Scaling prediction errors to reward variability benefits error-driven learning in humans

Running title: Reward prediction error scaling correlates with learning efficiency

Kelly M.J. Diederen¹,* and Wolfram Schultz¹

¹ Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge
CB2 3DY, United Kingdom

* Correspondence should be addressed to Kelly M.J. Diederen, Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK. E-mail: k.diederen@gmail.com, Tel: + 44 (0)1223 333754, Fax: + 44 (0)1223 333840

Author contributions: Kelly M.J. Diederen and Wolfram Schultz designed the experiment, interpreted the data, wrote the manuscript and approved the final version of the manuscript. Kelly M.J. Diederen performed the experiments, analyzed the data and prepared the figures.

Number of tables: 3
Number of figures: 4
Number of words abstract: 173
Number of words introduction: 576
Number of words discussion: 1755
ABSTRACT

Effective error-driven learning requires individuals to adapt learning to environmental reward variability. The adaptive mechanism may involve decays in learning rate across subsequent trials, as shown previously, and rescaling of reward prediction errors. The current study investigated the influence of prediction error scaling and, in particular, the consequences on learning performance. Participants explicitly predicted reward magnitudes that were drawn from different probability distributions with specific standard deviations. By fitting the data using reinforcement learning models, we found scaling of prediction errors, in addition to the learning rate decay shown previously. Importantly, the prediction error scaling was closely related to learning performance, defined as accuracy predicting the mean of reward distributions, across individual participants. In addition, participants that scaled prediction errors relative to standard deviation also presented with more similar performance for different standard deviations, indicating that increases in standard deviation did not substantially decrease ‘adapters’ accuracy predicting the means of reward distributions. However, exaggerated scaling beyond the standard deviation resulted in impaired performance. Thus, efficient adaptation makes learning more robust to changing variability.

Key words: Standard deviation; probability distribution; reinforcement learning; adaptation; risk
An essential part of daily life is to predict which rewards will be available. Accurate estimation of future reward magnitude depends on our ability to learn the statistics of the environment. Rewards are not singular events with constant magnitude but are elements of probability distributions that fluctuate from one moment to the next. Even when fully informed about the anticipated mean, or expected value (EV) of probability distributions, we cannot predict the size of the next reward with certainty (O'Reilly 2013). Optimal performance can, however, be achieved by inferring the EV of distributions (Nassar et al. 2010).

The EV can be learned through errors in our predictions, i.e., reward prediction errors, as formalized in reinforcement learning models (Rescorla and Wagner 1972). In the Rescorla-Wagner reinforcement learning model, predictions are updated as a constant fraction of the prediction error, termed the learning rate. Rescorla-Wagner provides a powerful account of learning in non-variable contexts where prediction errors converge to zero as predictions become more accurate (Schultz and Dickinson 2000). However, when outcomes fluctuate, predictions based on a constant learning rate can only become stable with low learning rates, resulting in slow learning (Payzan-LeNestour and Bossaerts 2011). Thus, predictions can more rapidly become stable through dynamic learning rates that decrease as predictions become more accurate as formalized in the Pearce-Hall reinforcement learning model (Pearce and Hall 1980), as well as in Bayesian accounts of learning (Cox 1946; Yu and Dayan 2005).

Importantly, learning may be further improved by scaling the prediction error relative to the expected fluctuation in reward value (Preuschoff and Bossaerts 2007). I.e., a prediction error is more meaningful in contexts where rewards fluctuate less. Such scaling could facilitate earlier stability in predictions and similar learning for different degrees of reward variability, resulting in improved overall performance. In addition, adaptation to variability enables individuals to identify sudden changes in the outcome distribution (Nassar et al., 2010).

Thus far, it is unclear whether scaling of prediction errors relative to the variability of reward distributions results in improved performance, as predicted by learning models (Preuschoff and
Bossaerts 2007). Increases in computational demands during prediction error scaling may, for instance, impede optimal deceleration of learning rates, resulting in suboptimal performance. In addition, although scaling of prediction errors relative to the variability in reward benefits performance, scaling with the standard deviation (SD) limits the power of the learning rate to update predictions. For instance, when a prediction error of 15 is divided by an SD of 15, the prediction can only be adjusted with 1 point (see Figure 2F).

The main goal of this study was to investigate whether the scaling of prediction errors to reward variability (SD) in humans would be associated with superior performance. Thus, we go beyond previous studies by quantifying the individual degree of such adaptation and investigating whether prediction error scaling is related to superior performance. Participants were required to explicitly indicate the expected magnitude of upcoming rewards, drawn from probability distributions with different levels of variability. After each prediction, participants received a reward, eliciting trial by trial reward prediction errors. Participants’ pay-off depended on the points drawn by the computer, incentivizing them to treat the points as actual rewards. Performance was increased for gradual decreases in learning rates and scaling of prediction errors relative to, but smaller than the SD. In addition, the individual degree of adaptation was predictive of the stability in performance across SD’s, thus suggesting that adaptation made learning more robust to changing variability.

MATERIALS AND METHODS

Participants. Thirty-one healthy volunteers (17 male; 13 female) were recruited through local advertisements. Participants were between 18 and 33 years of age (mean 22.76 years, S.D. 6.2); they were fluent English speakers and did not have a history of a neurological or psychiatric illness or drug abuse. This study was approved by the Local Research Ethics Committee of the Cambridgeshire Health Authority. After description of the study to the participants, written informed consent was obtained.
Behavioral task. The experimental task required participants to predict the magnitude of upcoming rewards as closely as possible from the past reward history. Rewards were points (i.e., numbers) drawn from six different pseudo-Gaussian distributions (standard deviation (SD): 5, 10 or 15 and EV: 35 or 65). Each trial started with a fixation cross presented on a computer monitor in front of the participants (Fig. 1A). After 500 ms of fixation cross presentation, a small, medium or large green bar cue signaled the SD (5, 10 or 15) of the reward distribution from which the upcoming reward would be drawn (500 ms). Bar height was proportional to SD, but did not correspond to the actual SD or to the range of the distributions. As such, the bar cue informed participants whether rewards were drawn from a distribution with a small (SD 5), medium (SD 10), or large (SD 15) level of variability without revealing the actual size of the SD and/or range. Thus, these explicit cues facilitated rapid adaptation to reward variability. Importantly, the cues did not contain information on the EV of the distributions. Following cue presentation, participants moved a horizontal bar with the numeric value displayed on both sides on a vertical scale (0 - 100) using a trackball mouse and indicated their prediction by a mouse click (within 3500 ms). After a short delay (300 ms), the display showed the magnitude of the drawn reward as a green line and numbers on the same scale, as well as the reward prediction error on that trial (a yellow bar spanning the distance between the predicted and the received reward). Reward prediction error was conventionally defined as difference in = reward received – reward predicted. Failure to make a timely prediction resulted in omission of the reward.

Each participant completed three sessions of 10 min each of the task. In each session participants alternatingly predicted from one of two conditions (i.e., distributions; Fig. 1B). Each condition had a run length of 42 trials, resulting in 84 trials per session. There were exactly 42 rewards per condition, ensuring that each participant received the same rewards. The two conditions in a session alternated in short blocks of 5-8 trials (12 short blocks per session; 6 short blocks for each of the two conditions in a session). See Fig. 1C for an example participant. Importantly, participants could use all 42 trials to estimate the SD and EV of a condition, independent of the short block in which a trial occurred. All analyses and model fits were conducted on the 42 trials of each condition, as if these trials had been presented in direct succession. The two reward conditions (i.e., distributions) in a session never had the same SD and/or EV, and each distribution occurred only once.
per participant. There were six possible pairs of distributions, of which each participant saw three
pairs (i.e., one pair per session). Sixteen participants were presented with the first combination of
pairs (SD5 EV35 & SD10 EV65; SD10 EV35 & SD15 EV65; SD15 EV35 & SD5 EV65) whereas the
remaining fifteen participants performed the second combination (SD5 EV35 & SD15 EV65; SD10
EV35 & SD5 EV65; SD15 EV35 & SD10 EV65). The six possible orders of the three pairs (over
sessions) were counterbalanced so that each order was performed by five participants, except for the
6th order which was performed by six participants. The order of the two distributions within a session
was randomized. The order of rewards within a condition (i.e., one of the six distributions) was
pseudo randomized. First, we randomized the rewards within a condition. Subsequently, we ensured
that outliers did not occur in succeeding trials.

All distributions had zero skewness, no tails and insignificant deviation from normality
(Shapiro-Wilk; p = 0.54, 0.89 and 0.92 for SD's of 5, 10 and 15 points). However, they were slightly
less ‘peaked’ than a true Gaussian distribution as indicated by a kurtosis of 2.6 (SD 5), 2.6 (SD 10)
and 2.57 (SD 15). Initial inspection of reward prediction error data revealed that these errors increased
with SD, thus indicating that the experimental manipulation was successful (Fig. 1D).

Instructions. Participants were instructed on the experiment with the aid of a standardized
MATLAB tutorial that fully informed them about the structure of the task. I.e., we indicated that
rewards were drawn from ‘pots’ (i.e., distributions) with a low, medium or large degree of variability
as indicated by the bar cues. Furthermore, we specified that each of the three task sessions required
participants to alternatingly predict from one of two ‘pots’ (distributions) resulting in a total of six
different pots (small variability N=2; medium variability N=2 and large variability N=2). We
indicated that two pots with the same degree of variability (e.g. small) would be centered at a different
physical location on the scale (i.e., had a different EV). Participants were only ignorant about the
exact parameter values (i.e., the EVs, SDs and range used as well the frequency of alternation
between the two distributions within a session). Furthermore, although we indicated that the two
distributions within a session had a different SD, we did not reveal that the two pots within a session
would also have a different EV. Nor did we specify that each pot had only one of two EVs. Debriefing
after the experiment revealed that participants believed that each of the six distributions had a
different EV. We informed the participants that the goal of the experiment was to predict the next
reward as closely as possible from the past reward history.

Pay-off. Participants were informed that the experiment comprised two different trial types,
‘main’ and ‘control’ trials and that the gains from one main and one control trial were selected pseudo
randomly and paid out to the participants at the end of the experiment. We explicitly stated that in the
main trials the pay-off was a fraction (10%) of the reward drawn by the computer (80% of all trials;
e.g., £5 if a participant received 50 points) and that in these trials rewards were shown in green.
Although participants were informed that most trials were ‘main’ trials we did not reveal the actual
contingencies. This design motivated the participants to consider the drawn numbers as actual
rewards. Initial inspection revealed that participants’ accuracy predicting upcoming rewards increased
for distributions with higher EV’s as reflected in lower prediction errors (T(30) = 2.27, p = 0.0306;
Fig. 1E left). In addition, participants’ accuracy predicting the mean of reward distributions increased
for higher EV’s as reflected in lower performance errors (|predictions - EV|; T(30) = 2.49, p =
0.0186; Fig. 1E right), thus suggesting that participants perceived the drawn numbers as rewards. To
ensure that participants revealed their true predictions in an incentive compatible way, we pseudo-
randomly interspersed unannounced control trials (20% of all trials). Participants were told that in
these trials pay-off depended on their performance, i.e., how close their prediction was to the EV of
the reward distribution. Predictions that differed no more than 1 SD (in points) from the EV were
rewarded with £7.50, predictions that differed more than 1 SD but less than 2 SD’s from the EV led to
a reward of £5 and all other predictions led to a reward of £2.50. As in the main trials, the monitor
displayed the number drawn by the computer after the participant had indicated his prediction and did
not indicate performance. However, the number drawn by the computer was shown in red to indicate
the participant's 'supervision'. Just as the green number, this number was a reward drawn by the
computer and did not tell participants how well they were performing on that trial. Importantly, there
was no indication about the control trial at the time the participants stated their prediction. Due to
their un-announced occurrence, these control trials thus encouraged the participants to optimize their
performance during all trials. The tutorial informed participants that they should try to predict as well as possible on every trial as they did not know at the moment of prediction whether their pay-off on that trial depended on their performance or on the number drawn by the computer.

Practice sessions. Prior to the main task, each participant completed two practice sessions. Here, rewards were drawn from distributions with a different SD (i.e., 7 and 14 points) and EV (i.e., 30 and 60 points). As in the main task, the height of bar cues was proportional to, but did not reflect the actual SD or range of distributions. To familiarize participants with the trackball mouse, each participant also completed a short motor task. In each trial (total of 90 trials) participants received 3500 ms to scroll to a number on the scale that was printed in green on top of the scale. All stimulus presentation, data acquisition and data analyzes were programmed using MATLAB and Cogent 2000 (http://www.vislab.ucl.ac.uk/cogent_2000.php).

Constant vs dynamic learning rates. Prior to investigating adaptation to reward variability, we determined whether predictions were updated with constant or dynamic learning rates. As predictions can more rapidly become stable through decreasing learning rates, we hypothesized that a reinforcement learning model with a dynamic learning rate would better fit the data. I.e., in variable contexts, predictions based on constant learning rates can only become stable with low learning rates. This results in slow learning and impedes overall performance. We fit a constant learning rate Rescorla-Wagner model (Rescorla and Wagner 1972), and a dynamic learning rate Pearce-Hall model (LePelley and McLaren 2004; Li et al. 2011; Pearce and Hall 1980) to participants’ prediction sequences. Both models updated predictions as a function of the reward prediction error (difference in) and the learning rate (α). Learning rates were conventionally constrained to the interval [0 1].

On each successive trial t of the Rescorla-Wagner model, the prediction (P_t) was updated according to the prediction error (δ) multiplied by the learning rate (α):

$$P_{t+1} = P_t + \alpha \cdot \delta_t$$ \hspace{1cm} (I)
The predictions (P_t) were initialized to the first prediction (P_1) of the participant for each condition, and the constant learning rate (α) was estimated for each participant. First, we estimated the Rescorla-Wagner model using one learning rate across SD conditions. Subsequently, we adjusted this model to allow for learning rates that differed with SD, thus adding two additional free parameters.

According to Pearce-Hall, decreases in absolute prediction error across trials may be used to guide changes in learning rate (Pearce and Hall 1980). Here, the dynamic learning rate (α_t) depends on the weighted (η) unsigned prediction error (normalized to a value in the range [0 1]) across the past trials. The weighing factor (η; range [0 1]) regulates the extent of the gradual change in learning rate:

$$P_{t+1} = P_t + \alpha_t \cdot \delta_t$$

$$\alpha_{t+1} = \eta \cdot \left| \frac{\delta_t}{100 \text{ points}} \right| + (1 - \eta) \cdot \alpha_t$$

(2)

Here, large prediction errors will result in an increase in learning rate on the next trial, whereas learning rates will decrease with smaller prediction errors. When $\eta > 0$ the new learning rate depends on the previous learning rate and the previous absolute prediction error. Importantly, when $\eta = 0$ the Pearce-Hall model is equivalent to a constant learning rate Rescorla-Wagner model. Thus, the Rescorla-Wagner model is nested in the more complicated Pearce-Hall via a parametric restriction.

The initial learning rate (α_1) and decay parameter (η) are the free parameters that are estimated via model fitting. First, this model was estimated using one initial learning rate for all SD conditions. Subsequently, we adjusted this model to allow for initial learning rates that differed with SD, thus adding two additional free parameters.

Simulated data. We conducted a simple simulation to determine the theoretical effect of 1) (initial) learning rate, 2) learning rate decay and 3) reward variability on performance in our task. We constructed reward distributions with 20 different SD’s (i.e., SD 1 – SD 20). Each distribution had an EV of 0. Using MATLAB, fifty reward distributions of 42 trials each (i.e., equivalent to our task) were generated for each SD by drawing random round numbers from a Gaussian distribution. Subsequently, we inspected overall performance error ($|\text{performance - EV}|$ averaged over all trials) for learning rates between 0 and 1 (in steps of 0.01) and gradual decays in learning rate between 0 and 1.
(in steps of 0.1). For each SD, learning rate and decay, performance error was averaged over the 50
different distributions generated for each SD. The first prediction (i.e., start point) in our simulation
was randomly drawn from a distribution with an EV of 15 and an SD of 2. This was motivated by the
observation that participants in our task tended to predict rewards of \pm 50 points (50.77 ± 2.23)
during the first trial of each distribution, i.e., at the middle of the scale, thus resulting in performance
errors of \pm 15 (i.e., $|50 - 35|$ or $|50- 65|$). We removed the first prediction prior to the calculation of
simulated performance error data.

In line with previously reported results, simulated data (Fig. 2A) show that the use of
dynamically decreasing learning rates facilitates substantial decreases in overall performance error
($|\text{prediction} - \text{EV}|$ averaged over all trials) compared to the use of a constant Rescorla-Wagner
learning rate (Nassar et al. 2010).

Adaptation to reward variability. Performance may be further improved through scaling of
prediction errors relative to reward variability. Investigating the relationship between prediction error
scaling and task performance was the main goal of this study. If such adaptation indeed benefits
performance, the optimal learning rate should differ for varying degrees of reward variability in the
absence of prediction error scaling. The optimal learning rate was defined as the learning rate that
resulted in lowest overall performance error for a specific SD in the simulated data. Simulated results
show that the lowest performance error could be achieved through the use of smaller (initial) learning
rates when SD increases (see Fig. 2B-C). This relationship was present for each level of gradual decay
in learning rate (see Fig. 2C for multiple decays). Whereas the optimal (initial) learning rate varied
with the logarithm of the SD for small decays, this relation was linear for the highest decays (Fig. 2C).

To investigate adaptation in our experimental data, we first compared model fits for 1) a model with
one (initial) learning rate across SD conditions to 2) a model with SD-specific (initial) learning rates.
If participants would adapt to reward variability, the model with SD-specific learning rates should
provide a better fit of participants’ prediction sequences.

To determine how well a normative model including prediction error scaling described human
behavior, we divided the reward prediction error by the SD of the received rewards. This model is
similar to the Pearce-Hall model (eq.2), however, in this model the reward prediction error is divided by the SD (σ_t) of the received rewards. As the relationship between optimal learning rate and SD is logarithmic for lower decays (see simulations), we multiplied the adaptation parameter with the logarithm of the observed SD in a second version of the model:

$$P_{t+1} = P_t + \alpha_t \cdot \frac{\delta_t}{\omega_t}$$

$$a_{t+1} = \eta \cdot \left(\frac{\delta_t}{\log(\sigma_t)} \right) + (1 - \eta) \cdot \alpha_t$$

Here, σ_t is the SD of rewards received on trial 1 to trial t. The initial expected SD of rewards $\sigma_{t,2}$ was a free parameter that was estimated separately for each SD condition thus resulting in 3 free parameters. The initial learning rate (α_1) and decay parameter (η) were additional free parameters that were estimated via model fitting.

As it is conceivable that participants scale prediction errors relative to, but with a quantity smaller than the SD, we subsequently adjusted the adaptive model by adding a free scaling parameter ω_t on prediction errors. To obtain the scaling parameter ω_t, a free parameter (ν) that allowed for individual variation in adaptation was multiplied with the SD (σ_t). As the relationship between optimal learning rate and SD is logarithmic for lower decays, we multiplied the adaptation parameter with the logarithm of the SD (σ_t) in a second version of the model:

$$P_{t+1} = P_t + \alpha_t \cdot \frac{\delta_t}{\omega_t}$$

$$a_{t+1} = \eta \cdot \left(\frac{\delta_t}{\omega} \right) + (1 - \eta) \cdot \alpha_t$$

$$\omega_t = (1 - \nu) + \nu \cdot (\log(\sigma_t))$$

The initial expected SD of rewards $\sigma_{t,2}$ was a free parameter that was estimated separately for each SD condition, thus resulting in 3 free parameters. The initial learning rate (α_1), decay parameter (η) and adaptation index (ν) were additional free parameters that were estimated via model fitting. $\nu > 0$ indicates that participants adjust the initial learning rate relative to reward variability. In contrast, when $\nu = 0$ reward prediction errors are divided by 1, resulting in no adaptation. ν was constrained to...
the interval [0 1] where a value of 1 indicates adaptation to (the logarithm of) the SD. Importantly, this adaptive Pearce-Hall model can be transformed into the simpler non-adaptive Rescorla-Wagner and Pearce-Hall models by imposing a set of constraints on the parameters. Specifically, for $\nu = 0$ this model is equivalent to the non-adaptive Pearce-Hall model (eq.2). In addition, when $\nu = 0$ and $\eta = 0$ this model is equivalent to the Rescorla-Wagner model (eq.1).

Model fitting and comparison. We estimated the free parameters of each model using a constrained search algorithm (fmincon in MATLAB) to minimize the total squared difference between participants’ predictions and prediction sequences generated by the model. Models were fitted for each participant separately (i.e., using an individual set of free parameters) using all SD conditions and trials of the main task (n=252; 6 distributions * 42 trials). For model comparison within participants, we used the Akaike Information Criterion (AIC), which penalizes the number of free parameters to determine the overall best model. For model comparisons at the group level, AIC values were aggregated over all participants for each model. Thus, this approach allowed us to conduct model comparisons on the individual as well as on the group level. In addition, as the Rescorla-Wagner (eq.1) and Pearce-Hall (eq.2) model are nested in the adaptive Pearce-Hall model (eq.4) via restrictions on model parameters, we used likelihood ratio tests to investigate whether superior fits of the adaptive model were better than chance level. Thus, we determined whether the improvement in fit gained by allowing the adaptation parameter to be free was warranted.

As adaptation presumably required participants to learn the structure of the task and the degree of reward fluctuation associated with SD cues it was hypothesized that prediction error scaling relative to reward variability would be reduced or absent during the practice sessions. Consequently, we also obtained the best fitting model parameters for each participants’ practice sessions (n trials: 168) and repeated the model comparisons.

Adaptation to reward variability and learning efficiency. To test our central hypothesis, we determined whether scaling of prediction errors relative to reward variability would be related to improvements in learning in humans. Efficient learning requires individuals to rapidly acquire stable
and accurate predictions in contexts with varying degrees of reward variability. Higher overall efficiency in learning should be reflected in smaller overall performance error (|prediction - EV| averaged over all trials). Consequently, overall performance error (1), final performance error (2) and final prediction (in)stability (3) were used as the main measures of learning efficiency. Final performance error was quantified as the average performance error during the final short block of the task (± trial 36:42). Final prediction instability pertained to the standard deviation of participants’ predictions in the final short block. Importantly, scores on the different outcome measures could be highly correlated, e.g. increases in (final) performance error could result from unstable predictions, rather than stable predictions distant from the EV. Indeed, high correlations (Spearman’s $\rho > 0.80$) were present between overall performance error, final performance error and prediction instability. Thus, we used overall performance error as the representative outcome measure for learning efficiency. Failure of adaptation was hypothesized to have a larger effect on performance error magnitude for higher SDs (see Fig. 2E). Specifically, adapters ($v>0$) and non-adapters ($v=0$) may show similar accuracy predicting the mean when SD is low, but differ in their performance for higher SD’s. Consequently, (dis)similarity in performance for different SD conditions was used as an additional measure of learning efficiency. Performance dissimilarity was quantified as the standard deviation of overall performance error across the different SD conditions.

Although the simulated data suggests that scaling of prediction errors relative to reward variability may improve performance (compare red dots in Fig. 2A to Fig. 2D and compare Fig. 2E top and bottom panels; simulated data), performance also critically depends on the gradual decay in learning rate and the initial learning rate (compare blue dots in Fig. 2A to Fig. 2D; simulated data). Thus, an increase in computational demands required for adaptation may, for instance, interfere with optimal learning rate decay. In addition, scaling with a magnitude close to the (logarithm of the) SD may limit the power of the learning rate to update predictions (See Fig. 2F). Consequently, performance may, but does not necessarily improve with adaptation as predicted by normative models.

To allow for a non-linear relation between learning efficiency (overall performance error and dissimilarity in performance error across SD conditions) and the degree of adaptation (v; eq.4), we
conducted quadratic regressions. The initial learning rate (α_1; eq.4) and the gradual decrease in learning rate (η; eq.4) were used as additional independent variables in the regressions:

$$Y_1(\text{perf. error}) = \beta_0 + \beta_1(n) + \beta_2(\eta) + \beta_3(\alpha_1) + \beta_4(n^2) + \beta_5(\eta^2) + \beta_6(\alpha_1^2) + \epsilon$$ \hspace{1em} (5)

$$Y_2(\text{SD(perf. error across SDs)}) = \beta_0 + \beta_1(n) + \beta_2(\eta) + \beta_3(\alpha_1) + \beta_4(n^2) + \beta_5(\eta^2) + \beta_6(\alpha_1^2) + \epsilon$$ \hspace{1em} (6)

To obtain standardized regression coefficients all independent and dependent variables were z-transformed.

RESULTS

Participants used dynamic learning rates. As dynamic learning rates can improve learning in variable contexts, we inspected whether participants decelerated learning across trials. Model comparisons showed that the Pearce-Hall model with a dynamic learning rate (eq.2) provided a superior fit to participants’ prediction sequences compared to a constant learning rate Rescorla-Wagner model (see Table 1 for model comparisons; see figure 3A for a typical participant). Inspection of individual model fits revealed that the Rescorla-Wagner model performed best in only a small minority of the participants (3/31). This result validates the nesting of adaptation to reward variability in a Pearce-Hall model.

Adaptation to reward variability. To investigate adaptation to reward variability, we first determined whether model fits for the Pearce-Hall model improved by including SD-specific initial learning rates. Indeed, model fits improved when initial learning rates could differ across SD conditions (Table 1). Initial learning rates decreased significantly for increases in SD (repeated measures ANOVA: $F(2,60) = 11.0788$, $p = 8.0374 \times 10^{-5}$, all one-tailed post-hoc tests: $p < 0.0167$ (value required for Bonferroni correction); Fig. 3B left). Whereas this effect was present in the majority of participants, some participants (9/31) used similar or increasing initial learning rates when SD increased (Fig. 3B right). Importantly, the superior fit of a model with SD-specific learning rates did not solely result from the first few trials as model fits computed after exclusion of the initial ten
trials of each distribution also resulted in superior performance of the model with SD-specific learning rates (difference in AIC participant specific model parameters = -152.23; $\chi^2_{124} = 276.23$, $p < 0.001$; performance error data across trials shows that participants still updated their predictions after the first ten trials; Fig. 3C).

As each session included two conditions that alternated in short blocks initial learning rates for the first condition potentially depended on the second condition in that session. Specifically, initial learning rates for SD 10 conditions might increase if the second condition in a session has a higher SD (i.e., SD 15). However, initial learning rates estimated separately for the two SD 10 conditions did not differ significantly when paired with SD 5 compared to SD 15 ($T(60) = 0.7424$, $p = 0.4607$). This finding renders the presence of additional contextual effects on adaptation unlikely.

To facilitate formal tests of adaptation we adjusted the Pearce-Hall model to include prediction error scaling to reward variability (eq. 3-4). Participants’ predictions were better fit by adaptive Pearce-Hall models that scaled prediction errors with (eq.3) or relative to (eq.4) the (log) SD, compared to the non-adaptive Pearce-Hall model (Table 1). Even though the limited number of trials posed a restriction on statistical power on the individual level, the adaptive Pearce-Hall models provided a significantly better fit in the majority of participants (16/31) compared to the simpler models, evidenced by lower AIC values and significant likelihood ratio tests (See Fig. 3A for a typical participant). The minority of participants for whom the likelihood ratio tests were not significant comprised both individuals (9/31) in whom initial learning rates did not decrease for increases in SD (see above) as well as (6/31) individuals in whom adaptation occurred, but failed to reach significance, presumably due to the limited number of trials. In line with the notion of individual differences in the degree of adaptation, Pearce-Hall models that included a free parameter for adaptation (eq.4) outperformed Pearce-Hall models that used a fixed adaptation parameter (eq.3; Table 1). Of the two adaptive models with a free adaptation parameter, the logarithmic adaptive model provided a slightly better fit to participants’ prediction sequences compared to the linear adaptive model (Table 1). Consequently, this model was used for subsequent analyses. The difference in fit between the non-adaptive and adaptive Pearce-Halls model was most pronounced for high SD.
conditions (F(2,60) = 4.16, p = 0.0203; Fig. 3D; also compare Fig.3A left and right panel). Modelled
predictions from the log adaptive Pearce-Hall model (eq. 4) better predicted participants’ predictions
compared to modelled predictions from the non-adaptive Pearce-Hall model (eq.2; Wilcoxon signed rank
test on linear regression coefficients: Z = -3.0571, p = 0.0022; Fig. 3E). In line with this finding,
estimated adaptation parameters differed significantly from zero (0.5133 ± 0.3495; T(1,30) = 8.1757, p <
0.001). Although all model fits were superior for distributions with a higher EV (i.e., EV 65 vs EV 35), the
(log) adaptive Pearce-Hall model provided a better fit to participants prediction sequences compared to the
non-adaptive Pearce-Hall model for both EV’s (difference in AIC = -110.93 & -269.46; χ²₁₂₄ = 358.93, p
< 0.001 & χ²₁₂₄ = 517.47, p < 0.001 for EV 35 and EV 65 respectively). Superior performance of this
adaptive model compared to the non-adaptive Pearce-Hall model was confirmed by pooling
prediction sequence data across participants and fitting both models on the aggregated data using one
set of free parameters across participants (difference in AIC = -3.09; χ²₄ = 11.09, p = 0.0256). Finally,
we compared the log adaptive Pearce-Hall model with a free adaptation parameter (eq.4) to the non-
adaptive Pearce-Hall (eq.2) model using the more conservative Bayesian Information Criterion (BIC).
Compared to AIC, BIC has a greater preference for simplicity and penalizes models with more
parameters more heavily (Lewandowski and Farrell 2011). Using BIC this adaptive Pearce-Hall
model initially provided an inferior fit to participants’ behavior compared to the non-adaptive Pearce-
Hall model (difference in BIC = 203.2948). However, this negative effect resulted from punishment
for the three free parameters used to estimate the initial expected SD of rewards, not from the penalty
for the adaptation parameter. After removing the requirement to estimate the initial expected SD of
rewards, the adaptive model outperformed the non-adaptive model (across participants difference in
BIC = -58.56; on aggregated data difference in BIC = -1.38). Specifically, we fit the adaptive and
non-adaptive model to participants’ prediction sequences from the third trial onward, using the SD of
rewards received over the first two trials as the initial SD of rewards. On subsequent trials the SD of
rewards was updated as specified in eq. 4. In summary, these results suggest that participants scale
prediction errors in addition to decreasing the learning rate across subsequent trials.
Adaptation to reward variability only became apparent during the main task as participants’
predictions in the two practice sessions were better fit by the non-adaptive Pearce-Hall model
(difference in AIC across participants = -134.51; $\chi^2_{24} = 382.51$, p = 1). This result suggests that
adaptation required participants to learn the structure of the task and the degree of reward variability
associated with the SD cues.

The presence of adaptation to reward variability implies that dynamic learning rates varied
with scaled prediction errors. To describe this effect, we fitted participants’ predictions sequences for
each SD condition separately using the (logarithmic) adaptive Pearce-Hall model. Thus, initial
learning rates, learning rate decay and the degree of adaptation were allowed to vary across SD
conditions. As expected, simple linear regressions showed that (log) SD was a significantly better
predictor of initial learning rate for the non-adaptive Pearce-Hall model compared to the adaptive
Pearce-Hall model (Wilcoxon signed rank test on R^2: $Z = -2.2732$, p = 0.0203; Fig. 3F top panel). In
addition, learning rate decay was better predicted by (log) SD for the non-adaptive compared to the
adaptive model (Wilcoxon signed rank test on R^2: $Z = -2.3516$, p = 0.0187; Fig. 3F bottom panel).
Thus, as expected from improved model fits for the adaptive model, initial learning rates and learning
rate decays were more similar across SD conditions after adaptation.

Adaptation and learning efficiency. Importantly, adaptation to reward variability may serve to
make learning resistant to fluctuations in reward value. Although scaling of prediction errors relative
to reward variability should benefit performance, scaling with the SD may limit the power of the
learning rate to update predictions (Fig. 2F). Thus, we tested for a quadratic relationship between the
degree of adaptation (ν; eq.4) and overall performance. As performance also critically depends on the
gradual decay in learning rate and the initial learning rate, these parameters were used as additional
regressors.

We observed a significant quadratic relationship between the individual degree of prediction
error scaling and overall performance error (p = 0.0067; Table 2A; Fig. 4A left). Whereas
performance error decreased for adaptation indices up to $\nu = \sim 0.5$ (i.e., half the logarithm of the SD),
higher adaptation indices were associated with increases in performance error (Fig. 4A left). Analyses
using the extent of SD-dependent changes in learning rate (Fig. 3B right) as an alternative measure for adaptation confirmed this result ($\beta^2 = 0.1614$, T (24) = 3.1066, p = 0.0048). These results imply that efficient adaptation required scaling of prediction errors relative to, but smaller than the (log) SD, in line with the simulated data (Fig. 2F). The tight relationship between the simulated and experimental data suggests that participants tended to scale their prediction errors in an optimal manner. This relationship furthermore implies that the estimated adaptation parameters provided a good fit of participant’s behavior. I.e., unreliable fits might have resulted in erroneous adaptation parameters unlikely to correlate with (raw) performance error data. To further investigate the extent of prediction error scaling in relation to performance, we repeated model estimation for the log adaptive model without any constraints on the adaptation parameter. Seven of the 31 participants scaled prediction errors with a quantity larger than the log SD. These participants presented with significantly larger performance errors compared to individuals who scaled prediction errors with a quantity smaller than the SD (T(29) = 1.9937, p = 0.0278; Fig. 4B). This result shows how participants can make errors and deviate from theoretical predictions.

Performance error not only varied with adaption, but also depended on the gradual decay in learning rate (p = 0.0002; Table 2A; Fig. 4A right). Performance errors slightly decreased for small increases in learning rate decay, but increased extensively for larger decays (Fig. 4A right). Thus, whereas gradual deceleration of learning benefits performance, rapid deceleration results in preliminary completion of learning.

Regressions conducted for each SD separately showed that whereas the quadratic parameter for adaptation had a significant effect on performance error for higher SD’s, there was only a trend-level effect when SD was 5 (p = 0.079, 0.013 & 0.011 for SD 5, SD 10 and SD 15 respectively; table 2B-D). Gradual decay in learning rate significantly impacted on performance error for each of the SD’s separately (p = 0.007, 0.000 & 0.0004 for SD 5, SD 10 and SD 15 respectively; table 2B-D). Although learning rate decay had a larger effect on performance in the small SD condition, compared to prediction error scaling, both forms of adaptation had a similar contribution to performance in the large SD condition (see table 2). Thus, learning rate decay and prediction error scaling can be considered separate, additional, processes that impact on performance. Whereas learning rate decay
benefits performance independent of SD magnitude, the effect of prediction error scaling on performance increases when SD increases.

Scaling of prediction errors relative to SD should not only facilitate improved overall performance, but also result in similar learning across different levels of reward fluctuation. Indeed, dissimilarity in performance error (quantified as the standard deviation in performance error across SD conditions) was lower for individuals that adapted to a value up to $\nu = \sim 0.5$ (i.e., half the logarithm of the (log) SD), but not for those who adapted with larger values ($p = 0.0253$; Table 3; Fig. 4C left). Similarity in performance error across SD conditions also depended on the initial learning rate ($p = 0.0006$; Table 3; Fig. 4C right). Performance error across SD conditions was more similar for learning rates of approximately $0.2 - 0.4$, but became somewhat more dissimilar for larger learning rates and much more dissimilar with smaller initial learning rates (Fig. 4C right). These results show that optimal adaptation is related to improved performance in variable contexts.

As individual variability in adaptation to reward fluctuation could be related to the acquisition of a proper estimate of the level of variability, we inspected debriefing questionnaires. These questionnaires revealed that whereas individuals with a higher degree of adaptation ($\nu > 0$) correctly indicated which session was most difficult in terms of the level of variability, none of the participants with an adaptation index $\nu < 0.1$ ranked the sessions correctly. This result suggests that adapters in our task seem to acquire better estimates of the variability.

DISCUSSION

This study investigated whether human individuals achieve superior performance through scaling of prediction errors relative to reward variability. Model comparisons confirmed that participants adapted learning rates to reward variability, in addition to deceleration of learning rates across subsequent trials (Nasser et al. 2010). Improvements in individual performance, assessed as accuracy in predicting means of reward distributions, occurred for gradual decreases in learning rates and scaling of prediction errors relative to, but smaller than the SD. Indeed, scaling of prediction
errors with a quantity exceeding the (log) SD resulted in impaired performance. Importantly,
performance was more similar across SD conditions for optimal adapters. These results imply that
efficient adaptation makes learning more robust to changing variability

The positive relationship between prediction error scaling and task performance implies that
increased computational resources required for adaptation did not interfere with additional task
requirements including use of decreasing learning rates. Specifically, the absence of learning rate
decay or very steep decays in learning rate in combination with prediction error scaling can impair
performance (see Fig. 2C). If participants had used suboptimal initial learning rates and learning rate
decays when scaling prediction errors, the degree of adaptation alone might not have been a
significant predictor of performance error. This observation suggests that participants behaved in a
near-optimal manner in line with the simulations. However, some (7/31) participants scaled prediction
errors with a quantity exceeding the (log) SD, resulting in impaired performance. Such violation from
theoretical predictions stresses the importance of comparing human behavior to predictions made by
normative models (Preuschoff and Bossaerts 2007).

It is readily understandable how the observed adaptation to the predictable variability of
rewards is essential for learning. Whereas a reward prediction error of a particular magnitude might
be very meaningful in an environment in which rewards fluctuate less, a similar sized error is not very
meaningful when rewards vary with similar magnitude. Consequently, reward prediction errors should
be scaled to variability for appropriate updating of predictions. The impact of such scaling on
performance error should increase as SD increases. Indeed, whereas the extent of prediction error
scaling had a significant effect on performance error for SD 10 and SD 15, there was only a trend-
level effect for SD 5. Importantly, this procedure would furthermore enable individuals to detect
changes in the statistics of the environment, such as a change in EV and SD of a reward probability
distribution. Although previous studies showed that participants can successfully detect changes in
distributions (Berniker et al. 2010; Nassar et al. 2010; Payzan-LeNestour and Bossaerts 2011), they
did not identify an optimal degree of prediction error scaling or investigate the relation of such
adaptation to task performance, which was the topic of the current study. Furthermore, none of these
studies reported adaptation to reward variability in a stable, i.e., non-volatile, environment.
A positive relation between learning rate adaptation, learning and performance is implicit in Bayesian models of optimal learning (Jaynes 1986). This theorem specifies that each source of information should be weighted according to its reliability (or conversely, uncertainty). Surprising outcomes such as a large prediction error in a distribution with low variability should lead to larger updates in predictions as they render previous predictions less reliable. As such, adaptation to variability may lead to optimal performance as predicted by Bayesian models of learning. Although Bayesian studies on learning did not correlate the individual degree of adaptation to performance they did show that human individuals behave in an optimal or near-optimal manner as predicted by Bayesian decision theory in a number of tasks varying from sensorimotor learning to perceptual decision-making (Kording and Wolpert 2004; O’Reilly et al. 2012; Stocker and Simoncelli 2006; Yuille and Kersten 2006).

The substantial variability in the degree of adaptation as observed in the current study prompts the question why some individuals adapt better than others. Whereas the adaptive models provided a significantly better fit in the majority of participants, some participants were fit equally well by adaptive and non-adaptive Pearce-Hall models. Individual variability is often thought to reflect differences in information-processing power (Koechlin and Hyafil 2007; O’Reilly et al. 2012), limitations of which may interfere with acquiring a proper estimation of the variability thus hampering adaptation. Indeed, superior adapters were better at estimating the variability of each distribution, as apparent from debriefing questionnaires, in line with improvements in performance as observed on the task. In addition, adaptation only became apparent after the practice sessions. This result indicates that participants required information-processing power to learn the structure of the task and the degree of reward variability associated with the SD cues in order to adapt.

In addition, in some participants none of the Pearce-Hall models (adaptive or non-adaptive) provided a good fit (Fig. 3E), three of which were best fit by the constant learning rate Rescorla-Wagner model. Overall performance was lower in these participants, presumably related to a combined failure to scale prediction errors relative to reward variability and to use decreasing learning rates, potentially suggesting disengagement from the task. Importantly, omission of the participants
that were best fit by the Rescorla-Wagner model did not significantly alter our findings on the relation between prediction error scaling and task performance.

Performance not only depended on the extent of prediction error scaling, but also on the gradual decay in learning rate. Specifically, performance improved for gradual decays in learning rate, but decreased as the decay increased. In contrast to prediction error scaling, learning rate decay impacted similarly on performance error for the different SD’s. Thus, learning rate decay and prediction error scaling are separate forms of adaptation that differentially impact on performance. It is crucial to behaviorally separate these two adaptation processes as they may have different neural substrates, which future studies could examine. The observation that learning rates decayed across subsequent trials is in line with a previous study on belief-updating that required participants to predict the next number in a sequence (Nassar et al. 2010). Nassar et al. (2010) mainly focused on learning rate decreases across subsequent trials, whereas here we investigated the effect of prediction error scaling on performance. Thus, we quantified the separate effects of learning rate decay and prediction error scaling prior to investigating the relation between prediction error scaling and performance. A secondary difference between the two studies is the absence of volatility (i.e., unexpected changes in outcome distributions) in our study. Volatility would confound our study goals as participants may underestimate outcome variability under volatile conditions (Nasser et al., 2010).

In volatile conditions the participant must decide which prediction errors represent ‘fundamental changes’ in the underlying distribution, and which prediction errors are the results of noise. Therefore, to isolate prediction error scaling from this ‘fundamental change point’ detection, we performed this study in the absence of volatility. Finally, whereas Nassar et al. (2010) investigated learning about numerical (non-reward) outcomes, here we focus specifically on adaptation to reward variability. This is a crucial difference as a wealth of studies revealed specialized encoding of reward prediction errors in midbrain dopamine neurons and in the human ventral striatum (Garrison et al. 2013; Schultz et al. 1997). To incentivize the participants to perceive the drawn numbers as actual rewards, the pay-off in our main trials (80% of all trials) depended on the reward drawn by the computer. The finding that performance predicting upcoming rewards and the EV of reward distributions increased for distributions with higher EV’s suggests that this manipulation was successful. It has to be noted
though that during the incentive compatible control trials, where the participants had to predict the EV not the rewards, the measured prediction errors do not constitute reward prediction errors.

Importantly, omission of these control trials did not significantly impact on the results. However, as the control trials were unannounced, participants presumably perceived the pay-off to depend on the error estimating the EV for each trial.

The observed adaptation to reward variability involved scaling reward prediction errors relative to SD. It has to be noted, though, that an alternative way for achieving the observed adaptation would be for learning rates to directly adapt to SD. Although the current study cannot distinguish between these possibilities, the scaling of prediction errors is the most effective strategy for adapting to variability according to least squares learning theory (Preuschoff and Bossaerts 2007). Importantly, the task parameters identified in this study can be used in combination with human imaging methods to investigate this hypothesis. A neural basis for this mechanism might consist of the scaling of dopamine reward prediction error responses to SDs of reward probability distributions (Tobler et al. 2005). As such, dopamine reward prediction errors elicit the same excitatory and inhibitory neuronal responses with narrower reward distribution as larger errors do with wider distributions. Although human brain studies have not yet investigated the encoding of SD-normalized reward prediction errors, a recent study showed that striatal BOLD prediction error responses reflected reward probability but not expected reward magnitude (Park et al. 2012), which is in general agreement with the earlier dopamine study (Tobler et al. 2005). Importantly, if prediction errors are encoded in a normalized manner, learning rates should be encoded in an absolute manner, i.e., unscaled by SD. Indeed, previous studies reported that BOLD responses in the paracingulate and anterior cingulate cortex, the cuneus and the prefrontal cortex reflect variations in absolute learning rate (Behrens et al. 2007; Krugel et al. 2009; Payzan-LeNestour et al. 2013; Vilares et al. 2012).

Although additional support is needed, these studies render it likely that prediction errors scale physically to SD.

A recent study showed that human individuals tend to use model-based approaches when uncertainty in reward increases, and that the frontal cortex encodes arbitration between model-based and model-free learning (Lee et al., 2014). Yet, in the current study participants did not scale
prediction errors during the practice sessions, rendering it unlikely that the SD cues functioned as a
prior for scaling prediction errors. Participants may, however, have used the practice sessions to
construct a model of the degree of reward variability that was used to scale prediction errors during
the main task. However, the adaptive models that provided evidence that participants scaled
prediction errors, updated SD on a trial by trial basis. It is thus unlikely that participants solely used a
model-based approach to guide prediction error scaling.

These results should be treated with caution as model comparison using BIC only favored the
adaptive Pearce-Hall model after removal of the free parameters used to estimate the initial expected
SD of reward. However, all adaptive models were strongly favored using AIC and likelihood ratio
tests.
ACKNOWLEDGEMENTS

This work was supported by the Wellcome Trust and the Niels Stensen Foundation. We thank Martin Vestergaard for advice on model fitting and comparisons. We thank Paul Fletcher, William Stauffer, Armin Lak, Charlotte van Coeverden and Raymundo Báez Mendoza for useful discussions. The authors declare no competing financial interests.
REFERENCES

Berniker M, Voss M, and Kording K. Learning priors for Bayesian computations in the nervous system. *PloS one* 5: 2010.

Cox RT. Probability, frequency, and reasonable expectation. 1946.

FIGURE CAPTIONS

Figure 1.
A. Example trial of the main task. After fixation cross presentation, a small, medium or large green bar cue signaled the (relative) fluctuation in reward value of the current distribution. After cue presentation, participants were required to indicate their prediction of the upcoming reward, after which the actual reward on that trial was shown. B. Reward distributions and cues indicating the degree of reward variability (Cue; small, medium or large green bar). Numbers listed under the distribution indicate the range of numbers per distribution. Top rows represent EV 35, bottom rows EV 65. C. Three example sessions of the main task for a typical participant. In each of the three sessions, participants alternatingly predicted rewards drawn from two different distributions in small blocks of 5-8 trials, as indicated by bar cues. All participants experienced all six reward distributions. The order and combination of reward distributions were counterbalanced over participants. The two distributions in a session always had a different SD and EV. D. Reward prediction errors aggregated over participants and trials. Reward prediction errors increased with SD, indicating that the experimental manipulation was successful. E. Average (± s.e.m.) prediction errors (left) and performance errors (right) decreased for reward distributions with a higher EV, thus suggesting that participants perceived the drawn numbers as actual rewards. Abbreviations: SD, standard deviation; RPE, reward prediction error; RT, reaction time; N, number of; EV, Expected Value;

Figure 2.
A. Simulated overall performance error (|performance - EV| averaged over all trials) for the Pearce-Hall model (see main text for details on the simulation). Each line represents performance error across different learning rates for a specific decay in learning rate (y-axis). Greyscale lines represent different gradual decays in learning rate (η ; 0-1, in steps of 0.1). Lighter greys indicate increases in learning rate decay. When the decay in learning rate is 0, the Pearce-Hall (PH) model is equivalent to
the Rescorla-Wagner (RW) model. Performance error depends on both the initial learning rate (x-axis) and the gradual decay in learning rate. For most (initial) learning rates performance error is lower when combined with a decaying rather than a constant learning rate. B. Optimal initial learning rates for SDs of 1, 5, 10, 15 and 20 and a decay of 0.1. Optimal initial learning rate was quantified as the initial learning rate for which best overall performance could be achieved. The optimal initial learning rate decreases when SD increases. Each black line indicates performance error across different learning rates and each black line represents a specific SD. Red dots indicate the optimal learning rate for each SD. C. Optimal learning rates (grey dots and line) for different SDs (SD1-SD20) and multiple decays in learning rate (0, 0.1, 0.4, and 0.9). Optimal learning rates decrease when SD increases for each level of decay. Red dots correspond with the red dots in Fig. 2B, i.e., the optimal initial learning rates for SD 5, 10, 15 and 20 with a decay of 0.1. D. Simulated overall performance error for the adaptive Pearce-Hall model where prediction errors are scaled relative to the logarithm of SD (eq.4; \(\nu = 0.5 \)). Greyscale lines represent different gradual decays in learning rate (\(\eta ; 0-1, \text{in steps of 0.1} \)). Lighter greys indicate increases in learning rate decay. Although the minimum performance error is lower in the adaptive compared to the non-adaptive Pearce-Hall model (compare red dots Fig. 2A to Fig. 2D), performance also critically depends on the initial learning rate and the gradual decrease in learning rate (compare blue dots Fig. 2A and Fig. 2D). Thus, performance may, but does not necessarily improve with adaptation. E. Simulated predictions with the non-adaptive (top panel) and adaptive Pearce-Hall model (bottom panel) for distributions with an SD of 5, 10 and 15, an initial learning rate of 0.5 and a gradual decay in learning rate of 0.1. Lines represent average of 200 simulated sessions. Shaded areas indicate s.e.m. Adaptation facilitates faster learning and more similar performance error across SD conditions. F. Relation between the degree of adaptation (eq.4; prediction errors scaled with the logarithm of SD) and performance error. Whereas scaling of prediction errors relative to but smaller than (the logarithm of) the SD facilitates decreases in performance error, scaling with a magnitude close to the (logarithm of the) SD may limit the power of the learning rate to update predictions, resulting in increases in performance error. Thus, performance may, but does not necessarily improve with adaptation. Abbreviations: SD, standard deviation; RW, Rescorla-Wagner.
Figure 3.

A. Observed and modelled predictions of reward in a typical participant for the constant learning rate Rescorla-Wagner model, the non-adaptive Pearce-Hall model and the adaptive Pearce-Hall model (eq.4; prediction errors scaled relative to the logarithm of SD). The Pearce-Hall models with dynamic learning rate provided a superior fit to participants’ prediction sequences compared to the constant learning rate Rescorla-Wagner model. In addition, the adaptive Pearce-Hall model provided a better fit compared to the non-adaptive Pearce-Hall model. Whereas the difference in fit between the two Pearce-Hall models was relatively small for lower SD’s, this difference was pronounced for the high SD condition (right panel). B. Left: Median initial learning rates decreased significantly for increases in SD, suggesting adaptation to reward variability. Right: Changes in initial learning rates as a function of SD in individual participants. Markers provide estimated initial learning rates; lines are least square lines fitted through these data points. Whereas the majority of participants (dark grey lines) decreased initial learnings when SD decreased, some participants used the same initial learning rate across different SD’s, or increased initial learning rates when SD increased (light grey lines). C. Average (± s.e.m) performance error (\(|\text{prediction} - \text{EV}|\)) data across all participants and trials showing that participants continued to update their predictions until the final trials of each condition. D. The difference in AIC criterion values between the adaptive and none adaptive Pearce-Hall model increased for increases in SD indicating that prediction error scaling becomes more important when SD increases. E. \(R^2\)'s from linear regressions where modelled predictions from the non-adaptive (eq.2) and adaptive Pearce-Hall model (eq.4) were the independent variables and participants’ predictions were the dependent variable. Most participants’ predictions were better explained by the adaptive Pearce-Hall model. F. Top: The logarithm of SD provides a better predictor of learning rate (average \(R^2 ± \text{s.e.m.}\)) for the non-adaptive compared to the adaptive model. Importantly, for these analyses, initial learning rates, learning rate decay (and the degree of adaptation) were allowed to vary across SD conditions for the non-adaptive as well as the adaptive model. Bottom: The logarithm of SD provides a better predictor of learning rate decay (average \(R^2 ± \text{s.e.m.}\)) for the non-adaptive compared to the adaptive model. Thus, initial learning rates and learning rate decays were more similar across SD conditions after adaptation. Abbreviations: log, logarithm; SD, standard deviation; Part pred,
Participants’ predictions; n-adap, non-adaptive; adap, adaptive; RW, Rescorla-Wagner; PH, Pearce-Hall.

Figure 4.

A. Left: Overall performance error (|prediction - EV| averaged over all trials) varied significantly with the estimated degree of prediction error scaling. Whereas performance error decreased for adaptation indices up to $\nu = 0.4 - 0.6$ (i.e., ~ half the logarithm of the SD), higher adaptation indices were associated with increases in performance error. Right: Relationship between learning rate decay and performance error. Performance errors slightly decreased for small increases in learning rate decay (η), but increased substantially for larger decays (> 0.6 - 0.8). Adaptation indices and learning rate decays were divided into five bins of equal width. Subsequently, performance errors were averaged over all adaptation/learning rate decay indices in a certain bin.

B. Increases in performance error in those individuals that scaled prediction error with a quantity greater than the log SD. C. Left: Dissimilarity in performance error across SD conditions was lower for individuals that scaled prediction errors to a value up to $\nu = 0.4 - 0.6$ (i.e., ~ half the SD), but not for those who adapted with larger values. Right: relationship between initial learning rate and performance error. Performance error was more similar for initial learning rates (α_1) of approximately 0.2 - 0.4, but became more dissimilar with smaller and larger learning rates. Adaptation indices and initial learning rates were divided into five bins of equal width. Subsequently, similarity in performance error was averaged over all adaptation indices/initial learning rates in a certain bin.
EQUATIONS

\[P_{t+1} = P_t + \alpha_t \delta_t \]

(1)

\[P_{t+1} = P_t + \alpha_t \delta_t \]

\[a_{t+1} = \eta \left(\frac{\delta_t}{100 \text{ points}} \right) + (1 - \eta) \alpha_t \]

(2)

\[P_{t+1} = P_t + \alpha_t \frac{\delta_t}{\omega_t} \]

\[a_{t+1} = \eta \left(\frac{\delta_t/\log(\sigma_t)}{100 \text{ points}} \right) + (1 - \eta) \alpha_t \]

(3)

\[P_{t+1} = P_t + \alpha_t \frac{\delta_t}{\omega_t} \]

\[a_{t+1} = \eta \left(\frac{\delta_t/\omega_t}{100 \text{ points}} \right) + (1 - \eta) \alpha_t \]

\[\omega_t = (1 - \nu) + \nu \log(\sigma_t) \]

(4)

\[Y_1(\text{perf. error}) = \beta_0 + \beta_1(v) + \beta_2(\eta) + \beta_3(\alpha_t) + \beta_4(v^2) + \beta_5(\eta^2) + \beta_6(\alpha_t^2) + \epsilon \]

(5)

\[Y_2(\text{SD perf. error across SDs}) = \beta_0 + \beta_1(v) + \beta_2(\eta) + \beta_3(\alpha_t) + \beta_4(v^2) + \beta_5(\eta^2) + \beta_6(\alpha_t^2) + \epsilon \]

(6)
Figure 2

A. Non-adaptive Pearce-Hall

B. Performance error vs. Initial learning rate

C. Optimal initial learning rate vs. Standard deviation

D. Adaptive Pearce-Hall

E. Performance error vs. Trial number

F. Performance error vs. Degree of adaptation
Figure 3

A

B

C

D

E

F

Figure 3

A

B

C

D

E

F
Figure 4

A

B

C

Degree RPE scaling

Degree LR decay

Performance error

Performance error

Performance error

Performance error

Performance error

Performance error

$\text{Dissimilarity performance error}$

$\text{Dissimilarity performance error}$

$\text{Dissimilarity performance error}$

Degree RPE scaling

Initial LR

$\text{Adap}_>1$

$\text{Adap}_<1$
Table 1. Quality of model fits to participants’ prediction sequences using a separate set of parameters for each participant.

<table>
<thead>
<tr>
<th>Model</th>
<th>RW</th>
<th>PH</th>
<th>PH - SD specific α_1</th>
<th>Linear adaptive PH: $\nu = 1$</th>
<th>Log adaptive PH: $\nu = 1$</th>
<th>Linear adaptive PH: $\nu = [0, 1]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>dAIC: -439.67</td>
<td>$X^2_{PH} = 501.67$, $p < 0.001$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH - SD specific α_1</td>
<td>dAIC: -505.78</td>
<td>$X^2_{PH} = 691.78$, $p < 0.001$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear adaptive PH - fixed parameter adaptation: $\nu = 1$</td>
<td>dAIC = -544.18</td>
<td>$X^2_{PH} = 965.18$, $p < 0.001$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log adaptive PH fixed parameter adaptation: $\nu = 1$</td>
<td>dAIC: -621.05</td>
<td>$X^2_{PH} = 869.29$, $p < 0.001$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear adaptive PH - free adaptation parameter: $\nu = [0, 1]$</td>
<td>dAIC: -635.86</td>
<td>$X^2_{PH} = 945.86$, $p < 0.001$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log adaptive PH - free adaptation parameter: $\nu = [0, 1]$</td>
<td>dAIC: -671.02</td>
<td>$X^2_{PH} = 981.02$, $p < 0.001$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RW, Rescorla-Wagner; PH, Pearce-Hall; SD, standard deviation; α_1, initial learning rate; ν, adaptation to reward variability; dAIC, difference in AIC criterion value.
Table 2A. Parameter estimates and statistics for quadratic regressions predicting overall performance error

<table>
<thead>
<tr>
<th>Parameter</th>
<th>β</th>
<th>Std. err.</th>
<th>t(24)</th>
<th>p(t)</th>
<th>95% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>lower bound</td>
</tr>
<tr>
<td>ν</td>
<td>.063</td>
<td>.107</td>
<td>.594</td>
<td>.558</td>
<td>-.157</td>
</tr>
<tr>
<td>η</td>
<td>.056</td>
<td>.167</td>
<td>.337</td>
<td>.739</td>
<td>-.289</td>
</tr>
<tr>
<td>α₁</td>
<td>.078</td>
<td>.172</td>
<td>.454</td>
<td>.654</td>
<td>-.277</td>
</tr>
<tr>
<td>ν²</td>
<td>.388</td>
<td>.172</td>
<td>2.970</td>
<td>.007</td>
<td>.118</td>
</tr>
<tr>
<td>η²</td>
<td>.537</td>
<td>.121</td>
<td>4.427</td>
<td>.000</td>
<td>.287</td>
</tr>
<tr>
<td>α₁²</td>
<td>.053</td>
<td>.129</td>
<td>.409</td>
<td>.686</td>
<td>-.214</td>
</tr>
<tr>
<td>Intercept</td>
<td>-.947</td>
<td>.229</td>
<td>-4.126</td>
<td>.000</td>
<td>-1.420</td>
</tr>
</tbody>
</table>

Fitted model: F(6,24) = 12.521, p = 0.000, R² adjusted = 0.697

ν, adaptation to reward variability; η, gradual decay in learning rate; α, initial learning rate.

Table 2B. Parameter estimates and statistics for quadratic regressions predicting performance error for SD 5

<table>
<thead>
<tr>
<th>Parameter</th>
<th>β</th>
<th>Std. err.</th>
<th>t(24)</th>
<th>p(t)</th>
<th>95% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>lower bound</td>
</tr>
<tr>
<td>ν</td>
<td>.100</td>
<td>.129</td>
<td>.778</td>
<td>.444</td>
<td>-.166</td>
</tr>
<tr>
<td>η</td>
<td>.212</td>
<td>.202</td>
<td>1.050</td>
<td>.304</td>
<td>-.205</td>
</tr>
<tr>
<td>α₁</td>
<td>-.084</td>
<td>.209</td>
<td>-.402</td>
<td>.691</td>
<td>-.514</td>
</tr>
<tr>
<td>ν²</td>
<td>.291</td>
<td>.158</td>
<td>1.837</td>
<td>.079</td>
<td>-.036</td>
</tr>
<tr>
<td>η²</td>
<td>.437</td>
<td>.147</td>
<td>2.973</td>
<td>.007</td>
<td>.134</td>
</tr>
<tr>
<td>α₁²</td>
<td>-.009</td>
<td>.157</td>
<td>-.060</td>
<td>.952</td>
<td>-.333</td>
</tr>
<tr>
<td>Intercept</td>
<td>-.695</td>
<td>.278</td>
<td>-2.501</td>
<td>.020</td>
<td>-1.268</td>
</tr>
</tbody>
</table>

Fitted model: F(6,24) = 7.269, p = 0.000, R² adjusted = 0.556

ν, adaptation to reward variability; η, gradual decay in learning rate; α, initial learning rate.

Table 2C. Parameter estimates and statistics for quadratic regressions predicting performance error for SD 10

<table>
<thead>
<tr>
<th>Parameter</th>
<th>β</th>
<th>Std. err.</th>
<th>t(24)</th>
<th>p(t)</th>
<th>95% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>lower bound</td>
</tr>
<tr>
<td>ν</td>
<td>.142</td>
<td>.114</td>
<td>1.254</td>
<td>.222</td>
<td>-.092</td>
</tr>
<tr>
<td>η</td>
<td>-.058</td>
<td>.178</td>
<td>-.327</td>
<td>.746</td>
<td>-.426</td>
</tr>
<tr>
<td>α₁</td>
<td>.213</td>
<td>.184</td>
<td>1.160</td>
<td>.257</td>
<td>-.166</td>
</tr>
<tr>
<td>ν²</td>
<td>.372</td>
<td>.139</td>
<td>2.667</td>
<td>.013</td>
<td>.084</td>
</tr>
<tr>
<td>η²</td>
<td>.605</td>
<td>.129</td>
<td>4.675</td>
<td>.000</td>
<td>.338</td>
</tr>
<tr>
<td>α₁²</td>
<td>-.081</td>
<td>.138</td>
<td>-.588</td>
<td>.562</td>
<td>-.366</td>
</tr>
<tr>
<td>Intercept</td>
<td>-.866</td>
<td>.245</td>
<td>-3.542</td>
<td>.002</td>
<td>-1.371</td>
</tr>
</tbody>
</table>

Fitted model: F(6,24) = 10.545, p = 0.000, R² adjusted = 0.656

ν, adaptation to reward variability; η, gradual decay in learning rate; α, initial learning rate.
Table 2D. Parameter estimates and statistics for quadratic regressions predicting performance error for SD 15.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>β</th>
<th>Std. err.</th>
<th>t(24)</th>
<th>p(t)</th>
<th>95% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>lower bound</td>
</tr>
<tr>
<td>v</td>
<td>-.041</td>
<td>.124</td>
<td>-.330</td>
<td>.744</td>
<td>-.298</td>
</tr>
<tr>
<td>η</td>
<td>.022</td>
<td>.195</td>
<td>.111</td>
<td>.913</td>
<td>-.381</td>
</tr>
<tr>
<td>α₁</td>
<td>.084</td>
<td>.201</td>
<td>.416</td>
<td>.681</td>
<td>-.331</td>
</tr>
<tr>
<td>ν²</td>
<td>.419</td>
<td>.153</td>
<td>2.748</td>
<td>.011</td>
<td>.104</td>
</tr>
<tr>
<td>η²</td>
<td>.451</td>
<td>.142</td>
<td>3.182</td>
<td>.004</td>
<td>.158</td>
</tr>
<tr>
<td>α₁²</td>
<td>.197</td>
<td>.151</td>
<td>1.307</td>
<td>.204</td>
<td>-.114</td>
</tr>
<tr>
<td>Intercept</td>
<td>-1.033</td>
<td>.268</td>
<td>-3.857</td>
<td>.001</td>
<td>-1.586</td>
</tr>
</tbody>
</table>

Fitted model: F(6,24) = 8.121, p = 0.000, R² adjusted = 0.587

v, adaptation to reward variability; η, gradual decay in learning rate; α, initial learning rate.
Table 3. Parameter estimates and statistics for quadratic regressions predicting dissimilarity in performance error across SD conditions.

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>Std. err.</th>
<th>t(24)</th>
<th>p(t)</th>
<th>95% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lower bound</td>
<td>upper bound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν</td>
<td>-.218</td>
<td>.146</td>
<td>-1.495</td>
<td>.148</td>
<td>-.518</td>
</tr>
<tr>
<td>η</td>
<td>-.339</td>
<td>.228</td>
<td>-1.485</td>
<td>.150</td>
<td>-.810</td>
</tr>
<tr>
<td>α₁</td>
<td>.456</td>
<td>.235</td>
<td>1.940</td>
<td>.064</td>
<td>-.029</td>
</tr>
<tr>
<td>ν²</td>
<td>.426</td>
<td>.179</td>
<td>2.385</td>
<td>.025</td>
<td>.057</td>
</tr>
<tr>
<td>η²</td>
<td>.228</td>
<td>.166</td>
<td>1.377</td>
<td>.181</td>
<td>-.114</td>
</tr>
<tr>
<td>α₁²</td>
<td>.694</td>
<td>.177</td>
<td>3.926</td>
<td>.001</td>
<td>.329</td>
</tr>
<tr>
<td>Intercept</td>
<td>-1.304</td>
<td>.313</td>
<td>-4.161</td>
<td>.000</td>
<td>-1.951</td>
</tr>
</tbody>
</table>

Fitted model: $F(6,24) = 4.858$, $p = 0.002$, R^2 adjusted = 0.436

ν, adaptation to reward variability; η, gradual decay in learning rate; α, initial learning rate.