Variability and information content in auditory cortex spike trains
during an interval-discrimination task

Juan M Abolafia¹*, M Martinez-Garcia³*, G Deco²,³ and MV Sanchez-Vives¹,²

*These authors contributed equally to this work.

¹IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
²ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain
³Computational Neuroscience Group, DTIC, Universitat Pompeu Fabra, Barcelona, Spain

Author contributions:

Experiments were performed at the Systems Neuroscience Department, IDIBAPS, Barcelona, Spain. The contribution of each author to the following aspects was:

1. Conception and design of the experiments: Juan M. Abolafia, MV. Sanchez-Vives.
2. Data collection: Juan M. Abolafia,
3. Analysis and interpretation of data: Juan M. Abolafia, M. Martinez-García, MV. Sanchez-Vives, G. Deco.
4. Drafting the article or revising it critically for important intellectual content: Juan M. Abolafia, M. Martinez-García, G. Deco, MV. Sanchez-Vives.

All authors approved the final version of the manuscript.

Running head: Variability and information in spikes during an auditory task

Copyright © 2013 by the American Physiological Society.
Variability and information in spikes during an auditory task

Maria V. Sanchez-Vives
IDIBAPS
Roselló 149-153
08036 Barcelona
Spain
Phone +34 93 227 5400 - ext 4301
Fax +34 93 227 1890
Email. msanche3@clinic.ub.es
Variability and information in spikes during an auditory task

ABSTRACT

Processing of temporal information is key in auditory processing. In this study we recorded single unit activity from rat auditory cortex while they performed an interval-discrimination task. The animals had to decide whether two auditory stimuli were separated by either 150 or 300 ms and nose-poke to the left or to the right accordingly. The spike firing of single neurons in the auditory cortex was then compared in engaged versus idle brain states. We found that spike firing variability measured with the Fano factor was markedly reduced, not only during stimulation, but also in between stimuli in engaged trials. We next explored if this decrease in variability was associated with an increased information encoding. Our information theory analysis revealed increased information content in auditory responses during engagement as compared to idle states, in particular in the responses to task-relevant stimuli. Altogether, we demonstrated that task-engagement significantly modulates coding properties of auditory cortical neurons during an interval-discrimination task.

Keywords

Auditory processing
Firing modulation
Auditory cortex
INTRODUCTION

A relevant aspect of auditory perception is the analysis of temporal information. Different studies have shown how single units of auditory cortex discriminate relevant temporal information for behaviour (Bao et al. 2004; Fritz et al. 2007; Lemus et al. 2009; Polley et al. 2006). Temporal processing in auditory cortex has been previously studied by means of a number of experimental manipulations. Some studies have focused on interval production tasks (Merchant et al. 2008), discrimination of stimuli repetition rate (Bao et al. 2004; Fritz et al. 2007; Lemus et al. 2009; Polley et al. 2006) or frequency categorization of tones (Ohl et al. 2001; Selezneva et al. 2006). However, the mechanisms of temporal discrimination at the level of the cortical single unit are not well known. This issue was explored in a recent study where monkeys had to compare two acoustic flutter stimuli (Lemus et al. 2009). In that study, an absence of modulation of neuronal firing related to working memory or to decision components of the task was found. We were interested to explore the task-modulation of neuronal discharges to identical stimulation patterns, in particular in a task where the interval between stimuli would be behaviourally relevant. For that purpose, we devised an interval-discrimination task where the same patterns of auditory stimulation were carried out during engaged (correct choices provided reward) and in idle states (performance not required), and studied spontaneous and evoked firing patterns of single auditory cortical neurons.

Studies of neural mechanisms of auditory processing in auditory cortex have reported both an increased excitability and response to the stimulus (Hromadka and Zador 2007; Lemus et al. 2009; Otazu et al. 2009; Polley et al. 2006; Weinberger 2004), and also a suppression of auditory responses (Otazu et al. 2009) with task-engagement. Here we
studied the modulatory influences of task-engagement on single unit firing focusing on two aspects: the spike firing variability and the mutual information in spike trains. Recent studies have emphasized the importance of reduced variability (Churchland et al. 2011; Churchland et al. 2010; Cohen and Maunsell 2009; Hussar and Pasternak 2010; Mitchell et al. 2007, 2009) to increase the signal-to-noise ratio, yielding the basis for an improved encoding of the stimulus information. However, neuronal response variability in auditory cortex has so far mainly been studied under anaesthesia (Curto et al. 2009; DeWeese et al. 2003) although some recent studies have reported changes in variability in the awake state (Grana et al. 2009; Zhou and Wang 2010). It is not known to what extent variability of neuronal auditory responses in the behaving animal actually contributes to temporal discrimination. In this study we carried out Fano factor variability analysis along with information-theory measurements of the neuronal encoding during discriminatory behaviour. We combined both measures since changes in variability suggest changes in information content -e.g. reduced variability suggests that information is increased-, but it is not sufficient per se to quantify such change. Mutual information (MI) analysis has been used in a few in vivo preparations to measure the stimulus-response relationship, in order to see whether neuronal activity is stimulus-selective or not (Chechik et al. 2006; Lu and Wang 2004; Nelken and Chechik 2007). We quantified the information content in behaviourally relevant auditory responses during an interval-discrimination task by comparing the MI of firing patterns in auditory cortex during engagement versus idle brain states.
METHODS

Ethics approval. The project was approved by the animal Ethics Committee of the University of Barcelona. Rats were cared for and treated in accordance with the Spanish regulatory laws (BOE 256; 25-10-1990) which comply with the EU guidelines on protection of vertebrates used for experimentation (EUVD 86/609/EEC).

Surgical Procedure. Recordings were obtained from two Lister Hooded rats (250-350 grs) that were chronically implanted with tetrodes in their primary auditory cortex. Animals were trained for 21 days. After a week of water and food ad libitum, a microdrive holding the tetrodes was implanted. To perform the surgery, anaesthesia was induced using intraperitoneal injections of ketamine (60 mg/kg) and medetomidine (0.5 mg/kg). The animals were then mounted in a stereotaxic frame and their skulls exposed. A 3 mm diameter craniotomy was made, with its center at -5.3mm anterior-posterior, and 6.6 -7mm medium-lateral from bregma (Paxinos and Watson 1998). These coordinates were used in order to position the microdrive dorsally, which made it more stable than entering laterally over the auditory cortex. Body temperature was monitored through a rectal thermometer and maintained (36-38°) using an electric blanket. Heart rate and blood oxygen levels were monitored. Reflexes were regularly checked during surgery to assure deep anaesthesia.

Other drugs were given during surgery and recovery period to prevent infection, inflammation and as analgesia: antibiotics (enrofloxacin; 10mg/kg; s.c.) and topical application of neomycin and bacitracin in powder (Cicatrin®), analgesic (buprenorphine; 0.05mg/kg; s.c.), anti-inflammatory (methylprednisolone; 10mg/kg; i.p.), and atropine
(0.05mg/kg, s.c.) to prevent secretions during surgery. Once the animals went through all experimental sessions, humane killing was performed by means of an overdose of pentobarbital (0.8 ml).

**Tetrodes and Microdrives.** Each tetrode was made from four twisted strands of HM-L-coated 90% platinum-10% iridium wire of 17 diameters (California Fine Wire, Grover Beach, CA). Gold plating decreased their impedance to ca. 300-500 KΩ. Four tetrodes were held by a cannula attached to a microdrive supplied by Axona Ltd, St Albans, UK. This microdrive allowed for dorsal to ventral tetrode movement to search for new units. Microdrives were attached to the skull with dental cement and 7 stainless steel screws. The auditory cortex was reached by vertical descent, and the tetrodes were lowered 300 μm during the surgery. Vertical descent performed after surgery was of 50 μm per day until an auditory response was observed. All the recordings included in this study corresponded to A1 (Doron et al. 2002). This estimation is based on the depth of the included recordings and on the histological reconstruction of the electrode’s tracks. The auditory latencies were typically 10-20 ms, which are also characteristic of A1 (Malmierca 2003; Nelken et al. 2003; Ojima and Murakami 2002).

**Electrophysiological recordings from awake freely moving rats.** During the training period, animals lived in large cages of 28 x 42 x 30 cm (Charles River) in a rich environment, under a 12 hr light/dark cycle, and with food ad libitum and water restriction. Before training and after a week of postoperative recovery period, the animals were accustomed to the recording chamber. The electrode wires were AC-coupled to unity-gain
buffer amplifiers. Lightweight hearing aid wires (2-3 m) connected these to a preamplifier (gain of 1000), and to the filters and amplifiers of the recording system (Axona, St. Albans, UK). Signals were amplified (x15000-40000), high pass filtered (360 Hz), and acquired using software from Axona Ltd (St Albans, UK). Each channel was continuously monitored at a sampling rate of 48 kHz. Action potentials were stored as 50 points per channel (1 msec; 200 μsec pre-threshold; 800 μsec post-threshold) whenever the signal from any of the prespecified recording channels exceeded a threshold set by the experimenter for subsequent off-line spike sorting analysis. Data were excluded if any drift was detected. Before each experimental session, tetrodes were screened for neuronal activity. Once spikes could be well isolated from background noise, the experimental protocol started.

**Experimental set up.** The recordings were performed inside a box built in black acrylic of 22 x 25.5 x 35 cm. This box was placed inside two wooden boxes placed one inside the other. Between each box, two isolating foam rubbers (4 and 2 cm thick) were placed to soundproof for low and high frequencies. A wooden cover and soundproof foams closed the entire recording chamber, with only a hole to allow the entry of a recording wire (2 mm thick) connected to the preamplifier. Water valves were placed outside the recording chamber. The animals poked their noses into three different sockets (2 cm wide and separated by 3 cm each, and with no cover in the top part to avoid being hit by the microdrive). Recordings were obtained in darkness, and the experiment was filmed with an infrared camera placed above the recording chamber.
Behavioural protocol. The behavioural protocol consisted of four different recording stages with a total duration of ca. 2.5 hours. The animals only went through the whole session once a day. The idle listening recording stage (ca. 17 min) was performed before and after the engagement stage (ca. 40 min). The final stage (ca. 40 min) comprised an idle recording with reward delivery after each stimulus pair was presented. The aim of the idle stages was to compare the neuronal responses while the idle animal heard stimuli presentation with respect to the engaged brain state during task performance. Later, the animals were trained to poke their noses into the center socket, which immediately triggered the onset of two identical stimuli (80dB, 5322 Hz, 50 ms duration). The animals had to remain in the center socket till the end of the stimuli presentation. They had to discriminate whether the two stimuli were separated (from the end of stimulus 1 (S1) to beginning of stimulus 2 (S2)) by 150 or 300 ms. This required a left or right poke respectively, in order to get the water reward. In the behavioural task, false alarms (poking in the opposite side) or early withdrawals (withdrawal before stimuli termination) were punished with a 3 s time out and a white noise (WAV-file, 0.5 s, 80 dB SPL). All trials during task performance were self-initiated by the animals. During the “initial-idle” and “idle-post” recordings the animals freely moved around the recording box (with occluded sockets) while listening to stimuli presentation. Finally, in the last idle recording stage (idle+reward), the left and right sockets were occluded while not the central one, where the animal repeatedly entered and received a water drop 0.3 s after having listened to the same stimuli as in the engagement stage. Note that there was movement in all phases of the experiment, either towards the sockets or around the cage.
Presentation of Sound Stimuli. The protocols of stimulation were controlled through MATLAB, a National Instrument card (BNC-2110), and a breakout box (FS 300 kHz). Sound triggers had μs precision. Sound stimuli were delivered through earphones (ER.6i Isolator, Etymotic Research Inc.) which were screwed in each recording session to the earphone holders, chronically attached to the animal skull with dental cement. The earphones were adjusted inside the ear with silicone tips with a separating distance of 1 mm from the ear canal. Similarly sound calibration was performed inside the acoustic isolation box with a microphone (MM1, Beyerdynamic) placed 1 mm away from the earphone and using a preamplifier (USB Dual Pre, Applied Research and Technology). The sound stimuli during idle and engaged recording stages had a duration of 50 ms, with an intensity of 80 dBs SPL pure tones of 5322 Hz, and a 6 ms rise/fall cosine ramps. It was identical for both the first and second stimulus. Interstimuli intervals were 150 or 300 ms and both had the same amount of trials (180-200). Similarly, the total number of correct trials in the engagement stage was the same as in the idle one (180-200). The intertrial interval also had a similar duration in the engagement and idle stages (2-3 s).

Data Analysis. Cluster cutting (isolating single units from the multiunit recording data) was performed using an Off-Line Spike Sorter (OFSS, Plexon). Waveforms were sorted as in (Abolafia et al. 2011b). Single units exhibited a recognizable refractory period (>1 ms) in their ISI histograms.

Analysis of peristimulus histogram (PSTH) were performed using 10 ms bins to estimate responses to auditory events accurately. Frequency response histograms were obtained by averaging the spiking activity within each bin during the whole recording. The onset of each stimulus presentation was aligned to 0. Raster plots illustrate the timings of
individual spikes in individual trials during the whole recording. Only correct trials were
selected, comprising 180-200 responses per each side.

We refer generally to “spontaneous activity” along the manuscript to that firing rate
of the neuron occurring whenever there was no auditory stimulation. Therefore we include
under the term “spontaneous activity” neuronal firing rate that may as well correspond to
prolonged responses to the stimuli or to modulation due to cognitive and behavioural states
(expectation, engagement, attention, etc).

The Fano factor (Ff) was computed as the ratio between spike count variance across
trials and mean spike count. Ff was calculated in 10 ms bins along the trial duration (from -
200ms to S2 ± 600-750 ms) for correct trials (180-200 at each response side). For each cell
we compared the minimum Ff value during the interstimulus interval (ISI) (-200ms to 0)
and the minimum Ff value in the interval from 0 to S2 ± 600-750 ms. We defined a
decreased Ff when a neuron had three consecutive bins with Ff lower than the minimum
value obtained during the ISI (whether short or long ISI).

Sparseness of neuronal activity has been shown to affect information theoretic
measurements (Nelken and Chechik 2007). To avoid this, we selected neurons with the
highest firing rate while the rat performed correct trials. In all cases a minimum of 180
trials per side were considered. Given that the animal made few errors plus the fact that the
firing was sparse, there were not enough spikes fired during wrong trials to allow for
independent analysis of correct vs incorrect trials. The response to all correct trials was
represented in a PSTH in 10-ms bins. The mean firing frequency and its standard deviation
during the 200 ms preceding S1 was calculated. Neurons were considered to have
significant evoked-spiking responses if after S1 onset the evoked firing during the 50 ms
stimulation was 5 standard deviations over the spontaneous frequency (Recanzone et al.
Variability and information in spikes during an auditory task

Twenty-one neurons crossed the threshold during S1 presentation (50ms).

To estimate the information content carried by the neuron’s firing rate, we performed Mutual information (MI) analysis, which measures the strength of association between two variables, in our case "spike rate" and "category of ISI (ISI)". The MI was calculated as:

\[
I(R;S) = \sum_{r \in R, s \in S} p(s, r) \cdot \log_2 \left( \frac{p(s, r)}{p(s)p(r)} \right)
\]

Where “s” is spike rate and “r” is category of the ISI (either short or long), and \( p(s), p(r) \) are the marginal distributions and \( p(s, r) \) the joint distribution. The MI has a zero value if the two variables are independent. Our calculations were based on frequency estimates of the probabilities \( p(r, s), p(s), p(r) \) by using spike counts in 50-ms time windows during each stimulus presentation. We estimated the value of the MI by using the direct method for the MI estimate and the (Panzeri et al. 1996) method for the bias correction since the computation of the information content is subject to statistical errors given that the MI is based on the estimation of probabilities. This method corrects for the bias by means of decomposing the mutual information in different factors and then removing the ones affected by the bias or noise.

In order to establish the significance of the estimated MI we applied the surrogates method (Schreiber and Schmitz 2000). We tested if the estimated MI significantly rejected the null hypothesis, i.e. non information content (\( I(r;s)=0 \)). We tested this null hypothesis by generating 1000 surrogates of the spike activity during stimulus duration, which by construction should not contain information. Thus, each surrogate is generated by shuffling the assignment between stimuli and response. We computed for each surrogate the MI
Variability and information in spikes during an auditory task

value and we compared all these bootstrapped information values with the real value of the
original data. We calculated the statistical significance of the estimated MI by computing
the area in the null hypothesis distribution (MI of the surrogate) below the MI value
corresponding to the original data. We considered that if the area of the null hypothesis was
larger than 85% of the total area, the estimated MI value of the original data was
significant. This critérium means that the Null hypothesis (no significant MI) can be
rejected with a 85% probability, i.e. the estimated MI is significant at 0.15 level (p<0.15).
Let us note that even for a smaller p-value of 0.05 still 7 neurons passed the test.
Nevertheless, we took a p-value of 0.15 in order to increase the amount of neurons that
passed the test and have a more reliable statistics. All the calculated MI values for both
original data and surrogates were bias corrected using this method.
RESULTS

Single unit recordings were obtained from the auditory cortex of two awake freely moving rats chronically implanted with tetrodes. Auditory stimulation was given through earphones (see Methods). We isolated eighty six single units which, when classified according to their auditory responses following (Recanzone 2000), consisted of: onset (26%), onset+offset (13%), offset (2%), non-responsive (43%), suppressive (13%), and other (3%). The percentage of non-responsive neurons was similar to the one reported by (Hromadka et al. 2008) while using cell-attached recordings in head-fixed awake animals.

Our objective was to study the effects of task-engagement not only on auditory evoked responses during correct trials but also during the interstimulus interval (ISI). In order for these intervals without stimulation to be behaviourally relevant, we designed an interval-discrimination task where the rat had to go to the left (or to the right) depending on the duration of the interval between stimuli (Fig. 1B). The experimental procedure consisted of a sequence of different recording stages with a total duration of 2.5 hr (Fig. 1A). Two idle recording stages, “initial-idle” and “idle-post” were recorded before and after the task-engagement, respectively. During the task, the animals had to enter in the central socket which triggered the presentation of two identical stimuli separated by an ISI of 150 or 300 ms (Fig. 1B). The rats had to categorize the two different ISIs, 150 and 300 ms, by going to the left or to the right, and nose poking in order to obtain a reward. The last stage was the “idle+reward” recording stage where the animals were rewarded in the center socket independently of the stimuli being presented (Fig. 1A). The aim of these recording sequences was to track the activity of a single unit, and compare response patterns between engaged versus idle brain states. The three idle stages (initial-idle, idle–post and
Variability and information in spikes during an auditory task

idle+reward) had the same amount of trials (180-200 trials each), stimuli (50ms; 80dB; 5.3kHz), ISIs (150 and 300 ms) and intertrial intervals (2 to 3 s) as the task-engagement stage. As soon as the animals reached 70% of behavioural performance (Fig. 1C,E), they were implanted. After the last recording we obtained a psychometric curve to further evaluate the perceptual and behavioural effects of the short and long ISIs being presented to the animal during the behavioural task. During the psychometric curve the short ISI (150ms) became longer, while the long ISI (300ms) became shorter, allowing us to test the perceptual threshold of ISI discrimination (Fig. 1D,F).

Engagement diminishes variability during and after stimulation in auditory cortex

Both enhanced (Atiani et al. 2009; Blake et al. 2006; Fritz et al. 2005) and reduced responses (Otazu et al. 2009) to stimulation have been observed while processing behaviourally relevant auditory stimuli. We first explored the effect of engagement on the firing rate of 33 neurons that comprised the onset and onset-offset ones. In most cases engagement significantly increased the spike firing (see Methods) during stimuli-evoked responses (n=22; Fig. 2), while the opposite trend was less common (n=11). The response to the second stimulus was typically decreased as a result of auditory adaptation processes (Abolafia et al. 2011b; Otazu et al. 2009; Ulanovsky et al. 2004). Substantial adaptation was observed both in onset responses (Fig. 2A) as well as offset ones (Fig. 2B) (n=13). There was a trend for the average adaptation to the second stimulus to be lower in the engaged than in the idle state (n=10), although the difference was not statistically significant (p=0.23 and p= 0.37 for short and long ISIs respectively; Wilcoxon; Fig. 2C). In the remaining three cases, adaptation increased during engagement.
Next we studied whether engagement altered neuronal response variability in the auditory cortex of the behaving animal. We calculated the Fano factor (Ff) (spike-count variance divided by spike-count mean) in order to test how neuronal variability changes during and after stimulus-evoked responses as a function of the behavioural state of the animal. The Ff was calculated on a trial by trial basis. Since the evoked auditory responses were mostly phasic we found that 10 ms bins showed the best time resolution and reflected the most accurately the changes in variability.

Figure 3 shows, for two single units (A,B and C,D), the average Ff variation for short (A,C) and long (B,D) ISIs, and for the engaged state (red) versus idle states (blue). A significant reduction (see Methods) in Ff during task-engagement can be observed during stimulus presentation (S1 and S2) for short (Fig. 3A) and long (Fig. 3B) ISIs with respect to the idle ones. A second neuron with a prominent offset response is illustrated in (Fig. 3C, D). This neuron had a reduction in Ff during the response onset and offset during engagement with respect to the idle state.

Not only the variability in responses to stimuli was decreased during engagement but also during the ISI. Accordingly, neuronal activity during the ISI (Fig. 3A, B) showed a reduced variability during task-engagement for short and long ISIs when compared to the idle state. Furthermore, we found that during the spontaneous activity period preceding a stimulus presentation (200 ms), there was a marked decreased variability in the engaged compared to the idle state of the animal (Fig. 3A-D). In most cases, a significant reduction of neuronal activity variability during engagement was observed (n=14; p=0.01 (Wilcoxon)) (Fig. 3E-F), while the opposite was only observed in one neuron. Statistical comparisons (Wilcoxon) showed a significant difference between the variability during S2
Variability and information in spikes during an auditory task

in the engaged state vs that in initial idle (p<0.008) or idle-post (0.008). However, there was no significance (p<0.7) when the two idle states were compared.

Out of these fourteen neurons with significantly modulated Ff during engagement, nine neurons showed a reduction of variability in the 200 ms preceding a stimulus presentation, while eight neurons showed a reduction of variability during the ISI. In all, we observed a significant reduction of variability along the trial duration for all studied neurons during engagement as compared to the idle brain state, and this was enhanced during stimuli presentation.

It has been shown by other authors that Ff is not contingent on the firing rate (Churchland et al. 2010; Kara et al. 2000; McAdams and Maunsell 1999; Mitchell et al. 2007). We also tested this and, for that purpose, we selected bins with similar firing rate (<5% difference) from engaged and idle trials. We plotted for each selected bin the Ff value in the idle versus in the engaged state for each neuron (n=14; see Fig. 4A-B). Bins were matched according to the same time location of the trial in the different brain states (Fig. 4A) and also to different time location (Fig. 4B). Figure 4 shows that most of the values remain above the x/y main diagonal, indicating that Ff values are larger in the idle than in the engaged state than what would be expected by a change in firing rate. We also computed the mean distance of the values with respect to the x/y main diagonal, which reflects the difference between the Ff-idle and Ff-engaged. We found that the positive values of the difference was 0.14 (std: 0.05) and 0.09 (std: 0.07) (A and B, respectively) while for negative values was 0.08 (std: 0.06) and 0.05 (std: 0.03) (A and B, respectively).

Thus the Ff is nearly 2 times larger in the idle compared to the engaged state, and therefore a decrease in Ff during engagement is not a mere artefact of an increase in firing rate. Additionally, the number of values above the diagonal are 64% and 67% (A and B,
respectively) while the ones below are 36% and 32% (A and B, respectively). Finally, we compared the statistical significance (Wilcoxon) between the values above and below the x/y main diagonal (i.e. engagement vs idle). We found no statistical significance for Fig. 4A (p<0.3) while the opposite was found in Fig. 4B (p<0.00) possibly due to the increased number of values in the later. Thus from this section we conclude that during engagement there is a reduction in variability. In order to evaluate if this decrease in Ff is associated with an increased encoding capability we proceeded to use information theory to estimate Mutual Information (MI).

**Mutual information is increased during engagement**

MI analysis has been previously used to estimate the information content present in spike trains generated by neurons from the auditory cortex in both anesthetized (Lu and Wang 2004; Nelken et al. 2005) and awake animals (Kayser et al. 2009). Here, we performed the MI analysis to find out whether single units in auditory cortex of the awake behaving animal encode information related with interval-discrimination of auditory stimuli. In our interval-discrimination task, the animals had to decide whether two identical stimuli were separated by 150 or 300 ms. In that task, the key stimulus that determines if the ISI category is “short” or “long” is the second one. MI between the variable “spike count” and the variable “ISI category” (150 or 300 ms), was calculated. Hence, we compared the MI value in the response to the first stimulus versus that to the second stimulus, in both idle and engaged states.

In order to compute the MI value we used here the bias corrected method of (Panzeri et al. 2007) as described in our methods section. Furthermore, in order to evaluate the statistical significance of these MI values we used the surrogates method (see also
Methods). Given the sparse activity and the requirements for the calculation of MI (Nelken and Chechik 2007) we found necessary to use 50 ms bins which comprised the stimulus duration (S1/S2). MI was calculated in twenty-one neurons with an average firing rate during the 50 ms duration of the auditory stimulus (S1) that was significant as defined in the methods section. Of these twenty-one neurons 10 successfully passed the surrogates test of the spike count during S2 in the engaged brain state. One example neuron of these 10 is shown in Fig. 5A, showing a raster plot and peristimulushistogram (PSTH), for interstimulus intervals of 150 ms and 300 ms. In this case, MI values were higher during the response to S2 than to S1 in the engaged state (S2:0.016; S1:0.0), while it was not in the initial-idle stage (S2:0.0; S1:0.0), idle-post (S2:0.0; S1:0.0) or idle+reward (S2:0.0004; S1:0.0). Furthermore, we tested the surrogates significance of these MI values and we found that in the engaged estate the MI value during S2 significantly (0.007) passed the surrogates test.

Mean MI values during responses to S1 vs S2 stimuli (N=10) in the initial-idle (S2:0.007), idle-post (S2:0.005) and idle+reward (S2:0.010) were lower than in the engaged state (S2:0.028) (see Table 1). Even though these MI values could be interpreted a rather low, similar MI values have been found in the auditory cortex (Brasselet et al. 2012). The surrogate test was only passed in the engaged brain state and these results suggest that the engaged state carries more information than the first one.

Statistical comparisons (Wilcoxon) of the MI were also performed between S1 and S2 for each brain state (see Table 1). We observed significant differences between MI values during S1 and S2 in engagement while not during the idle brain states (see Table 1). Additionally, S2 values of MI were compared (Wilcoxon) among brain states (see also Table 1) and we also observed a significant difference of MI in S2 during engagement as
compared with the idle states. Therefore, information content of spike trains evoked by auditory responses is augmented during the engagement in an interval-discrimination task.

A response profile of another example neuron showing an “onset-offset” pattern is illustrated in Fig. 6A and B. In this case, spontaneous activity is increased during the time interval preceding stimulus presentation during task-engagement. The MI value in the response to S2 was 0.0465, with a surrogate significance of 0.002, during task-engagement, while MI value was lower during the idle ones (initial-idle: 0.0001; idle-post: 0.0065; idle+reward: 0.0001) (Fig. 6C, left). This neuron further shows that the engaged state of animals has an effect on the information content in spike trains evoked by behaviourally-relevant stimuli.

We also explored the information contained in the offset responses evoked once the stimulus was terminated. Seven neurons showed offset responses to auditory stimulation, while four of them showed additionally onset responses (e.g. Fig. 6A, B). MI during the offset response component was calculated after S2 termination in those neurons that were classified as “onset-offset” or “offset” (n=7). We analyzed MI during a time window of the same duration as the one used to calculate MI during stimuli presentation (50 ms). The 50-ms window was taken around the peak of the offset response (25 ms before and after the peak) of S2. MI values of the population mean of offset neurons (Fig. 6C; right) were significantly higher in the engaged state (0.0310) as compared with the idle (initial-idle:0.0021; idle-post:0.0017; idle+reward: 0.0067) as evidenced with the surrogate test (see Table 1). In order to test the significance of that MI values statistical comparisons (Wilcoxon) of the MI were again performed between S1 and S2 for each brain state (see Table 1). As in the other case we observed significant differences between MI values during S1 and S2 in engagement (0.0468) while not during the idle brain states (see Table
1). When we compared S2 values of MI (Wilcoxon) among brain states we again observed a significant difference of MI in S2 during engagement as compared with the idle states (see Table 1). These results suggest that offset neuronal response after S2 termination not only carries information, but carries a similar amount of information about the category of the ISI carried by the one of the responses of onset neurons during S2 presentation.
Table 1

<table>
<thead>
<tr>
<th>Summary statistics</th>
<th>State</th>
<th>MI in S1</th>
<th>Surrogate in S1</th>
<th>MI in S2</th>
<th>Surrogate in S2</th>
<th>p-value between S1 and S2</th>
<th>p-value between S2 eng vs idle</th>
<th>MI value in S2 offset</th>
<th>Surrogate in S2 offset</th>
<th>p-value between S2 offset eng vs idle</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td></td>
<td>0.002</td>
<td>0.56</td>
<td>0.007</td>
<td>0.53</td>
<td>0.313</td>
<td>0.027*</td>
<td>0.0021</td>
<td>0.677</td>
<td>0.0082*</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>0.011</td>
<td>0.28</td>
<td>0.028</td>
<td>0.04*</td>
<td>0.010*</td>
<td>0.0310</td>
<td>0.0468*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td></td>
<td>0.002</td>
<td>0.50</td>
<td>0.005</td>
<td>0.51</td>
<td>0.562</td>
<td>0.039*</td>
<td>0.0017</td>
<td>0.7124</td>
<td>0.0047*</td>
</tr>
<tr>
<td>I+R</td>
<td></td>
<td>0.0002</td>
<td>0.70</td>
<td>0.013</td>
<td>0.60</td>
<td>0.250</td>
<td>0.031*</td>
<td>0.0067</td>
<td>0.2630</td>
<td>0.0156*</td>
</tr>
</tbody>
</table>

Initial Idle (II); engagement (E); Idle-Post (IP); Idle+reward (I+R)

MI in S1: mean MI value in S1 (bits)
Surrogate in S1: mean value of the surrogate significance test in S1
MI in S2: mean MI value in S2 (bits)
Surrogate in S2: mean value of the surrogate significance test in S2
p-value engaged vs idle: p-value between S2 in engagement and S2 idle
MI value in S2 offset: mean MI value in S2 offset (bits)
Surrogate in S2 offset: mean value of the surrogate significance test in S2 offset
p-value between S2 offset eng vs idle: p-value between S2 offset in engagement and S2 offset idle
*p<.05

Relationship between Fano factor and Mutual Information

In order to study the relationship between Ff and MI more systematically we developed a theoretical toy model that parametrized the experimental data. The toy model was defined by generating artificial spike train datasets whose inter-spike intervals follow a gamma distribution with a given mean firing rate (Fig. 7B) as in the real data (Fig. 7A) in order to test the relationship between Ff and MI (Fig. 7C). Artificial datasets were modelled...
by gamma point processes, where Ff and the firing rate can be controlled. This model has been successively used to model spiking data (Baker and Lemon 2000; Ponce-Alvarez et al. 2010). In this model, inter-spike intervals are independently drawn from a gamma distribution (see equation below) that has two parameters: a scale parameter, $r$, that controls the intensity of the process (firing rate) and a shape parameter, $\alpha$, that controls the variance of the distribution. Indeed (Nawrot et al. 2008) showed that $Ff=1/\alpha$. For a given pair of $r$ and $\alpha$, we generated a spike train composed of 1000 consecutive inter-spike intervals. The length of the spike train (T) was divided into short non-overlapping time bins of 50ms (equal to the stimulus period in the experiments) and the spike count (N) was calculated in each time bin. To avoid border effects we left aside the first 10 time bins and we stored the spike counts of the following 200 bins. As a result we obtained a spike count distribution for a given set of $r$ and $\alpha$, noted $f_{r,\alpha}(N)$.

$$\rho_\alpha(\tau) = \frac{\alpha^\alpha \tau^{\alpha-1}}{\Gamma(\alpha)} \exp(-\alpha \tau)$$

Using this procedure, we generated, for a given $\alpha$ and for two fixed values of the rate parameter, denoted $r_1$ and $r_2$, two spike count distributions, $f_{r_1,\alpha}(N)$ and $f_{r_2,\alpha}(N)$, and computed the MI between the parameter $r$ and the N, $\text{MI}((\text{Abeles et al.});\{N\})$. In our case $r_1$ corresponds to the mean firing rate during S2 in short ISI trials while $r_2$ corresponds to the mean firing rate during S2 in long ISI trials for a certain neuron. According to $Ff=1/\alpha$, we varied $\alpha$ between 0.3 and 1.1, while keeping $r_1$ and $r_2$ fixed. Then we calculated the MI for the pair $(r_1, r_2)$, for all the $\alpha$, between the stimulus and the response. This procedure was repeated 1000 times in order to estimate the error. As shown in Fig. 7C, the MI of the simulated distribution (Fig. 7B) increased for decreasing values of Ff. We found then a
Variability and information in spikes during an auditory task

negative correlation between these parameters (corr: -0.77; p<0.05) such that for lower
Fano factor, mutual information increased. In conclusion, this toy model demonstrated that
a parametric decrease of the Ff systematically increased the MI, generalizing therefore the
experimental observations.
DISCUSSION

We studied neuronal responses in rat auditory cortex during a decision-making task where intervals between auditory stimuli were categorized. Neuronal responses during and after evoked activity were compared in engaged versus idle states. Their firing rate, mutual information and variability were also quantified. Out of eighty six neurons recorded in the auditory cortex of the awake freely moving rat, auditory responses were evoked in forty nine neurons, a proportion similar to that in (Hromadka et al. 2008). We refer to task-engagement since we consider that the animal needs to be engaged to do the task correctly. However, during trials of engagement we cannot rule out the participation of other mechanisms like expectation (Jaramillo and Zador 2011). We found that neuronal firing rate during engagement was more often up than down-regulated during auditory responses. We cannot rule out a bias of extracellular recordings towards more active neurons, influencing our observed impact of task-engagement on the firing rate. Ongoing activity recorded in the intervals in between auditory stimuli during the same task is in some cases also significantly modulated by engagement, being usually increased (Abolafia et al. 2011a). A prominent decrease in neuronal variability during both sensory-evoked and non-evoked activity was detected during engaged versus idle listening. Finally, information content in auditory-evoked spike trains was higher in engaged than in idle states, in particular in those evoked by the task-relevant stimulus.

In general, Fano factor reduction can be associated with incremented encoding capabilities only under strong assumptions. Indeed, a neuronal network can have a very low Fano factor (almost identical spike trains in multiple trials), but zero coding precision (identical spike trains for multiple stimuli). We showed that, in our case, the reduction of
the Fano factor is indeed directly associated with an increment of the encoding/processing of the discrimination capability evidenced in the behavioural response. Furthermore, mutual information is more powerful because it is defined by the measurement of different sources of variability, namely an entropy term that characterizes the neuronal variability in general, and another “conditional” entropy that measures the specific variability observed for a given condition (or behavioural response). Let us note, that the increase of MI observed is not only due to a decrease of the conditional entropy term but to the combination of both, total response entropy, and conditional noise entropy terms. Indeed, the total response entropy term increases too, so that the increased information acts synergistically with changes in the neural representation. In order to complement this view we also studied the direct reduction of the variability per se. We thus studied the Fano factor reduction for a specific condition. Ff is particularly useful because, contrary to the mutual information, it can be computed in small sliding windows during the whole trial. Indeed, by doing this, we were able to show for the first time that a reduction of variability is observed in the absence of external stimulation (between the stimuli) but also in a relevant time region.

In our study, we have demonstrated that the reduction of variability (Fano factor) observed during stimulus presentation (including the interval between both stimuli), in particular the larger reduction due to engagement, is in fact associated with increased encoding capabilities for discrimination. We show this by complementing the Fano factor variability measurement with a direct information-theoretical measurement of encoding capabilities via mutual information between neuronal activity and behavioural responses.

**Firing variability of single units in auditory cortex**
Sensory processing during the processing of task relevant information has been linked to enhanced responses (Atiani et al. 2009; Blake et al. 2006; Fritz et al. 2005) and also to decreased ones (Otazu et al. 2009). Moreover, evoked responses in primary auditory cortex can be modulated as a result of temporal expectation (Jaramillo and Zador 2011). Increased inhibition has also been suggested to play an important role in cortical responses to relevant stimuli (Galindo-Leon et al. 2009; Nelken 2009). Task-engagement also induces tonotopic changes (Bieszczad and Weinberger 2010; Polley et al. 2006; Rutkowski and Weinberger 2005; Schreiner and Winer 2007) and tuning shifts of the same neurons towards the target stimulus (Brown et al. 2004). However, there are no studies describing how engagement affects response variability of single units in the auditory cortex of the behaving animal.

Earlier studies have suggested that a decline in response variability is a widespread phenomenon in the cortex that spans different areas, animal species, and that always occurs to the onset of stimuli presented, irrespective of the brain state of the animal (Churchland et al. 2011; Churchland et al. 2010; Shadlen and Newsome 1998; Sussillo and Abbott 2009). Furthermore, the neuronal variability over trials declines in particular in situations where the encoded information serves to guide behaviour (Churchland et al. 2011; Churchland et al. 2010; Churchland et al. 2006; Hussar and Pasternak 2010). This has been experimentally demonstrated in recorded neurons of the visual area V4 (Cohen and Maunsell 2009; Mitchell et al. 2009) in the context of an attentional paradigm. In these studies it has been shown that the mean-normalized variance (Fano factor) of the spiking activity is reduced by attention, consequently increasing the sensitivity of neurons towards relevant aspects of stimuli. Neuronal response variability may also depend on the type of neuron, i.e. narrow or broad spiking (Mitchell et al. 2007), while some authors suggest that the attentional effects
Variability and information in spikes during an auditory task

on variability may reflect an intrinsic property of neural circuits (Deco and Hugues 2012). Moreover, stimulus-induced trial-to-trial variability may be explained by the same dynamics of ongoing spontaneous activity (Curto et al. 2009). Our results suggest that the external stimulation or the behavioural requirements of an interval-discrimination task stabilize the dynamics in a controlled way such that neuronal variability is reduced. Thus, the signal-to-noise ratio is increased, yielding the basis for an improved encoding of the stimulus information.

The possible dependence of $F_f$ on firing rate deserves to be considered. It has been suggested that a reduction in neuronal response variability could be correlated with an increase in firing rate (Churchland et al. 2010; Kara et al. 2000; McAdams and Maunsell 1999; Mitchell et al. 2007). Some studies have shown that decreased variability is not due to an increase in firing rate (Churchland et al. 2010). In our current study, we find that in bins where the firing rate was equal between the idle and engaged states, variability was still reduced in the later (Fig. 3). This is consistent with the result reported by (Mitchell et al. 2007) in visual cortex (V4), where lower variability during engagement was observed when bins with equal firing rate were compared.

Information content in single units of auditory cortex

Quantification of information content in spike patterns has provided important insights in the understanding of key features of sensory processing (Chechik et al. 2006; DeWeese et al. 2003; Gehr et al. 2000; Imaizumi et al. 2010; Kayser et al. 2009; Lu and Wang 2004; Nelken and Chechik 2007; Nelken et al. 2005). Previous studies (Imaizumi et al. 2010) have suggested that information content in multiunit activity of auditory cortex is higher in the interspike interval, than during the firing rate or event-locked spikes.
Variability and information in spikes during an auditory task

(Furukawa and Middlebrooks 2002) when repetitive stimulation is presented to anesthetized animals. Similarly, (Kayser et al. 2009) quantified the information present in temporal spike patterns and the phase of population firing, suggesting that these combine information for encoding natural sounds in the auditory cortex. Therefore, the combination of different neuronal codes could enrich auditory stimuli representation, and increase robustness against noise. Looking into the mutual information between the stimulus and neuronal response, (Kayser et al. 2010) suggested that spike precision enhances the encoding of information about extended complex sounds. Also, information can be carried by spike timing in case of sparse acoustic events, while firing rate-based representations encode rapidly occurring acoustic events (Lu and Wang 2004).

The study of auditory activity during a task where a monkey compared the relative frequency of two auditory stimuli showed that stimulus-locked responses, and in particular firing rate, only correlated with performance during stimulus presentation (Lemus et al. 2009). This was not the case though during delay periods, as it would be the case if it was related to working memory or decision making. The authors suggested that the auditory cortex may serve to encode information of sensory stimuli, mostly by means of firing rate, with no cognitive function related to decision making or memory. Our analysis shows that MI is particularly enhanced to the relevant stimulus during task-engagement, although we do not definitely demonstrate its association to performance. Altogether, we think that this is an evidence of the role of auditory cortex in temporal discrimination during a decision making task, even when its origin may be a top-down influence.
ACKNOWLEDGEMENTS

We would like to thank S. Jaramillo, G. Otazu for their help and suggestions regarding the
behavioural paradigm, S. Aliaga for the animal training, and M. Mattia and M. Slater for
their comments to the manuscript. We also would like to thank L. Alonso, L. Pérez-
Méndez, and D. Perez-Marcos for their programming work.

This work was supported by the Ministerio de Ciencia e Innovación to MVSV (BFU2011-
27094) and to GD (SAF2010-16085). MG and GD were supported by the EU grant
BRAINSCALES and by the CONSOLIDER-INGENIO 2010 Programme CSD2007-00012,
and the EU FP7/2007-2013 contract 214728-2, and MVSV by EU grant CORTICONIC
contract 600806.

Author addresses :

Juan Manuel Abolafia Moya
IDIBAPS
Roselló 149-153
08036 Barcelona
Spain
Phone +34 93 227 5400 - ext 4580
Fax +34 93 227 1890
Email. jabolafi@clinic.ub.es

Marina Martinez-García
REFERENCES


Variability and information in spikes during an auditory task


Variability and information in spikes during an auditory task


Variability and information in spikes during an auditory task


Variability and information in spikes during an auditory task


Variability and information in spikes during an auditory task
Variability and information in spikes during an auditory task

FIGURE CAPTIONS

Figure 1. Behavioural protocol and performance. A. Sequence of recording stages in chronological order. The “initial-idle” stage was done during idle listening of the animal. The auditory stimuli (50ms; 80dB; 5322Hz), ISI (150 and 300 ms), intertrial interval (2-3 s) and trial repetitions (180) were the same in each recording stage. The following stage was the behaviourally relevant one. Next, there was again a “idle-post” recording identical to the “initial-idle” one, and another idle recording but now followed by a reward after each pair of stimulus presentation. The total duration of the recording protocol was 2.5 hours. B. In the interval-discrimination task the rat entered in the central socket and two identical stimuli (50ms; 80dB; 5322Hz) were presented through earphones. 150 or 300 ms ISI indicates left or right reward delivery, respectively. C. Animal 1 performance (correct trials (%)) against days of training. Dashed line indicates beginning of recorded sessions. D. Psychometric curve of performance for pairs of intervals differing between 2 and 150 ms. within the same session. Performance improved as the difference between both ISIs (ms) increased, while discrimination became more difficult for highly similar intervals. E-F. Same as C-D but for animal 2. Animal 1 and 2 were trained before implanting microdrives with tetrodes. Learning performance in animals 1 and 2 shown in C-F corresponds to short and long ISIs appearing at random trials.

Figure 2. Firing rate during the interval-discrimination task in different brain states. A. Raster and persistimulus histogram (PSTH) of an example neuron for different brain states. The frequency response histogram (bottom) using 10-ms bins and the spikes raster plot (top) for 180 trials. A response peak can be observed at the onset of stimuli (50 ms; 80
Variability and information in spikes during an auditory task

dB; 5322 Hz) for 150 ms ISI (left) and 300 ms ISI (right). Grey bars indicate stimuli presentation, and dotted bars indicate stimulus 2 presentation if the opposite ISI would have occurred. B. Same as in A for a different neuron. A specific increase of spontaneous activity previous to stimuli presentation is observed only during task-engagement. C. Average adaptation of thirteen neurons for short and long ISIs for different brain states. Error bars are S.D.

Figure 3. Response variability is reduced during engaged brain states. A,B. Fano factor (Ff) of an example neuron during short (A) and long (B) ISI and for the engaged (red) versus idle stages (blue). Grey bars indicate the presentation of S1 and S2. A reduction in Ff during the engaged compared to the idle state can be observed during trials of both short (A) and long (B) ISI. Not only during stimulation but also during the ISI, and during the spontaneous activity period preceding stimulation (-0.2-0 s), variability was decreased in the engaged with respect to the idle state of the animal. C,D. Same as in A,B for another example neuron with an onset-offset response pattern. In the engaged state, there was a reduction in Ff during the onset and offset compared to the idle state. Similarly, during the spontaneous activity period preceding stimulation (-0.2-0 s), there was a decreased variability in the engaged (C; D) compared to the idle state of the animal. E,F. The difference in the Ff value for each bin of the trial was obtained between the engaged state and the average idle recordings. The obtained differences were averaged and the SEM errors are displayed with the grey shadow. Most of the values are negative, indicating lower variability in the engaged condition with respect to the idle one. Enhanced differences in variability are observed during stimuli presentation.
Variability and information in spikes during an auditory task

Figure 4. The Fano factor is not dependent on the firing rate. A. The Ff value of idle recordings (Y axis) is plotted against the Ff value of engaged ones (X axis). The Ff value was calculated for each pair of bins with equal spike count (<5%) between the idle and engaged states. Each pair of bins with equal firing rate had the same position in the trial in the different brain states. B. Each pair of bins with equal firing rate had different position in the trial. Only neurons with significant Ff were included (n=14) for A and B. A significantly larger amount of the values remained above the x/y main diagonal for A and B.

Figure 5. Information content in response to auditory stimuli (S1 and S2). A. Raster plots and PSTHs of the neuronal discharge in different brain states. Identical auditory stimuli occurred in the grey boxes, with 150-ms interstimuli interval (left) and 300-ms interstimuli interval (right). In the right column, mutual information in the responses for both stimuli is represented in bits. Significance of surrogate test of mutual information is shown only during engagement in S2. B. The same pattern as in A (right) is shown for the average of ten neurons that passed the surrogate test of MI. The significance of surrogate test of mutual information is shown only during engagement in S2. Bars indicate SEM. Asterisks indicate p<.05.

Figure 6. Information content in response to a second auditory stimulus (S2). A. Raster plot and PSTH (180 trials) of the firing rate of an example neuron to identical stimuli presentation to 150 (left) and 300 (right)-ms interstimuli intervals. Notice the prominent offset responses of this neuron. B. Overlaid PSTHs illustrate the response of the neuron in A while in different brain states. An increase in spontaneous activity preceding a stimulus
presentation is observed only in the engaged state. C. Mutual information in the response to
stimulus 2 (S2) in the different stages of the experiment (II (initial-idle); E (engagement);
IP (idle-post); I+R (idle +reward). The graph on the left corresponds to the case illustrated
in A and B only for S2. The significance of surrogate test of mutual information is shown
only during engagement in S2. The graph on the right corresponds to MI contained in offset
responses (n=7). The significance of surrogate test of mutual information is shown only
during engagement in S2 offset. Bars indicate SEM. Asterisks indicate p<.05.

Figure 7. Relationship between Fano Factor (Ff) and Mutual Information (MI).
A. Spike count distribution of an example neuron during the second stimulus presentation
(50 ms) during the engaged state (red) and idle (blue) and for the left (dashed) versus right
(solid) responses. B. Spike count distribution of simulated neuronal data with a gamma
distribution. The same amount of trials (400) and parameter values (mean, and Ff) were
used as in A in the four different conditions. C. The MI was obtained out of the simulated
distribution of the engaged state shown in B. As the Ff value was increased the MI value
decreased. Bars indicate S. D.