Flexible feedback processing in motor cortex

Perturbation-evoked responses in primary motor cortex are modulated by behavioral context

Mohsen Omrani¹, J. Andrew Pruszynski¹,⁴, Chantelle D. Murnaghan¹, Stephen H. Scott¹,³

1. Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
2. Department of Biomedical and Molecular Sciences, Kingston, Ontario, Canada
3. Dept. of Medicine, Queen’s University, Kingston, Ontario, Canada.
4. Dept. of Integrative Medical Biology, Physiology Section, Umeå University, Umeå, Sweden

Abstract: 218 Words
Main text: 9482 words
11 Figures

Address correspondence to:
Steve H. Scott, Laboratory of Integrative Motor Behavior (LIMB), Centre for Neuroscience Studies, Queen's University, Kingston
email: steve.scott@queensu.ca

Copyright © 2014 by the American Physiological Society.
Abstract

Corrective responses to external perturbations are sensitive to the behavioral task being performed. It is believed that primary motor cortex (M1) forms part of a transcortical pathway that contributes to this sensitivity. Previous work has identified two distinct phases in the perturbation response of M1 neurons, an initial response starting ~20ms after perturbation onset that does not depend on the intended motor action, and a task-dependent response that begins ~40ms after perturbation onset. However, this invariant initial response may reflect ongoing postural control or a task-independent response to the perturbation. The present study tested these two possibilities by examining if being engaged in ongoing postural task prior to perturbation onset modulated the initial perturbation response in M1. Specifically, mechanical perturbations were applied to the shoulder and/or elbow while the monkey maintained its hand at a central target, or when it was watching a movie and not required to respond to the perturbation. As expected, corrective movements, muscle stretch responses and M1 population activity in the late perturbation epoch were all significantly diminished in the movie task. Strikingly, initial perturbation responses (<40ms post-perturbation) remained the same across tasks, suggesting that the initial phase of M1 activity constitutes a task-independent response that is sensitive to the properties of the mechanical perturbation but not the goal of the ongoing motor task.

Keywords: feedback control, task dependency, transcortical feedback pathway, reflex, task-independent response, neural activity, primary motor cortex
Flexible feedback processing in motor cortex

Introduction

A corrective response to someone bumping our arm can vary from a minimal reaction if our arm is just resting on a table to a rapid and precise correction if we are holding a cup of coffee. The influence of behavioral context on such corrective responses has been studied extensively in human subjects (for recent reviews, see Pruszynski and Scott 2012; and Shemmel et al. 2010). Briefly, the earliest muscle activity called the short-latency stretch response (R1: ~20-50ms), is generated via a spinal circuit, and is generally not influenced by behavioral context. In contrast, the long-latency stretch response (R2/R3: ~50-100ms), which includes supra-spinal contributions, is highly sensitive to a wide range of behavioral contexts.

Despite the wealth of knowledge on how behavioral context can influence long-latency responses, far less is known regarding the neural substrates underlying such task-dependent changes. Phillips (1969) suggested that primary motor cortex (M1) forms part of a transcortical pathway that contributes to the long-latency responses, and that its gain can be altered based on the behavioral task. Indeed, several studies have demonstrated that neural activity in monkey M1 quickly responds to mechanical perturbations and that the timing of this response is consistent with it contributing to the long-latency stretch response of the muscles (Cheney and Fetz 1984; Evartz and Tanji 1976; Herter et al. 2009; Picard and Smith 1992; Pruszynski et al. 2011). It has also been shown that perturbation-related activity in M1 can be altered by behavioral context prior to concomitant changes in the long-latency stretch response (Conrad et al. 1974; Evarts and Tanji 1976; Pruszynski et al. 2014; Wolpaw 1980a,b).

Of particular note is the seminal work of Evarts and Tanji (1976) in which monkeys were trained to rapidly push or pull a handle following a mechanical perturbation that either pushed or pulled the limb, and thus assisted or resisted the instructed action. They found that the initial response (20-40ms following perturbation onset) was tightly coupled to the applied perturbation, but that the later response at ~50ms clearly reflected the instructed motor action. Pruszynski and colleagues (2014) recently found a similar pattern of responses in MI when monkeys responded to mechanical perturbations by quickly placing their hand into visually defined spatial targets: a relatively invariant initial response followed by a modulated (i.e. task-dependent) later response (See also, Conrad et al. 1974; Wolpaw 1980a,b).

This invariant initial response may reflect a task-independent somatosensory signal transmitted to M1 neurons. It is well known that M1 responds to a range of different sensory
Flexible feedback processing in motor cortex

stimuli including passive limb motion (Cheney and Fetz 1980; Fromm et al. 1984; Hummelsheim et al. 1988; Scott and Kalaska 1997; Suminski et al. 2009), tactile or cutaneous stimuli (Lemon 1981; Murray and Keller 2011; Picard and Smith, 1992) and electrical stimulation of peripheral nerves (Herman et al. 1985; Marple-Horvat and Armstrong 1999). Direct transmission of the sensory response to a perturbation into motor regions of the brain may assist in the appropriate selection of the motor response as it depends on both the motor instruction and the properties of the perturbation itself. Alternatively, the presence of an invariant initial response may reflect the use of sensory feedback for ongoing postural control of the limb. That is, the initial perturbation response may reflect a corrective response used to maintain the hand at the initial posture. In this case, the nervous system needs to disengage this postural control prior to specifying a motor response for the instructed action.

Previous studies were not able to test between these two possibilities because the monkeys were always engaged in the same ongoing motor task before perturbation onset. In this study we explicitly changed the ongoing motor behavior and tested how this change altered the initial and late perturbation responses in M1. Specifically, we recorded behavioral, muscular and neural responses to a mechanical perturbation applied randomly when: 1) the monkey was maintaining its hand at a spatial target and the monkey was rewarded for returning its hand to the spatial goal following the perturbation (posture task), and 2) when the monkey was quietly watching a movie and not required to maintain its hand at a spatial target, nor to respond to the perturbation in order to be rewarded (movie task). If the initial M1 response reflects a task-independent somatosensory response to the mechanical perturbation, then it should remain relatively similar across posture and movie tasks. In contrast, if the initial response reflects the use of sensory feedback for ongoing postural control then the initial M1 response should be substantially diminished in the movie task as compared to the posture task, as there is no ongoing postural control in the movie task, before the perturbation.

As expected, behavioral, muscular and late M1 responses were generally reduced, but not eliminated in the movie task compared to the postural task, indicating that the monkeys modulated their motor responses across these behavioral contexts. Despite these changes, initial M1 responses were strikingly similar. Taken together, our results suggest that the initial perturbation response in M1 is not sensitive to the ongoing motor task but reflects a relatively task-independent sensory signal transmitted from the periphery.
Flexible feedback processing in motor cortex

Methods

Subjects and apparatus

Three male rhesus monkeys (*Macaca mulatta*, 10-17 kg) were trained for 4-6 months to perform whole limb visuomotor tasks wearing an exoskeleton robot (KINARM, BKIN Technologies, Kingston, Ontario, Canada). The robot permitted combined flexion and extension movements of the shoulder and elbow in the horizontal plane and applied loads to the shoulder and/or the elbow (Herter et al. 2009; Scott 1999). Targets and hand feedback were presented to the monkeys in the horizontal plane via a display composed of an overhead projector and semitransparent mirror. The position of the hand was represented by a white circle (5 mm diameter) positioned at the tip of the index finger. All procedures were approved by the Queen’s University Animal Care Committee.

Behavioral tasks

The experiment was composed of two different tasks: a posture task and a movie task (Figure 1). The monkeys’ goal in the posture task was to maintain their hand at a visual target (12 mm diameter). The target was displayed near the centre of the arm’s workspace (angles of 30 & 90 degrees at the shoulder and elbow, respectively), where passive viscoelastic forces of the limbs are relatively small (Graham et al. 2003). The monkey started each trial by placing the white circle (representing hand position) into the visual target, and maintaining it within the target’s acceptance window (16 mm diameter). Following a random time (between 1000-1500 ms) the limb was perturbed with one of 9 mechanical loads applied to the shoulder and/or elbow (Figure 1A) including one unloaded “catch” trial in which no perturbation was applied. Each perturbation lasted 300 ms and the size of the load varied to consider the size of each monkey (Monkey P & X, 0.24 Nm and monkey A, 0.32 Nm). Equal perturbation magnitudes in all directions cause different magnitudes of hand motion, with the biggest joint motions for shoulder flexor+elbow extensor and shoulder extensor+elbow flexor torque pairs (Herter et al. 2009). Therefore, we lowered the perturbation magnitude for these two pairs to compensate for this effect (0.04 Nm less than other load conditions). The monkeys were trained to bring their hands back to the target window within 750 ms and maintain it there for 1000 ms to be rewarded with water (Figure 1B). The 9 load conditions were presented randomly in each block and the monkeys were required to complete 10 blocks in each set.
In the movie task, monkeys were not required to do anything in response to the perturbation. All task-related visual feedback (i.e. target position and hand position) was replaced by a movie and the monkeys were trained to quietly watch the movie. At the beginning of each trial, the robot moved the hand to the central target. Following a random time (between 1000-1500ms), the hand was perturbed using the same 9 load combinations as in the posture task (Figure 1C). The monkeys were rewarded regardless of their response to the perturbation.

Our standard approach was to use a fixed order of tasks: first the posture task, then the movie task, followed by a repeat of the posture task. For cells isolated near the end of the recording session, a reduced version of the experiment was performed. In this case, the posture and movie tasks were performed once, in a random order.

Hand motion following the perturbation was used to determine how much the monkeys changed their behavior between the posture and movie tasks. However, this hand motion reflects both active (e.g. voluntary response to perturbation) and passive (e.g. viscoelastic forces of the limb & inertia) mechanisms opposing limb motion. In order to estimate the contribution of the passive mechanical properties of the arm, we compared hand motion in each task with a task in which the monkey was anesthetized. For this control, monkey P was anesthetized using Ketamine (2 mg/kg) and Medetomidine (0.05 mg/kg) and identical perturbations as in the main tasks were applied to the limb. Electromyographic (EMG) recordings of shoulder and elbow muscles were monitored for any reflexive or voluntary muscle activity. Anesthetization was performed on monkey A as well. However, due to its size, we were not able to maintain its posture upright in the chair, so the arm motion was skewed and therefore the data were not usable. Such measures were not performed on monkey X due to complications.

Data collection

After training, we recorded neural data from shoulder/elbow regions of M1 using standard extracellular recording techniques (Herter et al. 2007). The recording area included the bank of M1 to ~3mm rostral to the bank. Microelectrodes were advanced through M1 until neural activity was observed in response to active or passive movements of the shoulder and/or elbow (but not the wrist and/or fingers). Single neurons were then isolated and neural activity was recorded in the behavioral tasks. In some sessions, the recording location was verified using
Flexible feedback processing in motor cortex

Microstimulation, eliciting movement or muscle twitches in shoulder and/or elbow muscles (<30µA, Stoney et al. 1968).

Electromyographic (EMG) activity of shoulder and elbow flexor and extensor muscles was recorded using standard percutaneous EMG techniques (Kurtzer et al. 2006). EMG was obtained from pairs of single-strand wires that were percutaneously inserted within the muscle belly approximately 5mm apart (see Table 1 for a list of recorded muscles). Electrode placement was verified using microstimulation (stimulations < 2mA), ensuring that a contraction was isolated within the target muscle. We aimed to record from 3 to 6 muscles in each EMG session. Given the time consuming nature of electrode placement, EMG and neural recordings were performed in separate sessions. There were a few differences between the EMG and neural recording sessions. First, a variant of the posture task (Normalization task) was added in the EMG session, in which the perturbation lasted for 3000ms instead of 300ms. In addition, each task was repeated at least twice (i.e. 20 trials for each load combination) to have a better estimate of the muscle responses to the perturbations.

All the neural, EMG and kinematic data were recorded using a Plexon data acquisition system (Plexon Inc, Dallas, USA). The neural data were sampled at 40kHz and the kinematic and EMG data were sampled at 1kHz. The neural data were sorted online for single units and further examined using the Plexon offline sorter. Kinematic data (joint angles, velocities, and torques applied by the robot) were down sampled at 200Hz to reduce the size of each session’s data file. Cartesian hand positions and tangential hand velocity were calculated using joint angles, limb length and velocities.

Data analyses

M1 NEURONS. Spike times were extracted from the Plexon files into Matlab (Mathworks, Natick, USA). Spike density functions were then generated by convolving each spike time-stamp with an asymmetric double-exponential kernel, that roughly mimicked a postsynaptic potential (1ms rise- and 20ms fall-time, Thompson et al. 1996). Using such asymmetric spike density functions to smooth the data, rather than a Gaussian filter for instance, yields onset times without backward biasing. Each trial was aligned based on the perturbation onset and each neuron's rapid response to the transient load was evaluated (mean cell activity 50-100ms following the perturbation).
The load combination with the largest response was selected as the neuron’s preferred-torque combination (PTC). If the response was only inhibited by the perturbation, then the largest negative response was selected as the neuron’s PTC. The neuron’s activity in its PTC (mean cell activity 50-100ms following the perturbation) was compared to cell activity in the catch trial (no perturbation) using an independent sample t-test. The cell was classified as “perturbation responsive” if the comparison was significant ($p<0.05$). The cell’s response to its preferred combination of shoulder and elbow perturbations was then compared across tasks (independent sample t-test) to determine how many cells showed a significant change in activity across tasks. We also determined if baseline activity (mean cell activity 100ms prior to the perturbation across all load conditions) was comparable across tasks for each cell (independent sample t-test). Mean population activity for each task was calculated by averaging the activity across cells. All cells with a significant perturbation response were included in the population signal.

The PTC selected in the posture task might not necessarily be identical to that of the movie task, as changing the task could also change the cell’s sensitivity to the load combinations. In that case, modulation of the cell’s response across tasks in the preferred load combination extracted in the posture task would simply be an epiphenomenon of a rotating PTC. To address this possibility, we correlated the cell response in all different load combinations and magnitudes (using planar regression fit, see Kurtzer et al. 2005 for details) to devise a more quantified measure of the cell’s sensitivity to load. For this analysis, changes in neural activity in response to the perturbation (spikes/s) were correlated with the applied joint torques (Nm). Flexor torques were assigned positive values and extensor torques were assigned negative values. For visualization purposes, joint torques were organized in a Cartesian format with shoulder torques on the X axis and elbow torques on the Y axis. (i.e. ShoFlx = 0 degrees, ElbFlx = 90 degrees, ShoExt = 180 degrees, and ElbExt = 270 degrees). For each neuron with a significant planar fit (F-test, $p<0.05$), coefficients related to each variable (i.e. the shoulder (Sho) and elbow (Elb)) were used to calculate the preferred-torque direction (PTD). A cell that does not respond to the perturbation or has an equal response in all directions would not have a significant planar fit.

The PTD was defined by the orientation of the plane in joint-torque space that denoted the angle associated with the greatest increase in activity (Figure 5B, see Herter et al. 2009 for details). We then compared the PTDs extracted in each task to test whether different tasks
Flexible feedback processing in motor cortex

changed the cell’s sensitivity to load combinations. We only used the cells with significant planar fits in both posture and movie tasks for this comparison.

Given the order the two tasks were presented, many cells had more than one set of each task (e.g. two repeats of posture task). In these cells, one set was randomly chosen for analysis. Nevertheless, in order to make sure presentation order did not affect the perturbation response across tasks, we compared the neural activity across repeat sets of the same task. These repeated blocks provide an important control to investigate the significance of the changes observed across tasks (e.g. influence of change in the monkey’s motivation through time). We investigated whether the baseline activity and the perturbation responses changed across the repeated sets and compared the magnitude of these changes to that across tasks.

We also examined the relationship between the cell’s initial evoked response (cell’s mean response 20-35ms minus baseline) and its baseline activity across tasks. This was done to investigate whether change in a cell’s baseline activity can change its response to the perturbation as well. For this analysis, we only used those cells that had significant perturbation responses between 15-40ms post-perturbation (to avoid missing cells, the range was 5ms longer on each side of the epoch of interest). We then correlated the change in baseline activity to the change in the cell's evoked response.

BEHAVIOR & KINEMATICS. Joint and hand positions and velocities were used to compare perturbation-induced motion of the limb. We used receiver-operator characteristic (ROC) analysis to determine at what time-point the joint/hand motion deviated between the two tasks (Omrani et al. 2013). Briefly, at each 5ms time-point, we determined the proportion of trials that exceeded a range of thresholds spanning the two distributions. The number of hits and false alarms were then plotted against each other for every threshold setting. In this analysis, the area under the curve provides a measure of how well the two distributions could be distinguished from each other (Metz 1978). Values of 0 and 1 indicate perfect discrimination (and thus complete separation between the two distributions), whereas a value of 0.5 indicates chance discrimination. Across all time points, we then found the time point (T_criterion) where the ROC passes a criterion level (set at 0.25 or 0.75). We calculated the time at which the ROC starts deviating from baseline levels by fitting a line (using linear regression) to a 30ms period of the ROC curve, centred on the T_criterion. In our results, we report the interception point of the
Flexible feedback processing in motor cortex

regression line with the baseline ROC value (“Knee” extraction technique, Pruszynski et al. 2008). Note that changing the ROC criterion level does not qualitatively change the result of this analysis.

MUSCLE ACTIVITY. Throughout the recording session, each muscle was qualitatively scored from 1 to 5 (based on recording quality, gain of the signal, signal-to-noise ratio, and whether the muscle looked active in the task). Muscles that scored 3 and higher were included in our analysis. EMG signals were band-pass filtered (10–150 Hz, two-pass, third-order Butterworth) and full-wave rectified. Each trial was aligned based on the perturbation onset. Just like neurons, the load combination with the largest response was selected as the muscle’s preferred-torque combination (PTC).

The EMG in each trial was then normalized to the mean muscle activity in the last 2 seconds of response in its PTC in the Normalization task. This period was chosen as the monkeys resisted the load at the central target (i.e. isometric response), hence providing a steady state assay of muscle tone against a defined load magnitude (see Pruszynski et al. 2008 for how we normalize EMG data in human subjects). Thus, units for muscle activity reflect a muscle’s response ratio as compared to its steady state activity opposing the same load. Hence, a value of 1 means the muscle’s response was equal to this steady state activity.

We then verified if each muscle’s PTC matched its expected functional torque direction (Kurtzer et al. 2005), to confirm proper electrode placement (e.g. whether the posterior deltoid muscle responded to flexor or extensor loads). We removed any muscle with a PTC in the wrong quadrant of the torque space (1 muscle sample removed).

We evaluated each muscle’s response to the perturbation in its PTC across tasks. We examined the EMG response in different time epochs (-300:0, 20:44, 45:74, 75:99, 100:200; correspondingly named Base, R1, R2, R3 & Vol epochs) and compared them across tasks. These specific time periods were chosen based on functional results obtained in our previous studies (see Pruszynski et al. 2014, 2011 & Herter et al. 2009), but generally these epochs are inspired by the response epochs (M1, M2 and M3 & Vol, ranging from 10-30, 31-50, 51-70 & 71-100ms respectively) proposed by Lee and Tatton (1975). The M1 epoch corresponds with the short-latency muscle response and M2-M3 epochs correspond with the long-latency response, discussed earlier. The faster time epochs in Lee and Tatton (1975) likely reflect the use of larger
Flexible feedback processing in motor cortex

loads (a 350g load assumed to be applied at the hand with force perpendicular to the elbow joint would generate approximately 0.8Nm compared to 0.24-0.32Nm in the present study) and faster load onset (3.2ms rise time versus 10ms sigmoid in the present study).

ACTIVITY ONSET. We were interested in determining the onset time of each cell/muscle’s response to the perturbation, and the time their activity differentiated across the posture and movie tasks. For this purpose we found the first point when the activity passed a threshold that was 3 times larger than the standard deviation of cell/muscle’s baseline activity. Alternatively, we determined the first point in time population responses across the two tasks became significant ($p<0.05$, running paired sample t-test performed at 1ms intervals), and remained significant for 20ms.

Neurons in M1 display a range of onset times following a perturbation (Herter et al., 2007). We were interested in identifying whether neurons recruited at different times showed consistent timing differences from perturbation onset to task-dependent modulation. We therefore, separated our cells into four groups based on their perturbation onset times (response initiation between 15-30, 31-40, 41-50, 51-100ms) and quantified population signals for each group. We then used a similar onset calculation technique for the average activity of each group and compared the perturbation onset and task-dependent modulation for each group.

In order to estimate the variance in perturbation onset and task-modulation for each group of cells, we used a bootstrap technique (Altman and Goodman 1994). For this analysis, we resampled cells in each group 10000 times (with replacement) and calculated each measure for every sampled group.

Results

Comparison of kinematics & muscle responses across tasks

KINEMATICS. In the posture task, mechanical perturbations applied to the upper limb generated 2 to 4cm of hand motion, with larger motions generated following multi-joint loads (Figure 2A). In response to the ShoExt+ ElbFlx perturbation (Figure 2C), shoulder and elbow motion peaked at ~300ms just before the load was removed, and returned to the target at ~500ms (hand distance from target 500ms post-perturbation: 0.9 ± 0.3cm [mean ± SD] for monkey P, 0.4 ± 0.1cm for monkey X and 0.8 ± 0.4cm for monkey A). In the movie task, perturbations
generated patterns of hand motion that were initially similar to that observed in the posture task (Figure 2B,C). However, the hand did not return to the spatial target when the load was removed (hand distance from the target centre 500ms after perturbation: 2.8 ± 1.3cm for monkey P, 2.2 ± 1.1cm for monkey X and 3.0 ± 1.6cm for monkey A). Prior to the next trial, the hand was successfully moved back in close proximity to the target centre by the robot (hand distance from the centre of target prior to the next perturbation: 0.23 ± 0.51cm for monkey P, 0.36 ± 0.65cm for monkey X and 0.38 ± 0.33cm for monkey A).

Hand distance from the target (at 500ms post-perturbation) was significantly smaller in the posture task compared to the movie task in all load combinations and for all monkeys (Figure 3; paired t-test, \(p < 0.001 \) \& \(t > 6 \) in all conditions, \(df = 84 \) for monkey P; \(p < 0.001 \) \& \(t > 5.6 \) in all conditions, \(df = 40 \) for monkey X; and \(p < 0.001 \) \& \(t > 4 \) in all conditions except for elbow extensor load \(p = 0.2 \) \& \(t = 1.2 \), \(df = 32 \) for monkey A). On average, the hand distance from the target was 75% smaller in the posture task as compared to the movie task (72% in monkey P, 82% in monkey X and 74% in monkey A).

Using ROC analysis, we identified that shoulder and elbow angles were similar across the two tasks for the first 200ms and began to deviate around 225 and 245ms following the perturbation, respectively (Figure 2C). Across all load conditions, we identified differences in hand motion only after 100ms (ROC deviating from the baseline levels at 231± 93ms [mean ± SD] in monkey P, 123 ± 53ms in monkey X, and 129 ± 62ms in monkey A). Changes in the kinematics of the limb can also be observed in the 95% confidence interval ellipses of hand positions through time (Figure 2E, red and blue for movie and posture tasks, respectively). Note that the ellipses completely overlap throughout the first 200ms, and then begin to separate. However, there is still considerable overlap in hand positions 500ms post-perturbation across recording sessions. This could mean that there were sessions where the hand position in the movie task was closer to the target than in the posture task. However, within a given session, there was a consistent reduction in the behavioral response in the movie task as compared to the posture task (Figure 2E; dashed lines connect corresponding average hand positions in each task for 5 random sessions). In fact, in only 6 (of 129) sessions, the hand distance from the target (500ms post-perturbation) was bigger in the posture task than the movie task.
When monkey P was anaesthetized, virtually no perturbation-related activity was observed in the two limb muscles recorded during this procedure (data not shown). Hand motion during the perturbation was greater than that observed during the posture or movie tasks (Figure 2D). Hand distance from the central target 500ms following the perturbation was $5 \pm 1.8\text{cm}$ across load conditions (Figure 3). We quantified the distance between hand positions 500ms post-perturbation for the posture and movie tasks relative to the position observed in the anaesthetized state, which measured passive limb properties when there were no active corrective responses. For the load combination displayed in Figure 2E, the distance of the hand at 500ms post-perturbation between the movie task and anaesthetized state was 30% smaller than the distance between the posture task and the anaesthetized state. Across all 8 load conditions, the average drop in this distance was $42\% \pm 24\%$ [Mean \pm SD] for the movie task compared to the posture task.

MUSCLE ACTIVITY. We recorded EMG from 3 to 6 proximal limb muscles in 18 sessions. Thirty five samples were identified as good quality (score 3 or higher on subjective rating scale out of 5) and had significant perturbation responses ($p<0.05$, Table 1; 16, 15 & 4 muscles in monkey P, X and A, respectively). There was variability in each muscle’s response to the perturbation and how much it changed across the tasks. Some muscles displayed minimal decreases during the movie task, whereas others displayed virtually no activity following the perturbation in the movie task (Figure 4A). In fact, the majority of recorded muscles displayed a significant decrease in perturbation-related activity (45-100ms post-perturbation) in the movie task (Figure 4B,C). Twenty-seven muscles showed a significant change in perturbation activity across tasks ($p<0.05$). Of these, 25 showed a decrease and only 2 showed an increase in the movie task. On average, the perturbation evoked response (average activity 45-100ms post-perturbation minus baseline activity) dropped 65% across the two tasks (paired t-test, $p=0.002$, $df=34$ & $t=3.34$). A similar reduction in perturbation-related muscle activity was observed for all 3 monkeys (54% drop in monkey P, 72% drop in monkey X and 53% drop in monkey A, paired t-test, $p<0.035$ in all monkeys).

This variability in muscle response could reflect varying levels of a monkey’s engagement in response to the perturbation during the movie task. However, we did not find any correlation between the reduction in EMG activity for the movie task and the magnitude of motor load required to move the hand to the target prior to the perturbation (Pearson correlation...
Flexible feedback processing in motor cortex

coefficient=0.05, \(p=0.77 \) and Pearson correlation coefficient=0.11, \(p=0.52 \) for torques applied on shoulder and elbow respectively), nor to the hand distance from the central target following the perturbation (Pearson correlation coefficient=\(-0.02, p=0.89\)). For the two sessions in which the EMG was significantly larger in the movie task, the hand distance was on average 2.5cm farther from the target 500ms post-perturbation in the movie task as compared to the posture task.

Muscle activity across tasks was not significantly different in the baseline period (Figure 4C; -300-0ms, \(p=0.81, df=34 & t=0.23 \)) or the R1 period (20-45ms post-perturbation, \(p=0.31, df=34 & t=-1 \)). The average muscle response to the perturbation only started 34ms post-perturbation (black arrow, Figure 4C). The differentiation across tasks started 45ms post-perturbation (grey arrow, Figure 4D) and all subsequent stretch response epochs (R2, R3 and Vol) were significantly different across the tasks (46-75ms, \(p=0.004, df=34 & t=3.04 \), 76-100ms, \(p=0.003, df=34 & t=3.13 \), and 100-200ms, \(p=0.02, df=34 & t=2.35 \) respectively). Response onsets in individual monkeys were 27, 38 & 60ms and response differentiation times were 43, 46 & 80ms in monkey P, X & A respectively. Note that later response onset and differentiation observed for the latter monkey (A) likely reflects that there are only 4 muscle samples for this animal (i.e. bigger baseline variability, therefore a higher threshold).

General neural findings

We recorded 161 neurons (86, 42 & 33 from monkey P, monkey X & monkey A respectively) in M1 of 3 monkeys while performing the posture and movie tasks. Of these, 129 had a significant perturbation response in the posture task (50-100ms post-perturbation, two-sample t-test, \(p<0.05 \)). Figure 5A illustrates one exemplar neuron which displayed perturbation-related activity for all load conditions in both the movie and the posture tasks (except for ShoFlx in posture and movie & ShoFlx+ElbFlx in movie, \(p<0.01 \) for all other loads). The response was largest in the ShoExt+ElbFlx condition (\(p<0.001 \)), and thus, this load response was selected as its preferred torque combination (PTC) for further analysis.

Figure 5B displays similar preferred torque directions of the exemplar cell for each task (arrows in Figure 5B, 134 degrees & 158 degrees in joint-torque space for posture and movie, respectively, \(p<0.001 \) for both). One hundred and nineteen neurons were identified as directionally tuned in joint-torque space during the posture task. Of these, 94 neurons were
directionally tuned in the movie task as well. As shown previously (Cabel et al., 2001; Herter et al., 2009; Pruszynski et al., 2014), neurons tended to have preferred directions skewed towards shoulder flexor and elbow extensor loads or towards shoulder extensor or elbow flexor loads (Figure 6A displays the PTDs associated with the posture task). Figure 6B illustrates the difference in the PTD across tasks. The average absolute change in PTD was 24.9 degrees. However, we found no systematic change in PTDs for the posture and the movie tasks (average PTD rotation = -4.9 degrees, Rayleigh test = 0.86, \(p < 0.001 \)).

The majority of neurons (75/129) displayed a significant change in pre-perturbation baseline activity between posture and movie tasks (Figure 7A; \(p < 0.05 \), 39 and 36 higher in posture and movie tasks, respectively). In the exemplar neuron in Figure 5A, baseline activity 100ms prior to the perturbation was slightly lower in the movie compared to the posture task (18.1spikes/s versus 14.6spikes/s for posture and movie tasks, respectively; independent sample t-test, \(p = 0.03 \), df=178, \(t = 2.1 \)). The average absolute change in baseline activity was 5spikes/s between tasks, but there was no systematic shift in baseline activity across the population, (14.6spikes/s in the posture task and 14.1spikes/s in the movie task, paired t-test, \(p = 0.38 \), df=128 & \(t = 0.88 \)), reflecting that a similar number of cells increased versus decreased their baseline activity from posture to movie task.

In general, perturbation evoked responses (average activity 50-100ms post-perturbation minus baseline activity) were smaller in the movie task compared to the posture task (Figure 7B; note the points lying beneath the unity line). In the exemplar cell in Figure 5A, the perturbation response was significantly bigger in the posture task as compared to the movie task (81.5spikes/s versus 37.9spikes/s for posture and movie tasks, respectively; independent sample t-test, \(p < 0.01 \), df=9, \(t = 3.1 \)). However, the perturbation response was not always reduced to the same magnitude across all cells. Figure 5C displays perturbation-related responses for three representative neurons, highlighting that some neurons display similar perturbation responses across the two tasks, whereas others lose all their response in the movie task. On average the perturbation response dropped 31% in the movie as compared to the posture task (from 42.9spikes/s in the posture task to 29.5spikes/s in the movie task, paired t-test, \(p < 0.001 \), df=128 & \(t = 8.77 \)). Similar results were observed for all 3 monkeys (35% drop in monkey P, 23% drop in monkey X and 30% drop in monkey A, paired t-test, \(p < 0.03 \) in all monkeys). Of the 70 neurons...
Flexible feedback processing in motor cortex

that displayed a significant change in perturbation response across tasks \(p<0.05\), 63 displayed a decrease and 7 an increase in the movie as compared to the posture task.

The size of the reduction in cell response across tasks was not correlated to the difference in hand distance 500ms post-perturbation (Pearson correlation coefficient\(=-0.02\), \(p=0.75\)). In fact, even in the six sessions in which the hand was closer in the movie as compared to the posture task, the neural activity decreased \(~24\)spikes/s (ranging from 1.5 to 43.6spikes/s across these sessions).

Figure 7C highlights that the magnitude of response modulation across tasks was correlated with the size of the perturbation response observed in the posture task (Pearson correlation coefficient\(=-0.45\), \(p<0.001\)). However, this correlation partially reflects the fact that cell discharge cannot go below zero spikes/s, minimizing potential task changes for cells with smaller responses and low baseline activity. In some cases, cell activity decreased slightly from its baseline levels in the movie task even though it increased its activity during the posture task (data points below diagonal grey line). We found no correlation between changes in baseline activity and changes in perturbation response across tasks (Figure 7D, Pearson correlation coefficient\(=-0.13\), \(p=0.14\)). In addition, we found no systematic relationship between the hand distance from centre before the perturbation in the movie task (as a measure of resistance against servoing of the hand) and the amount the perturbation response was reduced from the posture to the movie task (Pearson correlation coefficient\(=-0.1\), \(p=0.25\)). In general, the load preference of individual neurons did not influence changes in their activity across tasks (data not shown).

Task-independent and dependent neural responses

RESPONSE TIMING. Perturbation responses averaged across the 3 monkeys were first observed at \(~20\)ms (task-independent response, Figure 8A; black arrow) and, across tasks, were similar until 39ms (task-dependent response, Figure 8A; grey arrow, the time differential signal surpassed baseline activity + 3SD). At this point, the population signal was greater for the posture task as compared to the movie task. The same pattern could be observed in each individual monkey (Figure 8B). For individual monkeys, population response initiation occurred at 20ms, 26ms & 26ms in monkey P, monkey X & monkey A, respectively (black arrows), and population differentiation occurred at 39ms, 52ms & 44ms (grey arrows). Population signals for the opposite load from the PTC displayed similar initial increases starting at 21ms. The
population activity differentiated between the two tasks at a later time (46ms), though the
differentiation was fairly small and did not remain above threshold for significance for very long
(returning back to baseline ~55ms post-perturbation). Using an alternative technique (running t-
test) to determine response timings, we found a similar pattern of results both for the population
(response initiation = 24ms and response differentiation time= 45ms) and the individual
monkeys (response initiation = 25ms, 42ms & 38ms and response differentiation time= 45ms
61ms & 48ms, for monkey P, X & A respectively).

Population signals, described above, were based on simply averaging cell discharge rates. This approach means that cells with higher firing rates dominate the population signal. We therefore repeated the analysis by normalizing each cell’s activity to its maximum firing rate before calculating the population signal. Effectively, the same pattern of response was observed following this normalization, with the perturbation response starting at 24ms post-perturbation and differences in the response across tasks starting at 41ms. Similar patterns were observed for individual monkeys as well. Population response initiation occurred at 24ms, 28ms & 29ms in monkey P, monkey X & monkey A, respectively, and population differentiation occurred at 40ms, 51ms & 45ms.

We further examined the properties of the initial task-independent perturbation responses. Sixty-three cells showed a significant perturbation response within 15-40ms post-perturbation. The magnitudes of these initial perturbation evoked responses were highly correlated across the posture and movie tasks (Pearson correlation coefficient= 0.88, \(p<0.001\)). There was no correlation between the difference in the initial responses across tasks (cell’s mean response 20-35ms - baseline) and the corresponding change in baseline activity (Pearson correlation coefficient= 0.07, \(p=0.57\)). We also did not find any significant correlation between the ratio of the baseline activity for movie versus posture tasks and the corresponding ratio of the initial perturbation response across tasks (Pearson correlation coefficient= -0.2, \(p=0.11\)).

TASK-DEPENDENT SIGNAL AND CELL ONSET TIME. Cells were divided into 4 groups based on their perturbation onset times (Figure 9A; response initiation between 15-30, 31-40, 41-50, 51-100ms). The population signals associated with the cells with the earliest onset times (15-30ms) displayed a phasic-tonic pattern of activity following the perturbation, whereas the response for cells recruited later did not display a strong phasic component (Herter et al. 2007;
Cheney and Fetz 1980). However, it is notable that the late tonic activity in the posture task (averaged over 100-120ms post-perturbation) was not significantly different across the four groups ($p=0.37$, df=3, one way ANOVA, mean activity 100-120ms post-perturbation, was 69, 59.5, 52.7 & 57.2 spikes/s for each group respectively). Nor was the change in the late tonic activity between posture and movie tasks ($p=0.59$, df=3, one way ANOVA, mean differential activity 100-120ms post-perturbation was 14, 15.8, 12 & 19.2 spikes/s for each group respectively).

We found an interesting relationship between the onset time of the perturbation response and the time of differentiation across different groups. By definition, onset times increased progressively across the four groups (20, 30, 36 & 51 post-perturbation, range=31ms). However, the timing of the task-dependent signal displayed smaller shifts across groups (38, 37, 45 & 54 post-perturbation, range=16ms). It should be noted that as the individual baseline variability is higher for a single cell, the time its activity passes the threshold is later compared to when it is included in a group. Therefore, group response onset might effectively be faster than the mean of all its individual cell onsets (e.g. response onset time in 41-50ms group being 36ms).

The black box for the entire population of cells in Figure 9B, highlights that perturbation responses can be observed at ~20ms, whereas the task-dependent change occurs at ~40ms, as shown in Figure 8A. The solid diagonal unity line demonstrates the hypothetical situation in which perturbation responses and task-dependent changes occurred at the same time. The group for neurons recruited late (50-100ms) is relatively close to this unity line denoting that task effects are observed as soon as these neurons respond to the perturbation. On the other hand, the earliest recruited group displays a ~20ms shift between the perturbation response onset and the task-dependent response. The two intermediary cell groups show effects between these two extremes. Essentially the same results were observed if the perturbation responses were normalized (to the cell’s peak activity) before generating the population signals.

Non-specific changes in perturbation response between repeated postural tasks

In total, 126 cells were examined twice in the posture task, of which 106 had a significant perturbation response. The average absolute change in discharge rate during the baseline period was 3.5 spikes/s across repeated blocks of trials (Figure 10A). Of these, 44 neurons showed a significant difference in their baseline activity, but there was no systematic shift in the
Flexible feedback processing in motor cortex

population baseline activity across the repeated blocks (Figure 10A; average baseline activity for
the 1st posture task=14.6spikes/s and the 2nd posture task=15.5spikes/s, paired t-test, \(p=0.09 \),
df=105 & \(t=1.7 \)). We found the absolute change in baseline activity between posture and movie
tasks to be bigger than the absolute change between repeated posture tasks (Figure 10B; two-
sided Wilcoxon rank sum test, \(p=0.001 \)).

Eighteen cells had significantly different perturbation responses across the repeated
posture tasks (Figure 10C; \(p<0.05 \), mean activity 50-100ms minus baseline, bigger in 10 and 8
cells in set 1 and set 2, respectively). However, unlike comparisons between the posture and
movie tasks, there was no systematic change in the perturbation response across the population
in repeated posture tasks (Figure 10C,D; mean activity 50-100ms minus baseline =41.3spikes/s
& =39.3spikes/s in the first and second posture tasks, respectively. Paired t-test, \(p=0.06 \), df=105
& \(t=1.89 \)).

We calculated cumulative distributions for changes in initial and late perturbation
responses (20-35ms, Figure 11A, and 50-100ms, Figure 11B respectively) between posture and
movie tasks, and repeated posture tasks. There were no differences in the distributions of the
initial responses (K-S test, \(p=0.1 \)). Further, the distribution of changes in the perturbation
response observed in the initial epoch between posture and movie tasks was not significantly
different than the distribution for differences immediately after the perturbation (K-S test, 0-
15ms post-perturbation, \(p=0.51 \)), nor even the epoch right before the perturbation occurred (K-S
test, -15-0ms pre-perturbation, \(p=0.11 \)). In contrast, the distribution of changes in perturbation
responses for the late epoch was significantly greater between the posture and movie tasks as
compared to repeated posture tasks (Figure 11B; K-S test, \(p<0.001 \)).

Discussion

Previous studies have illustrated perturbation responses in primary motor cortex (M1) are
influenced by the behavioral context, but that the initial response (20 to 40ms) to a mechanical
perturbation in M1 is relatively fixed for a given perturbation (Evarts and Tanji, 1976;
Pruszynski et al., 2011, 2014; see also Strick 1980 for a review). This invariant initial response to
mechanical perturbations may reflect a task-independent somatosensory signal transmitted to M1
neurons that must then be converted into the appropriate motor response (in M1 or elsewhere in
Flexible feedback processing in motor cortex

motor circuits). Alternatively, the presence of an invariant initial response may simply reflect that the monkeys were using sensory feedback for ongoing postural control. The methodologies used in previous studies could not separate these two alternatives. The present study examined how neural responses in M1 depend on whether or not the monkey was engaged in a limb motor action. Mechanical perturbations were applied to the limb when the monkey was actively engaged in maintaining its hand at a central target (posture task), and when it was not engaged in a limb motor task (movie task). Corrective movements and corresponding muscle stretch responses were both diminished in the latter task. In some neurons, perturbation responses in M1 displayed no change between the two tasks, whereas other neurons entirely lost their perturbation response in the movie task. Overall, late M1 population activity in response to the mechanical perturbation (50-100ms post-perturbation) was reduced by ~30% in the movie task. However, the perturbation responses prior to 40ms remained insensitive to the ongoing motor behavior, suggesting that the initial response reflects relatively task-independent somatosensory feedback into M1.

Changing ongoing behavior to observe its influence on perturbation responses

Our objective was to quantify perturbation responses when the monkeys were engaged or not in an ongoing motor behavior. One option would be to examine neural responses when the monkey was anaesthetized. However, anesthetics affect sensory processing (Fontanini and Katz 2008) in a way which would limit our ability to compare neural responses when the monkey is engaged in a motor behavior versus not. Alternatively, we could have rewarded the monkeys to not respond to the perturbation. However, direct rewarding for not responding would in itself be a behavior that could confound the results in an unknown way (i.e. the monkeys could learn to actively suppress sensory feedback).

Our approach was to compare perturbation responses when the monkeys had to maintain active postural control at a spatial target to receive a water reward (posture task) versus responses when the monkeys were not required to maintain their hand at a spatial target, nor respond to the perturbation to receive water reward (movie task). Our expectation was that the monkeys’ response to the perturbation would be reduced in the latter task. A movie was presented to distract the monkeys with an oculomotor task, with the objective of minimizing the monkeys' interest to respond to the perturbation.
Although we had no direct way of evaluating the level of the monkeys’ engagement in the movie task, changes in behavioral corrective responses suggest that we were at least partially successful in reducing motor responses to the perturbation. The monkeys returned their hand to the central target within 500-600ms following the perturbation in the posture task, whereas the hand remained outside the target in the movie task. At 500ms post-perturbation, the hand was ~8mm and ~30mm away from the centre of the target for the posture and movie tasks, respectively. Importantly, muscle perturbation responses between 45 and 100ms were ~65% less, on average, in the movie task as compared to those in the posture task.

The amount of hand motion and the distance returned to the target 500ms post-perturbation varied substantially across load conditions (Figure 3). There are likely several factors that influence the size of these responses across load conditions. Most notably, the passive properties of the arm are anisotropic (including visco-elastic forces caused by the soft tissue and limb inertia, see McIntyre et al. 1996; Mussa-Ivaldi et al. 1985). This influences how far the arm is moved by the loads, how much it returns, and in some cases, generates curvatures in hand trajectories from loading to unloading. It is notable that the elbow loads have the least amount of curvature and may explain why the arm returns rapidly to the target in both tasks.

Three factors could possibly contribute to the partial return of the hand following the perturbations during the movie task. First, the monkeys may still have voluntarily responded, to some degree, to the perturbation in the movie task. Second, the monkeys may not have responded voluntarily, but spinal and supraspinal reflexes may have remained active. Third, passive viscoelastic properties of the limb will tend to return the limb towards the central target when the load is removed (Graham et al. 2003).

In order to explore the contributions from the first two neural factors, we repeated the movie task in monkey P when it was in an anesthetized state. No perturbation-related activity was observed in the limb muscles, suggesting that voluntary movements and spinal reflexes were not present. Even in this state, there was partial return of the limb towards the central target due to passive limb properties. For comparison sake, we will assume that the response observed in the anesthetized state reflects 0% effort and the response observed in the postural perturbation response reflects 100% effort. Relative to these, the behavioral response in the movie task would represent 47% of the effort exerted during the postural perturbation task. Admittedly, hand
motion in the anaesthetized state may have been influenced by changes in the body posture in the chair (as readily observed in monkey A) so some caution is required in these estimates of effort. Alternatively, EMG measures displayed a 68% drop in activity from posture to movie tasks. Thus, corrective responses to the perturbation appear to be reduced 50-70% during the movie task as compared to the posture task.

One potential concern was that the perturbations would elicit different initial limb motions between the tasks and thus influence sensory input to the brain. However, we found hand and joint motions to be essentially identical for the first 100ms following the perturbation. This is probably because very little EMG activity was necessary to maintain the hand at the central target (Graham et al., 2003). Even if there was some small difference that we could not measure, small changes in muscle activity have a modest effect on initial limb motion following a perturbation (Pruszynski et al., 2009).

Balanced change in baseline activity across tasks

Several studies have found that activity in M1 during postural control before movement is influenced by factors related to ongoing control, such as limb geometry (Scott and Kalaska, 1997) and load direction (Fromm 1983; Herter et al. 2007; Thach 1978), or preparing for future motor events such as the direction of an impending movement (Tanji and Evarts 1976) or its speed (Churchland et al. 2006). In our task, we also found that baseline activity prior to the perturbation was commonly altered between the two behavioral contexts, with increases in baseline activity almost as prevalent as decreases in the movie as compared to the postural task. Interestingly, the population activity before the perturbation was virtually the same across tasks. Thus, engagement in a motor task does not necessarily generate an overall increase in motor cortex activity. Rather, engagement seems to cause a reorganization of the pattern of activity across the neural population (See Afshar et al. 2011).

Not all changes in baseline activity may reflect task-dependent changes in neural processing. Some change in baseline activity could be observed even when repeating the same posture task. Of the 106 cells with repeated posture tasks and a significant perturbation response, 36 had significant changes in baseline activity (Figure 10A). The absolute change in baseline activity was 5spikes/s between posture and movie tasks, whereas it was 3.5spikes/s across repeated posture tasks. Changes in baseline activity between the two tasks (posture vs. movie)
Flexible feedback processing in motor cortex

were statistically larger than that observed for repeated posture tasks. Scott and Kalaska (1997) found 14% of neurons displayed changes in activity across repeated tasks, slightly less than the proportion identified in the present study. These temporal effects may reflect altered attention to the task during the recording session. On the other hand, changes in baseline activity might indicate different equilibrium points in the network activity, all generating the same network output (i.e. redundancy in network activity, Kaufman et al. 2013, 2014).

Task-independent response in M1 to mechanical perturbations

A key observation from Evarts and Tanji (1976) was that the initial perturbation response in M1 was largely fixed and not sensitive to the instruction to push or pull a lever following the perturbation (See also Pruszynski et al., 2011, 2014). The focus of our study was to identify whether this invariant initial response was related to the monkey being actively engaged in maintaining the hand at a location in space before the perturbation was applied. We tried to make sure the sensory feedback had no relevance for the ongoing behavior (watching a movie) and yet this invariant response was still evident between ~20 to 40ms. We found some individual cells with significant differences in activity in this early epoch across tasks, but similar changes could also be observed in the late baseline activity (15ms prior to perturbation), and right after the perturbation when virtually no response should be observed (0-15ms, Figure 10A). Thus, the invariant initial response observed in our task appears to reflect a task-independent sensory response rather than ongoing control of behavior.

In some ways it is surprising that sensory feedback in M1 would remain similar whether the monkey was engaged or not in a motor task, given the many levels where sensory signals could be altered from the periphery to M1. First, the feedback could change at the periphery based on the behavioral task (Loeb 1985). For instance, previous work has shown spindle activity and its sensitivity is altered when a cat switches from lying down and resting, to standing still, versus walking (Prochazka et al. 1977). Second, proprioceptive feedback could be altered centrally, notably in the cuneate nucleus or primary somatosensory cortex, the likely sources of initial sensory input to primary motor cortex. Perturbation responses arrive in M1 in just a few milliseconds after they arrive in primary somatosensory cortex (at ~20ms, Evarts 1973; Fromm and Evarts 1982). Therefore, any peripheral or central change in this sensory pathway should be reflected in the initial perturbation response. This does not mean that changes in gamma drive
Flexible feedback processing in motor cortex

(Hammond 1956) or central processing could not happen across tasks, as previously suggested. Rather, it suggests that such alterations did not occur across our posture and movie tasks. Our observation of no interaction between changes in baseline activity of the cells and the initial perturbation response has implications for various hypotheses on integration of sensory feedback with ongoing neural processing. For instance, the evoked response could be scaled by the baseline activity; if the baseline was doubled in one task, the evoked response would double as well (Polack et al. 2013). However, we found no significant correlation between the ratio of change in baseline activities and that of the evoked responses across tasks. A second possibility is that the evoked response could remove any influence of the previous baseline activity. Thus, the magnitude of the observed cell activity would always be identical, irrespective of the baseline activity (He 2013). Therefore, the absolute firing rate of the neurons would always be the same, falsely making the baseline activity and the evoked response anti-correlated; if the baseline gets bigger, the evoked response gets smaller, and vice versa. However, there was no correlation between the change in baseline activity and the change in initial perturbation response across tasks. Instead, our analysis did show that the size of the initial evoked responses was highly correlated across tasks highlighting that sensory input remains relatively constant (Azouz and Gray 1999).

The EMG activity was also not initially altered across tasks (34-45ms post-perturbation). Given the fact that the fastest transduction time between M1 activity and muscle responses is ~10ms (Bawa and Lemon 1993; Cheney and Fetz 1980, 1984), M1 could potentially contribute to EMG responses in as little as 30-35ms in our tasks. Such descending signals would initially contribute to the task-independent EMG response, and then later contribute to task-dependent EMG response starting at 45-50ms post-perturbation. Nevertheless, we observed initial perturbation responses for M1 neurons in the non-PTC direction (Figure 8A, lower panel), which is not observed for EMG responses in proximal limb muscles (for example, see Figure 8 in Herter et al., 2009). These increases in perturbation responses in both the PTC and non-PTC are particularly common for the earliest responding neurons (Herter et al. 2009). This co-activation of M1 neurons following perturbations may minimize their net effect on spinal processing during this early time period (Kaufman et al.
Flexible feedback processing in motor cortex

2014). Therefore, further examination is required to identify whether the early task-independent responses in the EMG reflect cortical as well as spinal processing.

Task-dependent changes in perturbation responses in M1

While perturbation responses in M1 dropped by 30% in the movie task, it is possible that these responses could be reduced even further. As discussed above, our analysis of motor responses compared to the anaesthetized state suggest that motor responses in the movie task were reduced ~50% relative to the posture task. The remaining 50% (i.e. the difference between the movie task versus the anaesthetized state) might indicate some degree of voluntary response even in the movie task.

However, it is unlikely that the remaining motor response was due only to voluntary control. First, early spinal stretch responses are relatively fixed and might oppose the perturbation in the movie task in the absence of any voluntary reaction (Wolpaw et al. 1986). However, the contribution from spinal reflexes may be minimal; the short-latency spinal reflex, which is expected to begin at 15-20ms (Conrad et al. 1975; Lee and Tatton 1975), was effectively absent, probably due to the small background EMG activity before the perturbation (Pruszynski et al. 2009). While it is easy to quantify the spinal contribution to the early EMG activity, it is more complicated to estimate its contribution in later epochs when transcortical responses likely have a substantial contribution. As well, transcortical feedback may still contribute to EMG activity even if the monkey is not voluntarily responding. We found a proportion of neurons that did not change their perturbation response between the posture and movie tasks. Thus, there may be an invariant transcortical response that begins at 20ms and continues beyond 40ms during the movie task. This invariant response may be suppressed through voluntary control when behaviorally required, although likely only after 40ms.

Our population signal included a task-independent response starting at 20ms followed by a task-dependent response at 40ms. We were interested to know if this basic pattern, task-independent response followed by a delayed task-dependent response (dashed line in Figure 9B), occurred in all neurons, or just in neurons that responded early to the perturbation. Figure 9 shows that only neurons responding before 40ms tended to show an initial task-independent response. Neurons recruited after 40ms tend to immediately show task-dependent changes.
Flexible feedback processing in motor cortex

It remains an open question as to how the task-dependent modulation is generated in the brain. It may be generated within M1, taking M1 20ms to process the sensory information to generate the task-dependent signal. Alternatively, there might be different sources of feedback to M1 with different time delays and summing in M1 to form its activity; one driving the task-independent response and the other driving the task-dependent response. Most likely the initial task-independent response is produced by S1, given its rapid onset. If the task-dependent response is not generated in M1, there are a number of cortical (e.g. posterior parietal area; Kalaska 1996; Mountcastle et al. 1975) and sub-cortical (e.g. cerebellum; see Strick 1978 for a review) areas that may be the source of this response. The prediction is that the task-dependent signal would appear earlier than 40ms in this other brain region, a focus for future studies.

Acknowledgments

This work was supported by the Canadian Institutes of Health Research (CIHR). M.O. received a Vanier Doctoral Award from CIHR. J.A.P. received salary awards from CIHR and the Human Frontier Science Program. S.H.S. is supported by a GSK-CIHR Chair in Neuroscience. We thank Kim Moore, Simone Appaqaq and Justin Peterson for their technical support and the Scott lab for their constructive comments. Note that S.H.S. is associated with BKIN Technologies, which commercializes the KINARM device used in this study.
Flexible feedback processing in motor cortex

References

Flexible feedback processing in motor cortex

Flexible feedback processing in motor cortex

Kurtzer I, Pruszynski JA, Herter TM, Scott SH. Primate Upper Limb Muscles Exhibit Activity Patterns That Differ From Their Anatomical Action During a Postural Task. *Journal of Neurophysiology* 95: 493of Neurophy

Flexible feedback processing in motor cortex

Mussa-Ivaldi FA, Hogan N, Bizzi E. Neural, mechanical, and geometric factors subserving arm posture in humans. *J. Neurosci*. 5: 27322.ci. in hum

Flexible feedback processing in motor cortex

Flexible feedback processing in motor cortex

Figure legends

Figure 1- Task apparatus and experimental paradigm. A: Different combinations of shoulder and/or elbow loads applied to the arm in each trial. B: In the posture task, the monkey started each trial by placing the hand cursor and maintaining it within the target’s acceptable window (light grey circle). Following a random time interval (1-1.5 seconds) the limb was perturbed with one of the 9 mechanical loads depicted in A. The monkeys were trained to bring their hands back to the target window within 750ms and maintain it there for 1000ms (Solid black line illustrates a sample hand path in response to the perturbation). C: In the movie task, all task related visual feedback (i.e. target position and hand position) was replaced by a movie. At the beginning of each trial, the robot moved the hand to the central position. Following a random time interval (1-2 seconds), the hand was perturbed using the same 9 load combinations as in the posture task. The “American Pie” picture is reproduced with permission from Universal Studios.

Figure 2- Hand motion across tasks. Hand motion in response to different combinations of perturbations in the posture (A) and movie (B) tasks. Green diamonds and circles denote the time the perturbation turned off (300ms) and hand position 500ms following the perturbation, respectively. C: Elbow (top panel) and shoulder (middle panel) joint angles for each task (in the load condition shown by the arrow in panels A & B) and the differential joint motion (bottom panel) across tasks. Solid lines represent average joint positions (blue: posture, red: movie & black: differential motion) and the shaded areas denote 2 SEM (largely blocked by solid lines) of joint position across sessions (85 sessions in monkey P). Vertical dashed lines denote the time the perturbation turned on and off. The grey rectangles show the time period for analysis of neural activity. D: Hand motion in response to perturbation when the monkey was under anesthesia. Note that the scale is smaller than for panels A and B. E: Comparison of hand positions through time in response to the condition marked with the arrow in A, B & D (shoulder extension/elbow flexion). Each ellipse represents the 95% confidence interval of hand positions across sessions at 50ms intervals following the perturbation (blue and red ellipses for posture and movie task, respectively, cyan: passive task). Dashed lines connect average hand positions in the posture and movie tasks for 5 random sessions.

Figure 3- Kinematics of perturbation response. Hand position and distance from target centre in each monkey across tasks. The top panel shows average hand position relative to the target...
Flexible feedback processing in motor cortex

(black cross indicates target and its acceptable spatial limits) 500ms following the perturbation for each of the 8 load combinations (blue: posture, red: movie & cyan: passive). The bottom panel shows corresponding distance from target in each load condition. Inset numbers show the number of recording sessions in each monkey. Error bars indicate standard errors across sessions. The passive data was obtained under anesthesia.

Figure 4- Muscle response to perturbation across tasks. A: Exemplar EMG activities in response to the preferred torque combination in the posture (blue) versus the movie (red) task. Grey lines denote the onset of the perturbation. These exemplar muscles highlight the range of responses from substantive to no change between tasks (Tlat: Triceps, Lateral head; Br: Brachioradialis). B: Average EMG response (45-100ms following the perturbation) in the posture (horizontal axis) versus movie (vertical axis) task. Filled shapes denote muscle responses with a significant change across tasks. Each symbol represents a different monkey (circle, triangle and square, represent monkey P, X & A respectively). The 3 exemplar muscles in A are represented by the colored symbols (orange: top panel, green: middle panel & cyan: bottom panel). For visualization purposes, 4 data points are not plotted (Response values for data points not shown are: posture task=5.75, 6.32, 13.85 & 5.22 and movie task=3.5, 2.78, 2.4 & 0.46 respectively). C, D: Mean EMG response across all recorded muscles (n=35) in the posture and movie tasks (C) and their differential activity (D) across the two tasks (posture-movie). Solid lines represent average EMG response (blue: posture, red: movie & black: differential motion) and the shaded areas denote 2 SEM (blue and red shaded areas denote between muscle variability of perturbation response and the black represents within muscle variability of differential response). The black and the grey arrows represent the onset and the differential time of muscle activities respectively.

Figure 5- Neural response to mechanical perturbation. A: An exemplar cell response to different mechanical loads (specified by the insets). Each tick represents one action potential and each row represents one trial (10 trials in each condition). Spike time-stamps are convolved with a double-exponential kernel (roughly mimicking postsynaptic potential) to generate a spike density function for each trial. The solid lines represent the average of these density functions across trials. Grey vertical lines denote the onset of the perturbation. B: A plane was fit to the average perturbation response (50-100ms following the perturbation) of each cell across trials.
Flexible feedback processing in motor cortex

and the applied torque in each condition. The heat plot (red denoting greater activity and blue
denoting less activity) shows the corresponding cell activity in response to each load condition.
Preferred-torque direction (PTD, solid arrows) was defined as the orientation of the plane in
joint-torque space. C: Three individual cells highlighting the range of responses from substantive
to no change between tasks. sp/s: spikes per second.

Figure 6- Distribution of Preferred torque direction (PTD) across tasks. A: PTD of each cell
in response to mechanical perturbation in the posture task. The distribution is skewed towards
ShoFlx+ElbExt loads or towards ShoExt+ElbFlx loads. The solid line shows the main axis of the
distribution. B: Change in PTD across the two tasks. The main axis of this distribution is close to
0, suggesting that cell’s preference for torque direction does not change significantly across
tasks. MVL: mean vector length.

Figure 7- Individual cell activity across tasks. A: Average baseline activity (-100 - 0ms prior
to the perturbation) of individual cells in the posture (horizontal axis) versus movie (vertical
axis) task. Filled shapes indicate cells with significant difference in their baseline activity, Note
that most data points lie around the unity line. The grey lines delineate ± 15spikes/s change from
unity. B: Average perturbation response (50-100ms post-perturbation, with baseline activity
removed) in individual cells in the posture (horizontal axis) versus movie (vertical axis) task.
Note that most data points lie beneath the unity line. Filled shapes denote cell responses with a
significant change across tasks. Dashed line denotes the linear regression fit. One data point is
not plotted for visualization purposes (Response values for the data point not shown is: posture
task=216 and movie task=178 respectively) C: Average perturbation response (50-100ms post-
perturbation) in the posture task versus average change in perturbation response across tasks. The
grey line represents the magnitude of the cell’s activity if it were reduced to its baseline level in
the movie task. The dashed line represents the linear regression fit to the data. One data point is
not plotted for visualization purposes (Response values for the data point not shown is: posture
task=216 and Response change=-38 respectively). D: Average change in baseline activity versus
change in perturbation response across tasks. Filled shapes denote those cells with significant
activity change across tasks. Each symbol represents a different monkey (circle, triangle and
square, represent monkey P, X & A respectively). sp/s: spikes per second.
Figure 8- Population activity across tasks. Mean population response in the posture and movie tasks (blue & red lines respectively) across cells with a significant response to the perturbation, and their differential activity (black line) across the two tasks. Population activity is calculated for all cells across all monkeys in their preferred torque combination and non-preferred torque combination (A), and for each monkey individually (B). Solid lines represent the average population response and the shaded areas denote 2 SEM (blue and red shaded areas denote between cell variability of perturbation response and the black represents within cell variability of differential response). Vertical grey lines represent the onset of the perturbation. The black and grey arrows represent the perturbation onset and differential response in the population signals, respectively. Inset numbers show the number of cells in each population. sp/s: spikes per second.

Figure 9- Onset time clustering and the effect of differentiation time. A: Cells are divided into four groups based on their perturbation response times (15-30ms, 31-40ms, 41-50ms, 51-100ms). Red and blue lines denote population signals for each group for the movie and posture tasks, respectively. Black lines represent group differential activity across tasks. Black horizontal lines represent baseline activity in the population signals and the differential signals. Dashed lines represent the thresholds for response onset and differentiation onset calculations. B: Average onset time of perturbation response versus time of task-dependent response differentiation for each time group (filled grey circles), for entire population of neurons (filled black circle), for population activity in non-PTC (empty black circle), and for muscle (filled red square). Thin lines within boxes represent median onset and differentiation times calculated using a bootstrap technique. Each box represents the 25th-75th percentile confidence intervals. The solid grey diagonal unity line demonstrates the hypothetical situation in which perturbation responses and task-dependent changes occurred at the same time. The dashed line represents the situation in which task-dependent changes cannot occur before a certain time (40ms in this case), but then differentiation is immediately present. sp/s: spikes per second.

Figure 10- Effect of set order on perturbation response. A: Average baseline activity (-100-0ms prior to the perturbation) of individual cells in the first versus the second posture tasks. Each symbol represents a different monkey (circle, triangle and square, represent monkey P, X & A respectively). Filled and open circles denote significant and non-significant changes in activity.
Flexible feedback processing in motor cortex

between sets. Grey lines delineate ± 15spikes/s change from unity (black line). One data point is not plotted for visualization purposes (Response value for the data point not shown is: 1st set=30 and 2nd set =58ms respectively) B: Cumulative probability distributions of change in baseline activity (-100-0ms) across the posture-movie tasks (blue) and repeated posture tasks (red). C: Average perturbation response in the first versus the second sets of the posture task. Filled shapes denote cell responses with a significant change across tasks. Two data points are not plotted for visualization purposes (Response values for data points not shown are: 1st set=138 & 179 and 2nd set=153 & 213 respectively) D: Mean population response across all recorded cells in the first and second posture sets (red and blue lines, respectively), and their differential activity (black line) across the two sets. Solid lines represent average population response and the shaded areas denote SEM of population activity across cells (blue and red shaded areas denote between cell variability of perturbation response and the black represents within cell variability of differential response). Vertical grey lines represent the onset of the perturbation.

Pos:Posture, Mov:Movie, sp/s: spikes per second.

Figure 11- Cumulative probability distributions (CPD) of activity change for different time epochs. A: CPD of change in activity in the late baseline (-15-0ms, light green), immediately following the perturbation (0-15ms, dark green), early evoked response (20-35ms, blue) across posture-movie tasks and early evoked response (20-35ms, red) across repeated posture tasks. B: CPD of change in late perturbation response (50-100ms, blue) across posture-movie tasks and late perturbation response (50-100ms, red) across repeated posture tasks. Note that the horizontal axis in A is half the size of the horizontal axis in B. Pos:Posture, Mov:Movie, PoP:Post-Perturbation, PrP:Pre-Perturbation
Table 1- List of muscles recorded across tasks, number of samples recorded for each muscle, number of samples with subjective quality of 3 or higher, number of samples with a significant perturbation response (45-100ms post-perturbation), and number of samples with significant bigger perturbation response in each task

<table>
<thead>
<tr>
<th>Muscle name</th>
<th># Quality>=3</th>
<th># Significant Pert Resp</th>
<th>Significant bigger posture</th>
<th>Significant bigger movie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachioradialis</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Brachialis</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Biceps (Short & Long heads)</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Triceps (Lateral head)</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Triceps (Long head)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Deltoid Posterior</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Deltoid Middle</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Deltoid Anterior</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pectoralis major</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Supraspinatus</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sum</td>
<td>46</td>
<td>35</td>
<td>25</td>
<td>2</td>
</tr>
</tbody>
</table>
Figure 1
Figure 2:

A. Posture Task

B. Movie Task

C. Joint motion

D. Passive Task (under anesthesia)

E. Joint angle difference

AB

DE

n=85

Shoulder

Elbow

Perturb On

Perturb Off

Figure 2
Hand position 500ms post-perturbation

Monkey P

Monkey X

Monkey A

Hand distance from target 500ms post-perturbation

Figure 3
Figure 4
Figure 5
PTD = 126°
MVL = 0.40

PTD difference = -4.9°
MVL = 0.86

Figure 6
Figure 7
Figure 8

(A) Population response in PTC

(B) Population response in Monkey P

Population response in non-PTC

Population response in Monkey X

Population response in Monkey A

Neural Activity (sp/s)

Time (ms)

n=129

n=74

n=34

n=21
Figure 9

A

Neural Activity (sp/s)

Time (ms)

15ms < Onset < 30ms

30ms < Onset < 40ms

n=25

n=33

40ms < Onset < 50ms

50ms < Onset < 100ms

n=35

n=30

Time (ms)

B

Difference onset (ms), posture vs. movie

Onset time (ms), posture task
Figure 10
Figure 11