R \\
\frac{f(x)}{R} & \text{otherwise}.
\end{cases} \tag{38}
\]

Then we propose that the following condition:

\[
f(-x) = f(x) e^{h_0x} \tag{39}
\]

is necessary and sufficient to conclude:

\[
\int_{-\infty}^{\infty} \tilde{f}(x) e^{h_0x} dx = 1, \text{ for any } R > 0 \tag{40}
\]
i.e. that the value h_0 where the MGF is equal to one remains unchanged for any positive value of
the threshold R.

To begin, we rewrite the lefthand side of 40 as:

$$\int_{-\infty}^{\infty} \hat{f}(x) e^{h_0 x} dx = \int_{-\infty}^{-R} f(x) e^{h_0 x} dx + \int_{R}^{\infty} f(x) e^{h_0 x} dx + \int_{-R}^{R} f(x) dx. \quad (41)$$

Sufficiency then follows via direct substitution of Equation 39 into the last expression on right-hand
side.

More interesting is demonstrating that Equation 39 is necessary to conclude the key relationship
of Equation 40. We accomplish this by adding in, and subtracting back out, the integral over the
“central” part of the real number line:

$$1 = \int_{-\infty}^{\infty} \hat{f}(x) e^{h_0 x} dx \quad (42)$$

$$= \int_{-\infty}^{-R} f(x) e^{h_0 x} dx + \int_{R}^{\infty} f(x) e^{h_0 x} dx + \int_{-R}^{R} f(x) dx \quad (43)$$

Subtracting 1 from each part of this equation, this implies:

$$0 = \int_{-R}^{R} f(x) - f(x) e^{h_0 x} dx \quad (45)$$

Let $g(x) = f(x) - f(x) e^{h_0 x}$; it is clear then that Equation 45 holding for all R is equivalent to
$g(x)$ being either identically zero, or an odd function (so long as the expression must hold for all
R). Now $g(x) = 0$ could require that $f(x) = 0$, which is impossible given that $f(x)$ is a PDF;
therefore, $g(x)$ must be an odd function:

$$-g(x) = g(-x) \quad (46)$$

$$\iff -f(x) (1 - e^{h_0 x}) = f(-x) \quad (47)$$

$$\iff -f(x) \left(1 - e^{h_0 x}\right) = f(-x) \left(1 - e^{-h_0 x}\right) \quad (48)$$

$$\iff -f(x) \left(1 - e^{h_0 x}\right) = f(-x) \quad (49)$$

$$\iff f(x) e^{h_0 x} = f(-x) \quad (50)$$

Thus Equation 39 is also a necessary condition for Equation 40.

B.2 Derivation of Equations 8 and 20

Equation 8 is a Taylor expansion in R of the accuracy formula for a sum of N IID random variables.
Assuming that this sum, $S = \sum_{i=1}^{N} X_i$, can be approximated with a Gaussian, this formula is:

$$\text{Accuracy} \approx \frac{1}{\sqrt{2\pi \text{Var}[S]}} \int_{0}^{\infty} e^{-\frac{(x-\mu)^2}{2\text{Var}[S]}} \, dx. \quad (51)$$
Assuming that \(X_i \) has a PDF given by a Gaussian with probability mass below a threshold \(R \) reallocated to 0 (See Main text, and also Appendix B.1), the expectation and variance of \(S \) can be computed as:

\[
E[S] = N \left(\frac{1}{2} \text{Erf} \left(\frac{s - R}{\sqrt{2}} \right) - s \frac{1}{2} \text{Erf} \left(\frac{R + s}{\sqrt{2}} \right) + e^{-\frac{1}{2}(R-s)^2} \sqrt{\frac{1}{2\pi}} - e^{-\frac{1}{2}(R+s)^2} \sqrt{\frac{1}{2\pi}} + s \right)
\]

(52)

\[
\text{Var}[S] = \frac{N}{2\sqrt{\pi}} e^{-\frac{1}{2}(R+s)^2} \left(\sqrt{\pi} \left(s^2 + 1 \right) e^{\frac{1}{2}(R+s)^2} \text{Erf} \left(\frac{s - R}{\sqrt{2}} \right) - \sqrt{\pi} \left(s^2 + 1 \right) e^{\frac{1}{2}(R+s)^2} \text{Erf} \left(\frac{R + s}{\sqrt{2}} \right) + 2\sqrt{\pi} s e^{\frac{1}{2}(R+s)^2} + \sqrt{2} se^{2Rs} + \sqrt{2} Re^{2Rs} + 2e^{-\frac{1}{2}(R+s)^2} \sqrt{2} R - \sqrt{2}s \right) - N E[S]^2
\]

(53)

Expanding Equation 52 in \(R \) about \(R = 0 \) yields Equation 20, while combining these formulas into Equation 51 and expanding gives Equation 8.

References

Luce R (1986) Response times: their role in inferring elementary mental organization. Oxford University Press, Oxford psychology series, no. 8.

List of Figures

1 Schematic of neural integrator models. (A) Visualizing integration via an energy surface (Pouget and Latham, 2002; Goldman et al., 2009). The robust integrator can “fixate” at a range of discrete values, indicated by a sequence of potential wells, despite mistuning of circuit feedback. These wells can be arbitrarily “close” in the energy landscape, providing a mechanism for graded persistent activity. Without these wells (the non-robust case), activity in a mistuned integrator would either exponentially grow or decay, as in the top panels. Perturbing the robust integrator from one well to the next, however, requires sufficiently strong momentary input. (B) As a consequence, low-amplitude segments in the input signal $\Delta I(t)$, below a robustness limit R, are not accumulated by a robust integrator: only the high-amplitude segments are. The piecewise definition of Equation 5 captures this robustness behavior, resulting in the accumulated activity shown, and may be related to, e.g., a detailed bistable-subpopulation model. A decision is expressed when the accumulated value $E(t)$ crosses the decision threshold θ. 32

2 Overview of model. Simulations of sensory neurons and neural recordings are used to define the left and right inputs $\Delta I_l(t), \Delta I_r(t)$ to neural integrators. These inputs are modeled by Gaussian (OU) processes, which capture noise in the encoding of the motion strength by each pool of spiking neurons (see Equations 1-3 for definition of input signals). Similar to Mazurek et al. (2003), the activity levels of the left and right integrators $E_l(t)$ and $E_r(t)$ encode accumulated evidence for each alternative. In the reaction time task, $E_l(t)$ and $E_r(t)$ race to thresholds in order to determine choice on each trial. In the controlled duration task the choice is made in favor of the integrator with higher activity at the end of the stimulus presentation. 33

3 Construction of Gaussian (OU) processes to represent fluctuating, trial-by-trial firing rate of a pool of weakly correlated MT neurons (Bair et al., 2001; Zohary et al., 1994). As in Mazurek and Shadlen (2002), these motion sensitive neurons provide direct input to our model integrator circuits. Simulated spike trains from weakly-correlated, direction selective pools of neurons are shown as a rastergram. All spikes prior to time t – a sum over the j^{th} spike from the i^{th} neuron, for all i and j – are convolved with an exponential filter, and then summed to create a continuous stochastic output (right); here, $H(t)$ is the Heaviside function. We approximated this output by a simpler Gaussian (OU) process in order to simplify numerical and analytical computations that follow. 34

4 Parameter space view of four integrator models, with different values of the robustness limit R and feedback mistuning variability σ_{β}. The impact of transitioning from one model to another by changing parameters is either to enhance or diminish performance, or to have a neutral effect (see text). 35

5 Mistuned feedback diminishes decision performance. (Inset) The plots depict a move in parameter space from the “baseline” model to the “mistuned” model by changing $\sigma_{\beta} = 0 \to 0.1$. In this and subsequent plots, simulation results are given with markers; lines are rational polynomial fits. (A) In the controlled duration task, accuracy is lower for the “mistuned” model than for the “baseline” model at every trial duration, indicating a loss of performance when σ_{β} increases. (B) In the reaction time task, we parametrically plot all (RT, accuracy) pairs attained by varying the decision threshold θ. Once again, accuracy is diminished by mistuning for a fixed mean reaction time. 36
Increasing the robustness limit \hat{R} helps recover performance lost due to feedback mistuning. Results of simulation are plotted with fitting lines. (Inset) We illustrate this by moving in parameter space from the “mistuned” model to the “recovery” model, by changing $\hat{R} = 0 \rightarrow 1.25$. The impact on decision performance is shown for both the controlled duration (A) and reaction time (B) tasks. We find that $\hat{R} > 0$ yields a performance gain for the “recovery” model in comparison with the “mistuned” model, (i.e. for a fixed accuracy, mean reaction time is increased).

Increasing \hat{R} alone does not compromise performance. Only simulation results, without fitting lines, are plotted for clarity. (Inset) We illustrate this by moving in parameter space directly from the “baseline” to the “robust” model. For both (A) controlled duration and (B) reaction time tasks, we plot the relationship between mean reaction time and accuracy. Circles give results for the “baseline” model, and ‘x’ and ‘y’ markers for the robust model at $\hat{R} = 1$ and 1.25 respectively. These curves are very similar in the “baseline” case, indicating little change in decision performance due to the robustness limit $\hat{R} = 1.25$.

\hat{R} affects the discrete time increment distribution. The PDF of the random variable $Z_{\hat{R}}$, with probability mass for values between the robustness limit \hat{R} re-allocated as a delta function centered at zero (Here $\hat{R} = 1$).

Accuracy of the discrete/independent and continuous/correlated models for the controlled duration task, $T = 500$ ms. (A) Approximation of the performance of the continuous/correlated model via Equation 15 is plotted as a black curve, and that predicted by the discrete/independent model with identical signal increments is plotted as a gray curve. (B) The disparity in performance of these two models can be partially understood by observing the decorrelating effect of \hat{R} on the autocorrelation function for the evidence stream in the continuous/correlated model. (Inset) Two of these same functions (for $\hat{R} = 0$ and $\hat{R} = 1.5$) are plotted normalized to their peak value.

Distribution of two neighboring (in time) samples of the incoming signal. A, before application of the robustness operation, the samples $Z(t_1)$ and $Z(t_2)$ co-vary with correlation coefficient $\text{Corr} = 0.5$. B, after applying robustness ($\hat{R} = 1$), samples with $Z(t_1) < \hat{R}$ are mapped to $Z_{\hat{R}}(t_1) = 0$, and likewise for samples with $Z(t_2) < \hat{R}$. As a consequence, samples co-vary less in the region where either sample has been thresholded to zero, yielding $\text{Corr} = 0.42$.

In the discrete model \hat{R} increases RT but not accuracy. (A) The second real root h_0 of $M_{Z_{\hat{R}}}(s)$ remains unchanged as \hat{R} increases from $0 \rightarrow 2$. (Lines are uniformly distributed in this range.) This implies that in the reaction time task, no changes in the accuracy will be observed (See Equation 16). (B) However, the speed accuracy tradeoff will be affected, once $E[Z_{\hat{R}}]$ begins to diminish (See Equation 17). This performance loss begins for $\hat{R} > .5$, in contrast to the performance of the continuous time model (see Figure 7B).
Robustness improves reward rate under mistuning. (A) Speed accuracy curves plotted for multiple values of \hat{R}; as in previous figures, the greater accuracies found at fixed mean reaction times indicate that performance improves as \hat{R} increases. The heavy line indicates the “baseline” case of a perfectly tuned, non-robust integrator (repeated from Figure 5B). RR level curves are plotted in background (dotted lines; see text), and points along speed accuracy curves that maximize RR are shown as circles. These maximal values of reward rate are plotted in (B), demonstrating the non-monotonic relationship between \hat{R} and the best achievable RR.

Robustness improves performance across a range of mistuning biases $\bar{\beta}$. In both the reaction time (A) and controlled duration (B) tasks, robustness helps improve performance when $\beta \sim N(\bar{\beta},.1^2)$, for all values of $\bar{\beta}$ shown. As in previous figures, the coherence of the sensory input is $C = 12.8$. In the reaction time task (A), θ is varied for each value of $\bar{\beta}$ to find the maximal possible reward rate RR, and performance gains are largest for $\bar{\beta} > 0$. In the controlled duration task, substantial gains are possible across the range of $\bar{\beta}$ values.

Effect of the robustness limit \hat{R} on decision performance in a controlled duration task, under the bounded integration model of Kiani et al (2008). Dot coherence $C = 12.8$. (A) Increasing the robustness limit \hat{R} helps recover performance lost to mistuning at multiple reaction times in the controlled duration task. Specifically, moving from the “baseline” model to the “mistuned” model decreases decision accuracy, but this lost accuracy can be partially or fully recovered for $\hat{R} > 0$. (B) When allowing for biased mistuning ($\bar{\beta} \neq 0$, $\sigma = .1$), \hat{R} still allows for recovery of performance; effects are most pronounced when $\bar{\beta} > 0$.

Accuracy (A,C) and chronometric (B,D) functions: data and model predictions. Solid dots and stars are behavioral data for a rhesus monkey (Subject “N” and “B” respectively, (Roitman and Shadlen, 2002)). In each panel, the accuracy and chronometric functions are fit to behavioral data via least-squares, over the free parameters θ and ν. In Panels (A,B), the robustness threshold $\hat{R} = 0$, and results are shown for “baseline” and exemplar “mistuned” models (see legend in table). In Panels (C,D), results are shown for the “robust” and “recovery” models (\hat{R} is fixed across the range of coherence values so that $\hat{R} = 1.25$ at $C = 0$). The close matches to data points indicate that these models can be reconciled with the psychophysical performance of individual subjects by varying few parameters. Parameter values for each curve are summarized in the table.

Simultaneous plots of the identity line and the “feedback line,” $G(\hat{E})$, for two circuits with differing numbers of subunits. (A) Here $N = 1$, and so the feedback line $G(\hat{E}) = f(\hat{E})$ is exactly determined as a function of $\hat{E} = r_1$ (see Equation 25). The two intersections c_0 and c_1 are stable fixed points. In this way, the subunit’s firing rate is bistable, and the value attained will depend on the history of the circuit activity. As ΔI is changed, this translates $f(\hat{E})$, eventually eliminating either c_0 or c_1 and forcing the subunit to the remaining stable fixed point (here, c_0 corresponds to $\hat{E} = 8$ Hz. and c_1 to 40 Hz). In dashed curves, the feedback line is plotted for two such values of ΔI. (B) Now $N > 1$ and so the feedback line $G(\hat{E})$ is no longer unambiguously specified as a function of its argument. The function is instead the sum of N potentially bi-valued functions, whose actual values will depend on the stimulus history. We represent this fact by plotting the feedback line as a set of stacked boxes, representing the potential contribution of the i^{th} subunit to the total integrator dynamics (Goldman et al., 2003).
Plot of possible equilibria for Equation 24. (A) The extent of each multivalued feedback function defines the minimum input necessary to perturb the system away from equilibrium, defining the “fixation” lines. As $N \to \infty$, the stable fixed points become more tightly packed on the interval (r^-, r^+). (B) When the integrator is mistuned, the fixation lines and the feedback line are no longer parallel. The rate that the integrator accumulates input is approximated by the distance between the center line of the feedback subunits ($\tilde{G}(\hat{E})$), and the feedback line. However, integration only occurs when the “fixation condition” is no longer satisfied, i.e., when the feedback line is no longer bounded by the fixation lines at the current value of \hat{E}.

Comparison of integration by Equation 22 and 5, $\hat{R} = .1$ (Panel A), $\hat{R} = .5$ (Panel B), and $\hat{R} = 11$ (Panel C). Histograms of the relative error between the values of $E(t)$ and $\hat{E}(t)$ at $t = 500$ ms are plotted as insets (See Equation 36). The mean and standard deviation (μ, σ) for each distribution are, respectively, (.0097, .022), (.0183, .0453), and (.1342, .1358). At these levels of \hat{R}, E approximates \hat{E} low to moderate error.

Performance comparison of two models of robust integration, reaction time task. In each panel, the lines are the same as in the figure legend in Figure 6. The downward arrows indicate the impact of mistuning: increasing σ_β from 0 to .1. The upward arrows show the effect of robustness: increasing \hat{R} from 0 to 1.25. Overall, we see that robustness has an even greater positive impact on the performance of the circuit-based model (Here $q = 1$, $r^- = 0$, $r^+ = 50$, $N = 250$, $\kappa = 1/9$; p is then adjusted to give the required robustness level). Data were generated from 50000 numerical trials per value.
Figure 1: Schematic of neural integrator models. (A) Visualizing integration via an energy surface (Pouget and Latham, 2002; Goldman et al., 2009). The robust integrator can “fixate” at a range of discrete values, indicated by a sequence of potential wells, despite mistuning of circuit feedback. These wells can be arbitrarily “close” in the energy landscape, providing a mechanism for graded persistent activity. Without these wells (the non-robust case), activity in a mistuned integrator would either exponentially grow or decay, as in the top panels. Perturbing the robust integrator from one well to the next, however, requires sufficiently strong momentary input. (B) As a consequence, low-amplitude segments in the input signal $\Delta I(t)$, below a robustness limit R, are not accumulated by a robust integrator: only the high-amplitude segments are. The piecewise definition of Equation 5 captures this robustness behavior, resulting in the accumulated activity shown, and may be related to, e.g., a detailed bistable-subpopulation model. A decision is expressed when the accumulated value $E(t)$ crosses the decision threshold θ.
Figure 2: Overview of model. Simulations of sensory neurons and neural recordings are used to define the left and right inputs $\Delta I_l(t)$, $\Delta I_r(t)$ to neural integrators. These inputs are modeled by Gaussian (OU) processes, which capture noise in the encoding of the motion strength by each pool of spiking neurons (see Equations 1-3 for definition of input signals). Similar to Mazurek et al. (2003), the activity levels of the left and right integrators $E_l(t)$ and $E_r(t)$ encode accumulated evidence for each alternative. In the reaction time task, $E_l(t)$ and $E_r(t)$ race to thresholds in order to determine choice on each trial. In the controlled duration task the choice is made in favor of the integrator with higher activity at the end of the stimulus presentation.
Figure 3: Construction of Gaussian (OU) processes to represent fluctuating, trial-by-trial firing rate of a pool of weakly correlated MT neurons (Bair et al., 2001; Zohary et al., 1994). As in Mazurek and Shadlen (2002), these motion sensitive neurons provide direct input to our model integrator circuits. Simulated spike trains from weakly-correlated, direction selective pools of neurons are shown as a rastergram. All spikes prior to time t – a sum over the j^{th} spike from the i^{th} neuron, for all i and j – are convolved with an exponential filter, and then summed to create a continuous stochastic output (right); here, $H(t)$ is the Heaviside function. We approximated this output by a simpler Gaussian (OU) process in order to simplify numerical and analytical computations that follow.
Figure 4: Parameter space view of four integrator models, with different values of the robustness limit \hat{R} and feedback mistuning variability σ_β. The impact of transitioning from one model to another by changing parameters is either to enhance or diminish performance, or to have a neutral effect (see text).
Figure 5: Mistuned feedback diminishes decision performance. (Inset) The plots depict a move in parameter space from the “baseline” model to the “mistuned” model by changing $\sigma_\beta = 0 \rightarrow 0.1$. In this and subsequent plots, simulation results are given with markers; lines are rational polynomial fits. (A) In the controlled duration task, accuracy is lower for the “mistuned” model than for the “baseline” model at every trial duration, indicating a loss of performance when σ_β increases. (B) In the reaction time task, we parametrically plot all (RT, accuracy) pairs attained by varying the decision threshold θ. Once again, accuracy is diminished by mistuning for a fixed mean reaction time.
Figure 6: Increasing the robustness limit \hat{R} helps recover performance lost due to feedback mistuning. Results of simulation are plotted with fitting lines. (Inset) We illustrate this by moving in parameter space from the “mistuned” model to the “recovery” model, by changing $\hat{R} = 0 \rightarrow 1.25$. The impact on decision performance is shown for both the controlled duration (A) and reaction time (B) tasks. We find that $\hat{R} > 0$ yields a performance gain for the “recovery” model in comparison with the “mistuned” model, (i.e. for a fixed accuracy, mean reaction time is increased).
Figure 7: Increasing \hat{R} alone does not compromise performance. Only simulation results, without fitting lines, are plotted for clarity. (Inset) We illustrate this by moving in parameter space directly from the “baseline” to the “robust” model. For both (A) controlled duration and (B) reaction time tasks, we plot the relationship between mean reaction time and accuracy. Circles give results for the “baseline” model, and ‘x’ and ‘y’ markers for the robust model at $\hat{R} = 1$ and $\hat{R} = 1.25$ respectively. These curves are very similar in the “baseline” case, indicating little change in decision performance due to the robustness limit $\hat{R} = 1.25$.
Figure 8: \hat{R} affects the discrete time increment distribution. The PDF of the random variable $Z_{\hat{R}}$, with probability mass for values between the robustness limit \hat{R} re-allocated as a delta function centered at zero (Here $\hat{R} = 1$).
Figure 9: Accuracy of the discrete/independent and continuous/correlated models for the controlled duration task, $T = 500$ ms. (A) Approximation of the performance of the continuous/correlated model via Equation 15 is plotted as a black curve, and that predicted by the discrete/independent model with identical signal increments is plotted as a gray curve. (B) The disparity in performance of these two models can be partially understood by observing the decorrelating effect of \hat{R} on the autocorrelation function for the evidence stream in the continuous/correlated model. (Inset) Two of these same functions (for $\hat{R} = 0$ and $\hat{R} = 1.5$) are plotted normalized to their peak value.
Figure 10: Distribution of two neighboring (in time) samples of the incoming signal. A, before application of the robustness operation, the samples $Z(t_1)$ and $Z(t_2)$ co-vary with correlation coefficient $Corr = 0.5$. B, after applying robustness ($\hat{R} = 1$), samples with $Z(t_1) < \hat{R}$ are mapped to $Z_{\hat{R}}(t_1) = 0$, and likewise for samples with $Z(t_2) < \hat{R}$. As a consequence, samples co-vary less in the region where either sample has been thresholded to zero, yielding $Corr = 0.42$.

Figure 11: In the discrete model \(\tilde{R} \) increases \(RT \) but not accuracy. (A) The second real root \(h_0 \) of \(M_{Z_\tilde{R}}(s) \) remains unchanged as \(\tilde{R} \) increases from 0 \(\rightarrow \) 2. (Lines are uniformly distributed in this range.) This implies that in the reaction time task, no changes in the accuracy will be observed (See Equation 16). (B) However, the speed accuracy tradeoff will be affected, once \(E[Z_{\tilde{R}}] \) begins to diminish (See Equation 17). This performance loss begins for \(\tilde{R} > .5 \), in contrast to the performance of the continuous time model (see Figure 7B).
Figure 12: Robustness improves reward rate under mistuning. (A) Speed accuracy curves plotted for multiple values of \hat{R}; as in previous figures, the greater accuracies found at fixed mean reaction times indicate that performance improves as \hat{R} increases. The heavy line indicates the “baseline” case of a perfectly tuned, non-robust integrator (repeated from Figure 5B). RR level curves are plotted in background (dotted lines; see text), and points along speed accuracy curves that maximize RR are shown as circles. These maximal values of reward rate are plotted in (B), demonstrating the non-monotonic relationship between \hat{R} and the best achievable RR.
Figure 13: Robustness improves performance across a range of mistuning biases $\bar{\beta}$. In both the reaction time (A) and controlled duration (B) tasks, robustness helps improve performance when $\beta \sim N(\bar{\beta}, 1^2)$, for all values of $\bar{\beta}$ shown. As in previous figures, the coherence of the sensory input is $C = 12.8$. In the reaction time task (A), θ is varied for each value of $\bar{\beta}$ to find the maximal possible reward rate RR, and performance gains are largest for $\bar{\beta} > 0$. In the controlled duration task, substantial gains are possible across the range of $\bar{\beta}$ values.
Figure 14: Effect of the robustness limit \hat{R} on decision performance in a controlled duration task, under the bounded integration model of Kiani et al (2008). Dot coherence $C = 12.8$. (A) Increasing the robustness limit \hat{R} helps recover performance lost to mistuning at multiple reaction times in the controlled duration task. Specifically, moving from the “baseline” model to the “mistuned” model decreases decision accuracy, but this lost accuracy can be partially or fully recovered for $\hat{R} > 0$. (B) When allowing for biased mistuning ($\beta \neq 0, \sigma = .1$), \hat{R} still allows for recovery of performance; effects are most pronounced when $\beta > 0$.
Figure 15: Accuracy (A,C) and chronometric (B,D) functions: data and model predictions. Solid dots and stars are behavioral data for a rhesus monkey (Subject “N” and “B” respectively, (Roitman and Shadlen, 2002)). In each panel, the accuracy and chronometric functions are fit to behavioral data via least-squares, over the free parameters θ and ν_γ. In Panels (A,B), the robustness threshold $\hat{R} = 0$, and results are shown for “baseline” and exemplar “mistuned” models (see legend in table). In Panels (C,D), results are shown for the “robust” and “recovery” models (R is fixed across the range of coherence values so that $\hat{R} = 1.25$ at $C = 0$). The close matches to data points indicate that these models can be reconciled with the psychophysical performance of individual subjects by varying few parameters. Parameter values for each curve are summarized in the table.

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>Not Robust ($\hat{R} = 0$)</th>
<th>Robust ($\hat{R} = 1.25$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect Tuning, Subject N</td>
<td>$\sim \delta(0)$</td>
<td>(14.9, 11.7)</td>
<td>(9.1, 11.7)</td>
</tr>
<tr>
<td>Mistuning, Subject N</td>
<td>$\sim N(0,.1^2)$</td>
<td>(10.5, 12.3)</td>
<td>(7.3, 12.3)</td>
</tr>
<tr>
<td></td>
<td>$\sim N(-.05,.1^2)$</td>
<td>(9.5, 14.0)</td>
<td>(6.7, 14.0)</td>
</tr>
<tr>
<td></td>
<td>$\sim N(.05,.1^2)$</td>
<td>(12.0, 11.1)</td>
<td>(8.6, 11.1)</td>
</tr>
<tr>
<td>Perfect Tuning, Subject B</td>
<td>$\sim \delta(0)$</td>
<td>(16.4, 17.3)</td>
<td>(9.8, 17.3)</td>
</tr>
<tr>
<td>Mistuning, Subject B</td>
<td>$\sim N(0,.1^2)$</td>
<td>(11.8, 17.2)</td>
<td>(8.0, 17.2)</td>
</tr>
<tr>
<td></td>
<td>$\sim N(-.05,.1^2)$</td>
<td>(10.7, 18.4)</td>
<td>(7.3, 18.4)</td>
</tr>
<tr>
<td></td>
<td>$\sim N(.05,.1^2)$</td>
<td>(13.3, 15.4)</td>
<td>(9.0, 15.4)</td>
</tr>
</tbody>
</table>
Figure 16: Simultaneous plots of the identity line and the “feedback line,” $G(\hat{E})$, for two circuits with differing numbers of subunits. (A) Here $N = 1$, and so the feedback line $G(\hat{E}) = f(\hat{E})$ is exactly determined as a function of $\hat{E} = r_1$ (see Equation 25). The two intersections c_0 and c_1 are stable fixed points. In this way, the subunit’s firing rate is bistable, and the value attained will depend on the history of the circuit activity. As ΔI is changed, this translates $f(\hat{E})$, eventually eliminating either c_0 or c_1 and forcing the subunit to the remaining stable fixed point (here, c_0 corresponds to $\hat{E} = 8$ Hz. and c_1 to 40 Hz). In dashed curves, the feedback line is plotted for two such values of ΔI. (B) Now $N > 1$ and so the feedback line $G(\hat{E})$ is no longer unambiguously specified as a function of its argument. The function is instead the sum of N potentially bi-valued functions, whose actual values will depend on the stimulus history. We represent this fact by plotting the feedback line as a set of stacked boxes, representing the potential contribution of the i^{th} subunit to the total integrator dynamics (Goldman et al., 2003).
Figure 17: Plot of possible equilibria for Equation 24. (A) The extent of each multivalued feedback function defines the minimum input necessary to perturb the system away from equilibrium, defining the “fixation” lines. As \(N \to \infty \), the stable fixed points become more tightly packed on the interval \((r^-, r^+)\). (B) When the integrator is mistuned, the fixation lines and the feedback line are no longer parallel. The rate that the integrator accumulates input is approximated by the distance between the center line of the feedback subunits (\(\tilde{G}(\hat{E}) \)), and the feedback line. However, integration only occurs when the “fixation condition” is no longer satisfied, i.e. when the feedback line is no longer bounded by the fixation lines at the current value of \(\hat{E} \).
Figure 18: Comparison of integration by Equation 22 and 5, $\hat{R} = .1$ (Panel A), $\hat{R} = .5$ (Panel B), and $\hat{R} = 11$ (Panel C). Histograms of the relative error between the values of $E(t)$ and $\hat{E}(t)$ at $t = 500$ ms are plotted as insets (See Equation 36). The mean and standard deviation (μ, σ) for each distribution are, respectively, (.0097, .022) (.0183, .0453), and (.1342, .1358). At these levels of \hat{R}, E approximates \hat{E} low to moderate error.
Figure 19: Performance comparison of two models of robust integration, reaction time task. In each panel, the lines are the same as in the figure legend in Figure 6. The downward arrows indicates the impact of mistuning: increasing σ_β from 0 to .1. The upward arrows show the effect of robustness: increasing \hat{R} from 0 to 1.25. Overall, we see that robustness has an even greater positive impact on the performance of the circuit-based model (Here $q = 1$, $r^- = 0$, $r^+ = 50$, $N = 250$, $\kappa = 1/9$; p is then adjusted to give the required robustness level). Data were generated from 50000 numerical trials per value.