Genetically identified spinal interneurons integrating tactile afferents for motor control

Tuan V. Bui1,2, Nicolas Stifani3, Izabela Panek3 and Carl Farah1

1Department of Biology, 2Centre for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
3Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2

CONTACT INFORMATION:
Tuan Bui
Department of Biology
University of Ottawa
Gendron Hall 285
30 Marie Curie
Ottawa, ON
Canada K1N 6N5
e-mail: tuan.bui@uottawa.ca
phone: +1-613-562-5800 ext. 7888
fax: +1-613-562-5486

Number of figures: 3 Number of tables: 1

Running Title: Spinal sensorimotor integration of tactile information

Keywords: tactile information, spinal cord, sensorimotor integration, genetically-identified spinal neurons
ABSTRACT

Our movements are shaped by our perception of the world as communicated by our senses. Perception of sensory information has been largely attributed to cortical activity. However, a prior level of sensory processing occurs in the spinal cord. Indeed, sensory inputs directly project to many spinal circuits, some of which communicate with motor circuits within the spinal cord. Therefore, the processing of sensory information for the purpose of ensuring proper movements is distributed between spinal and supra-spinal circuits. The mechanisms underlying the integration of sensory information for motor control at the level of the spinal cord have yet to be fully described.

Recent research has led to the characterization of spinal neuron populations that share common molecular identities. Identification of molecular markers that define specific populations of spinal neurons is a prerequisite to the application of genetic techniques devised to both delineate the function of these spinal neurons and their connectivity. This strategy has been employed in the study of spinal neurons that receive tactile inputs from sensory neurons innervating the skin. As a result, the circuits that include these spinal neurons have been revealed to play important roles in specific aspects of motor function. We describe these genetically identified spinal neurons that integrate tactile information and the contribution of these studies to our understanding of how tactile information shapes motor output. Furthermore, we describe future opportunities that these circuits present for shedding light on the neural mechanisms of tactile processing.
The neural control of motor activity is a product of signals arising from three main sources: supraspinal centres, spinal networks and peripheral sensory afferents. In most general terms, supraspinal centres generate motor commands and select appropriate sequences of motor activity; spinal networks translate descending motor commands into muscle activity. Sensory information conveys important information about the external world (exteroceptive) and about the internal self (interoceptive) to central networks. While basic motor activity can be generated by spinal networks with or without motor commands from supraspinal networks, achieving high complexity, range, accuracy and fluency of movement within changing and challenging environments is impossible without sensory information (Acevedo and Diaz-Rios 2013; Akay et al. 2014). Sensory information is vital to ensuring appropriate motor execution by evaluating and adjusting motor commands during ongoing motor activity.

Sensory information can be arranged into functional groups or modalities, such as sight, hearing, balance, taste, smell, temperature, nociception, proprioception, and touch. Proprioception contributes to the control of movement by communicating muscle properties and body position. Tactile information is also integral to the control of movement as it guides movements by providing information about physical features of the external world. This occurs via a process where tactile stimuli are detected and transduced by specialized mechanoreceptors in the skin (for review see Abraira and Ginty 2013) and transmitted via afferent fibres from the periphery to the central nervous system (CNS). These signals enter the spinal cord and are directed to the sensory areas of the brain via brainstem nuclei and the thalamus. At the cortical level, tactile information is processed, organized and interpreted, which in turn is used to guide behaviours by adjusting descending motor commands. In parallel to the perception of tactile signals generated
at the cortical level, tactile signals are also integrated at the level of the spinal cord. That is, in addition to sending projections that travel rostrally up the dorsal column, cutaneous afferents project collaterals that branch out within the spinal cord and terminate onto spinal interneurons (Brown et al. 1981). Thus, the spinal cord serves as a site of active integration of tactile information, putatively for the purpose of shaping tactile perception and/or sensorimotor integration.

With regards to the perception of touch stimuli, little is known about how it is influenced by integration of tactile information at the level of the spinal cord. However, it has been established that movement itself can both stimulate sensory receptors and suppress cutaneous sensation (Prochazka 1989). Indeed, the perceived intensity of cutaneous stimulation is reduced during movement (Duysens et al. 1995; Milne et al. 1988). This may be a result of suppressed sensory transmission at the level of the spinal cord as suggested by experiments in monkeys where cutaneous sensory evoked potentials recorded in the spinal cord were reduced during active hand movement (Seki and Fetz 2012). Hence, spinal networks likely contribute to the final tactile perception.

The involvement of tactile information in shaping motor control through spinal circuitry is much more established than its role in tactile perception (briefly reviewed in Panek et al. 2014). In humans, motor reflexes can be evoked by electrical stimulation of cutaneous afferents applied through surface or ring electrodes. The early components of these reflexes were revealed to be mediated by spinal circuits rather than through long ascending and descending pathways connecting the brain and the spinal cord (Jenner and Stephens 1982). These circuits denote a
strong coupling of low-threshold mechanoreceptors (LTMRs) to both hand and leg motoneurons (Fallon et al. 2005; McNulty et al. 1999). As described below, these observations are part of a growing body of work demonstrating integration of tactile information by spinal circuits involved in motor control. However, the precise outcome of this integration in actually sculpting motor activity has not been well understood. Recent studies have started to shed light on spinal circuits processing tactile signal and their role in motor function (Bourane et al. 2015; Bui et al. 2013; Fink et al. 2014). In this review, we provide an overview of the spinal circuits that have been shown to be involved in sensorimotor integration of tactile information. Further, we discuss the properties of these spinal circuits including their location, connectivity and interactions with spinal motor circuits. We focus on spinal interneurons that have been recently identified using molecular and genetic studies, and which have been ascribed to sensorimotor integration. The study of these interneurons has added to our understanding of how tactile information can shape motor activity through spinal circuitry. Finally, we outline potential avenues for research using genetically-identified spinal neurons to address outstanding questions.

Properties of spinal circuits processing tactile information

LOCATION The most likely location of spinal interneurons (INs) processing tactile information for motor control can be estimated based upon the topographical distribution of the central terminals of LTMRs within the spinal cord. The spinal cord is composed of interneurons located in Rexed laminae I to VIII and X, and motoneurons located in laminae IX (Rexed 1954; 1952). While nociceptive sensory neurons predominantly contact spinal interneurons in the most superficial laminae (I and II) of the dorsal horn, tracing studies of myelinated cutaneous afferents have described the most dense labelling of terminals to be found in laminae III-V of the spinal
cord in rodents (Levinsson et al. 2002; Molander and Grant 1986; Panneton et al. 2005), cats
(Brown et al. 1981), and primates (Florence et al. 1991). Consistent with this distribution of
tactile afferents within the spinal cord, electrophysiological recordings of touch-evoked sensory
inputs to spinal neurons in laminae III-V have been reported in primates (Wagman and Price
1969), rats (Woolf and King 1989), hamsters (Schneider 2005), and cats (Koerber et al. 1990;
Sahai et al. 2006) amongst others. Some of these laminae III-V spinal neurons receiving sensory
inputs from LTMRs have been identified as premotor INs (i.e. neurons projecting directly to
 motoneurons Egger and Wall 1971; Hongo et al. 1989a; Hongo et al. 1989b), though some have
been observed in more ventral laminae VI and/or VII (Edgley and Jankowska 1987;
Moschovakis et al. 1992; Stepien et al. 2010). This anatomical specificity reflects functional
differences that are embedded in the spinal network connectivity.

SHAPING SPECIFIC FORMS OF MOTOR ACTIVITY While the precise connectivity between
tactile afferents and spinal neurons has not been fully characterized, tactile information has been
shown to be particularly important for several motor functions such as the control of grip
strength (Jenner and Stephens 1982; Johansson and Flanagan 2009). During hand grasp,
activation of tactile afferents increases hand muscle contraction (Collins et al. 1999; Johansson et
al. 1987). Local anesthesia of the fingers or hands precludes human subjects from performing
gripping tasks accurately (Augurelle et al. 2003; Johansson and Westling 1984). Furthermore,
this deficit could not be compensated by consciously attempting to increase grip strength. Tactile
afferents are also involved with locomotor function at the level of the spinal cord. Activation of
LTMRs can evoke sets of stereotyped limb reflexes (e.g. tripping perturbations: Drew and
Rossignol 1987; Forssberg et al. 1977; Quevedo et al. 2005a), as well as modulate the timing
(Duysens and Pearson 1976) and levels of muscle activation during locomotion (Duysens and Loeb 1980; Loeb et al. 1987). These reflexes have been suggested to be involved in fine-tuning the timing of locomotor activity (MacKay-Lyons 2002) as well as stabilizing gait in the wake of unexpected perturbations (Bunday and Bronstein 2009; Choi et al. 2013; Zehr et al. 1998). These results underline the importance of the recruitment of spinal circuits by tactile afferents to perform precise motor functions.

GATING OF SENSORY INTEGRATION AT THE LEVEL OF THE SPINAL CORD BY MOTOR CIRCUITS As alluded earlier, the relationship between tactile inputs and spinal motor circuits is not strictly unidirectional where sensory inflow adjusts motor activity through spinal circuitry. Rather it is bidirectional; there is ample evidence that sensory transmission to the spinal cord from LTMRs is in turn modulated by motor activity. For instance, motor reflexes evoked by tactile input are phasically modulated during locomotion in cats (Degtyarenko et al. 1998; Forssberg et al. 1977; Quevedo et al. 2005a; Quevedo et al. 2005b) and in humans (Baken et al. 2005; Van Wezel et al. 1997; van Wezel et al. 2000; Zehr et al. 1997; Zehr et al. 1998). Cutaneous reflexes also seem to be modulated by the type of activity during which they are evoked, as observed in humans for example, during different gaits (Duysens et al. 1993; Hoogkamer et al. 2012), fine versus coarse hand movements (Evans et al. 1989), and different limb or hand postures (Garnett and Stephens 1981; Gibbs et al. 1995). The modulation of cutaneous reflexes by motor activity may be due to gating of sensory transmission, which seems to occur at many levels of the CNS, including at the level of the spinal cord (Seki and Fetz 2012). However, there is also evidence suggesting that modulation of spinal interneurons
integrating tactile information for motor control may contribute to gating of cutaneous reflexes (Burke et al. 2001; Quevedo et al. 2005a).

It isn’t clear whether the bidirectional interactions between tactile inputs and motor networks are mediated strictly by spinal circuits or whether they rely on supraspinal control. Indeed, motor control involves hierarchical circuits spanning both spinal and supraspinal networks that enable motor adaptation and motor learning (Kawato et al. 1987). Likewise, sensorimotor integration is distributed across the CNS hierarchy. The distance of a sensorimotor circuit to the musculoskeletal system (spinal circuits being closer, supraspinal circuits being farther) introduces a relative delay to when sensory information influences motor activity (Shadmehr et al. 2010). Therefore, understanding at which levels of the CNS sensorimotor interactions occur is important to uncover the roles of these widely distributed sensorimotor circuits. In spite of the truly heroic efforts in earlier decades to demonstrate the presence of spinal circuits integrating tactile afferents, ascribing detailed motor roles to particular groups of spinal INs has been a difficult goal to achieve. The advent of recent genetic approaches to studying spinal neurons has enabled combinations of electrophysiological, cell labelling, and behavioural testing techniques that have provided strong evidence that spinal circuits integrating tactile information play crucial roles in ensuring proper motor control (Bourane et al. 2015; Bui et al. 2013). These genetic approaches are based upon the insight that during development, populations of neurons emerge from common progenitor pools that arise from the interaction of inductive signals released by structures such as the roof plate, floor plate, and notochord (Jessell 2000; Stifani 2014). These signals promote the activation of many transcription factors involved in a diverse set of developmental processes such as cell cycle progression and exit, cell migration, axon guidance,
and establishment of neurotransmitter phenotype to name a few. Each progenitor pool will express a unique combinatorial set of transcription factors (Fig. 1F). The partitioning of spinal neurons into genetically identified populations has been particularly successful (Alaynick et al. 2011; Francius and Clotman 2014; Lu et al. 2015; Stifani 2014). Herein, we describe those populations of genetically-identified spinal neurons that have been determined to integrate tactile afferents for the purpose of shaping motor activity and the fundamental insights that the study of these neurons has provided.

dI3 Interneurons

dI3 INs represent one of six identified early born dorsally-derived populations of INs (dI1-dI6) of the spinal cord (Fig. 1B). These neurons were initially described following the analysis of transcription factors active in the spinal dorsal horn during development, in particular through the assessment of the effects of gene knockouts on expression patterns of transcription factors (Gross et al. 2002; Muller et al. 2005; Nakada et al. 2004; Wine-Lee et al. 2004). As a result, the dI3 IN population is well characterized by the expression of Brn3a/b, Tlx3, Gsh1/2 and Ascl1 amongst other transcription factors in progenitor and/or post-mitotic cells derived from this population (Mizuguchi et al. 2006; Zou et al. 2012). More importantly, they are further characterized by the expression of Isl1, a LIM homeodomain transcription factor that is also expressed in motoneurons but uniquely found in dI3 INs amongst neurons of the dorsal spinal cord (Liem et al. 1997; Pfaff et al. 1996). This exclusive expression of Isl1 amongst dorsal neurons has enabled the application of genetic, electrophysiological and immunohistochemical methods to characterize dI3 INs and to determine their role in motor control (Bui et al. 2013; Goetz et al. 2015; Pivetta et al. 2014; Stepien et al. 2010).
Conditional expression of YFP by Isl1 has been used to determine that dI3 INs are primarily located in laminae V-VII at similar densities in cervical and lumbar spinal segments (Bui et al. 2013). Cell labelling and in-situ hybridization for vGluT2 mRNA showed that dI3 INs are predominantly glutamatergic with ipsilateral projections (Bui et al. 2013). Retrograde tracing of synaptic inputs to motoneurons using modified rabies virus demonstrated that dI3 INs directly contact motoneurons in the spinal cord (Goetz et al. 2015; Stepien et al. 2010). They are therefore part of a large group of ‘last-order’ spinal INs that control motor activity through direct excitation of motoneurons (Brownstone and Bui 2010).

Of these last-order spinal INs, dI3 INs belong to the subset which receive sensory inputs. Indeed, vGluT1 labelling revealed that dI3 INs receive primary afferent input (Alvarez et al. 2004). A large portion of these vGluT1-immunoreactive afferents were characterized by an absence of expression of parvalbumin, suggesting that much of the sensory input to dI3 INs is not proprioceptive in nature but may rather originate from cutaneous afferents (Bui et al. 2013). Transgenic mice (named dI3OFF), in which dI3 IN neurotransmission was genetically silenced through conditional ablation of vGluT2, a protein used by these interneurons for glutamatergic synaptic transmission, were used to further define the nature of the cutaneous afferents that project to dI3 INs (Bui et al. 2013). In control mice, \textit{in-vivo} or \textit{in-vitro} stimulation of the sural nerve, which predominantly carries cutaneous information (Peyronnard and Charron 1982), resulted in strong motor reflexes. The early components of this reflex exhibited latencies characteristic of a disynaptic pathway. Concurrently, recordings of dorsal root potentials demonstrated that the reflex was generated by stimulation of low-threshold myelinated fibers.
corresponding to low-threshold, myelinated Aβ-LTMRs. This reflex response was completely absent in dI3OFF mice, suggesting dI3 INs are involved in a disynaptic microcircuit linking cutaneous afferents (conveying touch) with motoneurons (Fig. 1B, 2; Bui et al. 2013).

In order to determine the functional role of the tactile sensorimotor circuit mediated by dI3 INs, motor function of the dI3OFF mice was tested in a number of behavioral tests. dI3OFF mice demonstrated greater difficulty with the ladder test and displayed an increase in missteps compared to control littermates (Bui et al. 2013). Even so, the most striking deficit was an inability to mediate grip strength in the face of increasing loads – their own weight – during the wire hang test (Bui et al. 2013). Both of these handicaps resulted from the silencing of dI3 INs. While the above experiments did not identify exact types of LTMRs contacting dI3 INs, it is possible to exclude major contribution from Merkel cells as experiments in which Merkel cells were eliminated from mice did not result in any deficits in grasping as tested by the wire hang test (Maricich et al. 2012).

The genetic silencing studies and the previous immunohistochemical and electrophysiological experiments lead us to believe dI3 INs integrate cutaneous information necessary for motor behaviors. The most evident involvement of this circuitry is in grasping; however, their full involvement in other motor behaviours has not been fully determined.

RORα (Related Orphan Receptor) Interneurons

To identify putative populations of spinal neurons that process tactile information for motor control, Del Barrio and colleagues performed a preliminary transcription factor screening to
probe the molecular identities of INs in laminae III-V, which are predominantly innervated by LTMRs that transduce cutaneous mechanosensory information (Del Barrio et al. 2013). From this screen, INs expressing the protein RORα were targeted and further studied using transgenic methods (Bourane et al. 2015). The RORα IN population is characterized by its expression of RORα, MafA, c-Maf and Lmx1b amongst other transcription factors, where the latter can mark excitatory INs in the dorsal spinal horn (Ding et al. 2004). To confirm the excitatory nature of these cells, in-situ hybridization for vGluT2 mRNA revealed that RORα INs are predominantly glutamatergic.

Mapping of RORα INs demonstrated that they are mostly located between inner lamina (IIi) and lamina III. RORα INs are primarily innervated by LTMRs and receive little to no nociceptive input. Combining recent advances in recombinant rabies virus techniques to label genetically identified neurons (Weible et al. 2010) and identification of molecular markers for LTMRs (Li et al. 2011; Luo et al. 2009) allowed for characterization of the sources of sensory input to RORα INs. Interestingly, these INs were demonstrated to be innervated by Meissner corpuscles in glabrous skin and Merkel cells, D-hair terminals and transverse lanceolate endings in hairy skin (Bourane et al. 2015). Furthermore, putative evidence suggests the implication of Ruffini endings as sensory input; however, the full extent of the innervation of RORα INs by LTMRs innervating this class of sensory receptors requires further investigation. These anatomical experiments were further substantiated by whole cell recording of these neurons, which demonstrated the presence of monosynaptic excitatory potentials mostly in response to electric recruitment of low-threshold myelinated Aβ and high-threshold myelinated Aδ fibers (Bourane et al. 2015).
To determine whether RORα INs play a role in motor control, projections to spinal neurons involved in motor activity were sought (Bourane et al. 2015). Indeed, spinal RORα INs were found to project directly on motoneurons in the lumbar spinal cord. Further, contacts were found on V0c cholinergic neurons, which are known to modulate the excitability of motoneurons, suggesting perhaps that RORα INs possess the ability to modulate motor output through the intermediary of V0c neurons (Zagoraiou et al. 2009). Additionally, RORα INs were found to be innervated by corticospinal tract neurons (CST) in motor cortex and by lateral vestibulospinal tract (LVST) neurons. LVST neurons are known to originate in the pons and project downwards to the spinal cord carrying information about posture and balance (Markham 1987). Collectively, these results demonstrate that RORα INs are spinal neurons that are implicated in integrating tactile inputs to shape motor activity (Fig. 1C).

To study the specific role of RORα INs in motor control, ablation of RORα INs in the caudal spinal cord was achieved by inducing selective expression of diphtheria toxin receptor in RORα INs and subsequent treatment with diphtheria toxin (Bourane et al. 2015). The resulting mice were subjected to a battery of sensory tests. Most interestingly, these mice displayed an impairment in sensing dynamic and static light touch on the plantar surface of the foot. Nonetheless, the RORα IN-ablated mice showed no difference in pain sensation, suggesting RORα INs mainly contribute to light touch perception without compromising responsiveness to other sensory modalities. RORα IN-ablated mice did not show any significant locomotor differences to control littermates when tested on a treadmill or on a horizontal ladder. However, when fine motor control during locomotion was accessed by the raised beam test (Crawley
2008), a significant increase in hindlimb missteps was reported. These results suggest RORα INs mediate cutaneous sensory information for use in motor commands involved in corrective foot movements.

The ablation and tracing studies showed that RORα INs integrate cutaneous sensory information from LTMRs with descending cortical inputs into motor commands for corrective feet movements; however, the mechanisms by which these neurons integrate this descending cortical input has yet to be studied.

dI4 Interneurons

We have described so far two populations of genetically identified spinal neurons that integrate tactile afferents. These two populations are predominantly composed of excitatory neurons. However, integration of tactile afferents by spinal cord circuitry may also involve inhibition. For instance, stimulation of low-threshold cutaneous inputs can gate the transmission of tactile information within the spinal cord by shunting the excitability of other cutaneous afferents through axo-axonic contacts, in a phenomenon known as presynaptic inhibition (Rudomin 2009).

The origin of GABAergic projections to spinal terminals of sensory neurons mediating presynaptic inhibition was discovered to commonly originate from dI4 INs, a class of dorsally-derived spinal INs marked by the expression of the transcription factor Ptf1a (Fig. 1D). In fact, most if not all GABAergic boutons contacting sensory terminals within the spinal cord were found to derive from dI4 INs (Betley et al. 2009). GABAergic boutons apposed to sensory afferent terminals were demarked from GABAergic boutons apposed to dendrites or somas by the expression of the protein Gad2 (Betley et al. 2009). Remarkably, even though Gad2-
immunoreactive GABAergic boutons contacting cutaneous afferent terminals and those contacting proprioceptive afferent terminals originate from dI4 INs, only the former show GlyT2, enkephalin and neuropeptide Y expression (Betley et al. 2009). Therefore, subpopulations of dI4 INs clearly exist which can be distinguished by expression of selective proteins at synaptic terminals and more importantly by the type of sensory afferents they target.

The role of presynaptic inhibition in motor control has recently been investigated using genetic techniques. Genetic silencing of Gad2-immunoreactive GABAergic boutons mediating presynaptic inhibition has been shown to disrupt smooth reaching movements (Fink et al. 2014). However, this effect was attributed to loss of presynaptic inhibition of proprioceptive afferents rather than of cutaneous afferents. Therefore, the role of presynaptic inhibition of tactile afferents or the role of presynaptic inhibition driven by tactile afferents remains an open question.

dI1 Interneurons

Defined by expression of Atoh1 (formerly Math1), dI1 INs are also a population of dorsally-derived neurons that migrate ventrally to be positioned in the deep dorsal horn of the spinal cord (Bermingham et al. 2001). These neurons form three distinct spinocerebellar tracts by which sensory feedback is relayed to the cerebellum. In more rostral spinal cord segments (cervico-thoracic), dI1 INs form the rostral spinocerebellar tract (rSCT), whereas in more caudal spinal cord segments (thoraco-lumbo-sacral), dI1 INs are found in two clusters that form the dorsal spinocerebellar tract (dSCT) and the ventral spinocerebellar tract (vSCT) (Miesegaes et al. 2009; Fig. 1E). The spinocerebellar tracts convey sensory information from muscle afferents, and to a lesser degree, from LTMRs to the cerebellum (Edgley and Jankowska 1988; Randic et al. 1981),
a region important for correcting movements and for motor learning (Brownstone et al. 2015; Kawato et al. 1987). Therefore, these neurons are involved with sensorimotor integration at supraspinal levels. There is less information about their interaction with motor circuitry at the spinal cord level; however, neurons of the dCST are contacted by corticospinal inputs suggesting that the sensory feedback they relay is shaped by descending motor commands (Hantman and Jessell 2010).

Key insights and open questions

Much work has been dedicated in the past to revealing the presence of spinal neurons that integrate tactile input and in the process, sculpt ongoing motor activity. The recent studies of genetically-defined spinal INs that we have described (summarized in Fig. 1) build upon the work of the past decades and serve to highlight a number of key features of integration of tactile inputs within the spinal cord. First, there are populations of spinal neurons defined by the expression of specific combinations of transcription factors and molecular markers that receive inputs from cutaneous afferents conveying tactile information (Table 1). Second, based on the types of LTMRs involved and specificity of the connectivity with spinal and supraspinal motor networks, these genetically-defined populations of spinal INs form specialized networks. Manipulation of genetically-defined spinal INs revealed that they indeed play roles in distinct aspects of motor control. Finally, although sensorimotor integration occurs also at the brain level, integration by spinal interneurons is vital in ensuring proper motor control. Below we offer a short and non-exhaustive list of further avenues of investigation into sensorimotor integration of tactile information taking advantage of genetically-defined spinal INs.
Identification of other spinal populations/subpopulations that integrate tactile information

A long-standing question in neuroscience is how to classify populations of neurons (DeFelipe et al. 2013). Classes of neurons can be defined based upon single or combinations of intrinsic properties such as protein expression, morphology, anatomical location, neurotransmitter phenotypes, synaptic inputs and/or outputs. Alternatively, neurons can be classified along functional lines such as firing behaviour and involvement with certain neuronal or physiological forms of activity. Needless to say, the classification of neurons is an on-going fluid exercise that is necessary for the proper study of neural systems. For the immediate purpose of discussing classes of spinal neurons involved with the integration of tactile information for motor control, it is necessary to highlight that each of the canonical populations of genetically identified spinal INs (dI1-dI6;dI_L,A-B;V0-V3), and motoneurons are likely to consist of many subpopulations of neurons that are differentiated along molecular and/or functional lines. For instance, the V2 population of ipsilaterally projecting ventral neurons, which are characterized by Lhx3 expression, has been parsed out to consist of V2a, V2b, and V2c based upon Chx10, Gata2, and Sox1 expression (Al-Mosawie et al. 2007; Lundfald et al. 2007; Panayi et al. 2010; Zhou et al. 2000). These neurons are also distinguished by different neurotransmitter phenotypes and likely functional roles as well (Crone et al. 2008; Zhong et al. 2010). Not surprisingly, there is some degree of functional heterogeneity within each subpopulation (Dougherty et al. 2013). Clearly, identifying the functional roles of spinal neurons from common progenitor pools is only the starting step to fully understanding the roles of spinal circuits in processing tactile information. Identifying subpopulations within these cardinal cell populations based upon molecular, anatomical and functional properties will further refine the classification. Considering that spinal INs receiving both proprioceptive and cutaneous afferents have long been identified in deep
dorsal horn and intermediate laminae of the spinal cord (Edgley and Jankowska 1987; Moschovakis et al. 1992), it would not be altogether surprising if subpopulations of ventrally-derived spinal neurons were found to integrate tactile information for motor control. A prime candidate for ventrally-derived spinal neurons integrating tactile information is a subpopulation of the V3 INs population, which are commissural INs involved in maintaining locomotor stability (Zhang et al. 2008), that has been found to migrate during development to be ultimately positioned in the deep dorsal horn (Blacklaws et al. 2015; Borowska et al. 2013).

The work on spinal RORα INs is a prime example of the need for studying subpopulations as well. It is not clear whether these neurons form a subpopulation of neurons that arise from a common progenitor domain or whether they consist of neurons from several progenitor domains. The latter would reveal that functional roles may be distributed amongst spinal neurons originating from a broad distribution of progenitor pools. A precedent for the distribution of functional roles amongst neurons arising from different progenitor pools was demonstrated when the spinal neurons responsible for reciprocal inhibition mediated by Ia afferents were found to arise from both V1 and V2b populations (Siembab et al. 2010; Zhang et al. 2014). Screening for genes commonly expressed in spinal lamina III-V where sensory neurons innervating mechanoreceptors are most abundantly found has revealed a number of candidate proteins that may mark other classes of functionally related spinal neurons that integrate tactile information and shape motor activity (Del Barrio et al. 2013). It would not be altogether surprising to discover that neurons belonging to the dI1, dI3 and dI4 IN populations consist of several subpopulations, as is already suggested for dI1 INs, based upon anatomical location and ascending tract formation (Miesegaes et al. 2009). The dissection of these canonical populations
of sensorimotor interneurons is a crucial step to further understanding the integration of tactile information for motor control.

Connecting spinal circuits for sensorimotor integration of tactile information

It is clear that dI3 INs and RORα INs both utilize tactile information but play distinct roles in motor control. For instance, when dI3 INs were silenced, mice showed deficits on the ladder test as well as in controlling grip strength (Bui et al. 2013) whereas ablation of caudal populations of RORα INs did not impact performance on the ladder test but resulted in impairments on the raised beam test (Bourane et al. 2015). However, this does not preclude the possibility that to serve their respective motor functions, these two populations of neurons interact. Along the same lines, dI4 INs may be linked to dI3 INs and RORα INs through presynaptic inhibition of cutaneous afferents to the two groups of excitatory neurons.

In addition to studying the interactions between genetically identified spinal interneurons involved in sensorimotor integration of tactile inputs, their interactions with other spinal neurons involved in complementary aspects of motor function must also be determined. For example, while dI3 INs have been implicated with controlling grip strength, they do not seem to be critical for other aspects of hand control such as skilled reach (unpublished observation). On the other hand, the V2a population of spinal neurons has been shown to be intimately involved with skilled reaching (Azim et al. 2014b). A subset of dI4 INs is also involved in ensuring smooth hand trajectory (Fink et al. 2014). Evidently, dI3 INs, dI4 INs, and V2a INs seem to concurrently operate to achieve proper hand control (Azim et al. 2014a). Therefore, as the individual contributions of genetically identified spinal interneurons to motor control and to sensorimotor
integration of tactile inputs are revealed, the mutual connectivity between spinal neurons has to
be mapped to fully understand how tactile information truly tailors motor output across the
spectrum of possible motor activities.

Connecting spinal circuits with supraspinal circuits for sensorimotor integration of tactile
information

While spinal circuits involved in sensorimotor integration are able to operate in isolation without
supraspinal input (e.g. tendon reflex), cortical and subcortical regions of the brain as well as the
cerebellum are involved with motor processes such as motor planning, motor learning, and motor
adaptation. In addition, several regions of the brainstem are involved in the control of motor
activity such as locomotion (Grillner and Shik 1973) and hand function (Soteropoulos et al.
2012) through direct recruitment of spinal circuitry. Therefore, spinal circuits are likely to
operate in conjunction with descending inputs from supraspinal areas. Indeed, cortical
stimulation has been shown to modulate hindlimb cutaneous reflexes (Bretzner and Drew 2005).
Similarly, cutaneous reflexes may modulate corticospinal efficacy through ascending reflex
pathways (Christensen et al. 1999). RORα INs have been shown to receive supraspinal inputs
from motor cortex and the cerebellum, the latter through the intermediary of projections
originating from the lateral vestibular nuclei (Bourane et al. 2015). In addition, they project to
ascending postsynaptic dorsal column neurons that may link these neurons with the cerebellum
(Bourane et al. 2015). We also expect dI3 INs to receive supraspinal inputs based upon clinical
observations. For instance, dI3 INs mediate a palmar grasp reflex at early postnatal stages (Bui et
al. 2013) that resembles a postnatal grasp reflex in humans. This reflex disappears in time
(Mestre and Lang 2010) in parallel with the maturation of descending pathways to the spinal
cord (Clarac et al. 2004). In addition, abnormal grasp reflexes in human patients have often been associated with frontal cerebral lesions (Mestre and Lang 2010), perhaps due to loss of supraspinal regulation of dI3 INs or of an analogous population in humans. Supraspinal regions may also be targeted by dI3 INs as revealed by their innervation of the lateral reticular nucleus, a precerebellar nuclei (Pivetta et al. 2014). Therefore, the sources of supraspinal inputs to these neurons will be an active area of investigation. In addition, the role of these supraspinal projections in shaping sensorimotor integration of tactile information at the level of the spinal cord will be important. A prominent role for supraspinal projections may be the gating of sensory information during motor activity (see above). Therefore, how supraspinal inputs influence the gating of tactile information at the spinal level and during which forms of motor activity may be answered through the study of supraspinal projections to genetically-identified spinal neurons.

Alternatively, spinal circuits may also influence the processing of tactile information by supraspinal regions dedicated to somatosensation, as demonstrated by findings that dI1 INs, dI3 INs and RORα INs are part of ascending pathways from the spinal cord to the brain. Postsynaptic dorsal column neurons contacted by RORα INs send ascending projections that may ultimately be relayed to somatosensory cortex. Indeed, mice lacking RORα INs showed delays in detecting an irritant taped to their paws (Bourane et al. 2015). In addition to shaping somatosensation, spinal circuits may shape the motor strategies used to probe the external world. Indeed, perception and action are often processes that overlap (Hsiao et al. 2011). Classically, the relationship between sensory and motor systems has been viewed as sensory circuits informing motor systems. However, motor systems can shape sensory processing. For example, by changing whisking strategies, an animal can change the rate of tactile sensory inflow (Saig et al.
By virtue of their access to motor circuits, both dI3 INs and RORα INs may influence tactile perception by shaping motor processes involved with sensing the external world. Therefore, the mutual interactions between spinal and supraspinal circuits must be investigated to further understand the processes by which tactile information shapes motor activity, spinal circuits shape somatosensation and the motor strategies used to acquire sensory information.

Neural coding

One of the many achievements of Steven Hsiao in the field of tactile perception was the discovery of neural codes for the perception of object features such as texture, size and shape (Hsiao and Yau 2008). While much focus has been paid to the role of the somatosensory cortex in this process, recent studies in humans provide evidence that sensory neurons innervating glabrous skin of the hand can perform higher order feature detection such as edge detection (Pruszynski and Johansson 2014). In light of this, we propose that spinal neurons receiving inputs from cutaneous receptors may further process features detected by sensory neurons for the purpose of motor control.

Indeed, spinal neurons have characteristics that hint at their capability to detect object features. For instance, the response of dorsal spinal neurons to tactile stimuli applied to the skin has been shown to depend on the nature of the stimuli and the receptive field. Responses can be graded (Fitzgerald 1985; King et al. 1990; Schneider 2005), excitatory, inhibitory or a mixture of both (Hillman and Wall 1969; Kato et al. 2011; Kolmodin and Skoglund 1960; Woolf and King 1989), subthreshold or suprathreshold (Woolf and King 1989), and short or sustained (De Koninck and Henry 1994; Schneider 2005). The wide ranges of response patterns of spinal
neurons are a reflection of the range of activation patterns of LTMRs (Abraira and Ginty 2013; Johansson and Flanagan 2009) as well as heterogeneity in intrinsic properties of spinal neurons (Ku and Schneider 2011).

Recordings of genetically identified spinal neurons can further establish whether or not detection of features of objects can occur at the spinal level. We know that dI3 INs have a number of ionic currents that alter the latency and the duration of their response to sensory inputs (Bui et al. 2013). As well, both dI3 INs and RORα INs receive inputs from multiple sources of sensory information. In fact, they also exhibit a number of different firing responses to electrical stimulation of sensory afferents (Bourane et al. 2015; Bui et al. 2013). To fully determine whether these neurons are capable of detecting object features, studies detailing the receptive fields of individual interneurons and their response to different forms of tactile stimuli as well as the integration of stimuli applied to multiple sites on the skin, various tactile receptors or other sensory modalities need to be undertaken.

Another important aspect of feature detection, and sensory processing in general, is the representation of sensory information at different neural layers as information flows centrally through the nervous system. Studies of other sensory systems such as the visual, olfactory and electrosensory systems suggest the involvement of common mechanisms of sensory information processing that may apply to sensorimotor integration of tactile information within the spinal cord as well (Babadi and Sompolinsky 2014). First, sensory processing is characterized by an expansion of sensory representations whereby as sensory information travels centrally, it is processed by an increasing number of neurons. A second commonly observed mechanism of
sensory processing is sparse representation whereby as sensory information travels centrally, it only projects to a subset of downstream neurons (Bui and Brownstone 2015), despite the larger number of downstream neurons devoted to the processing of sensory information (see expansion). These two mechanisms are illustrated in the fly olfactory system where approximately 150 projection neurons relaying signals from olfactory receptor neurons project to 2,500 Kenyon cells in the fly mushroom body (Turner et al. 2008). However, as a consequence of limited convergence of inputs from projection neurons to Kenyon cells, each individual Kenyon cell responds only to a small sample of possible odors captured by olfactory receptor neurons. In the context of the flow of tactile information from the skin to spinal circuits, an expansion of tactile signals conducted by sensory neurons in exclusive parallel fibers would imply a projection of these signals to a wide array of spinal neurons. These sensory fibers account for specific sensory modalities but additionally for their intensity and spatio-temporal distribution. The requirement for sparseness would dictate that the tactile signals relayed to the spinal cord would converge towards a network of spinal INs composed of non-overlapping and/or partially overlapping populations. The study of genetically-identified spinal neurons involved in sensorimotor integration could reveal whether there is expansion and sparseness in the representation of tactile information at the spinal level. Finally, in order to shape motor control through an integration of tactile information, these spinal INs must project a set of instructive motor commands. We suggest that these motor commands diverge to activate spinal circuits, or motor modules, dedicated to specific aspects of motor control (Gizster and Hart 2013). The activity of a single or multiple motor modules generate a coordinated motor response to the tactile stimuli (Fig. 3).
Concluding remarks

Most of the studies of genetically identified spinal interneurons were performed in mice, testing the cutaneous afferents either on hairy or glabrous skins. Therefore, caution should be exercised in attempting to generalize these findings to other species. However, many of the transcription factors and molecular markers studied are phylogenetically conserved and expressed in spinal neurons (e.g. Isl1 in chicks and in zebrafish; Avraham et al. 2010; Uemura et al. 2005) leading us to believe that there are some universal mechanisms of tactile integration at the spinal level that is shared between various species, perhaps also including humans. However, before insights into tactile sensorimotor integration at the spinal level gleaned from studies of animal models can be confidently related to our understanding of human function, it is instructive to consider the directions taken in human studies and how the studies using animal models can complement or supplement the former.

Human studies are currently limited in terms of their access to spinal circuitry. However, in comparison to animal models, a greater range of sensorimotor tasks can be studied and there is much greater access to peripheral sensory neurons, which have frequently been recorded in human studies. The linkage between various tactile afferents and muscle activity in hands and feet (Fallon et al. 2005; McNulty et al. 1999) has been demonstrated. Furthermore, recordings of different cutaneous afferents during specific motor tasks have revealed complex patterns of activity. In particular, studies of hand grasp suggest that there is an intricate spatiotemporal pattern of activation of different types of tactile afferents distributed across the hand (Dimitriou and Edin 2008; Johansson and Flanagan 2009; Macefield et al. 1996). The ability to study these spatiotemporal patterns of sensory transmission during specific motor tasks in human and non-
human primates are powerful techniques that remain relatively inaccessible in non-primate
animal models. They enable the investigation of tactile integration at the spinal level during
motor activity, motor learning and motor adaptation. They provide a detailed understanding of
the sensory signals used to inform certain movements and they hint at certain central
mechanisms (supraspinal and spinal) by which these signals are processed. However, current
technical limitations prevent a better understanding of the neural mechanisms operating within
the human CNS by which complex patterns of tactile information shape motor control. To
further understand these phenomena requires a dissection of the different neural circuitry within
the periphery, the spinal cord and supraspinal regions.

Therein lies the strengths of the animal model. The genetic identification of spinal neurons has
spurred the application of genetic techniques to expand our understanding of how spinal circuitry
controls movement. Of the many outcomes of this approach is the characterization of a number
of spinal neuron populations that integrate tactile information and the identification of their role
in shaping motor control as reviewed above. Each identified population of spinal interneurons
presents further opportunities to probe mechanisms by which sensorimotor integration of tactile
input occurs. While this approach is conditioned by our ability to i) identify and ii) manipulate
defined neuronal populations, recent technical advances are meeting these challenges. Cellular
RNA expression profiling for example has been successfully used to identify new neuronal
populations (Del Barrio et al. 2013), while optogenetic and chemogenetic techniques such as
channelrhodopsins (Zhang and Oertner 2007) or DREADDs (Designer Receptors Exclusively
Activated by Designer Drugs) (Coward et al. 1998; Lechner et al. 2002) offer exquisite
approaches for the manipulation of genetically identified neurons. The greater popularization of
advanced molecular techniques such as intersectional genetics, virus-based mapping and optogenetics, to name just a few, can lead to significant advances in manipulating and addressing the respective roles of spinal neuronal populations involved in processing tactile information.

The integration of tactile information is complex and requires multiple circuits distributed within the spinal cord and supraspinal regions. Recent technological advances such as two-photon in-vivo and in operandi recordings, combined with post-hoc dimensionality reduction will be invaluable tools in tackling the complexity of network activity in the spinal cord.

The greatest challenge in relating the findings from studies of genetically-identified spinal neurons in animal models to our understanding of human function is in determining whether analogous genetically-defined spinal circuits are present in the human spinal cord. However, genetic techniques have already been applied in non-human primate models to dissect the spinal circuitry associated with hand function (Kinoshita et al. 2012). The importance of bridging the gap between our understanding of how tactile information shapes motor control through spinal circuitry in human and non-human animal models goes beyond understanding how sensorimotor control is implemented by the nervous system. In addition to applying genetic techniques for mechanistic studies, genetic identification of spinal neurons offers the potential for targeted control of spinal circuits for biomedical applications. As pointed out by Steven Hsiao in a review detailing the use of sensory feedback for upper limb prostheses, electrical and optical stimulation of the fibers associated with specific sensory pathways will be required for optimal prostheses design (Hsiao et al. 2011). The potential involvement of tactile information in recovery of motor function following spinal cord injury is beginning to come to light (Bouyer and Rossignol 2003; Frigon et al. 2012; Hurteau et al. 2015; Slawinska et al. 2012). Moreover, as mentioned
previously, the process of motor control encompasses a number of sensory modalities, which are being studied, for the most part, in isolation. Better understanding of the circuitry implicated in the integration of tactile sensation is paramount to understanding the role of multimodal integration during movement (Kim et al. 2015). Genetic identification of spinal circuits, along with sensory neurons (Abraira and Ginty 2013) and supraspinal circuitry will therefore be critical in all of these endeavours.

ACKNOWLEDGMENTS We thank Frédéric Bretzner and Andrew Pruszynski for their invaluable comments on a prior draft of this manuscript. We thank William Alaynick for permission to adapt a number of his published figures. We also thank Rob Brownstone for helpful comments through this process. T.V.B. was supported by a grant from the Natural Sciences and Engineering Research Council (RGPIN-2015-06403).

REFERENCES

Ding YQ, Yin J, Kania A, Zhao ZQ, Johnson RL, and Chen ZF. Lmx1b controls the
differentiation and migration of the superficial dorsal horn neurons of the spinal cord.

O. Locomotor rhythm generation linked to the output of spinal shox2 excitatory interneurons.

Drew T, and Rossignol S. A kinematic and electromyographic study of cutaneous reflexes

Duysens J, and Loeb GE. Modulation of ipsi- and contralateral reflex responses in unrestrained

Duysens J, and Pearson KG. The role of cutaneous afferents from the distal hindlimb in the

Duysens J, Tax AA, Nawijn S, Berger W, Prokop T, and Altenmuller E. Gating of sensation
and evoked potentials following foot stimulation during human gait. Exp Brain Res 105: 423-

Duysens J, Tax AA, Trippel M, and Dietz V. Increased amplitude of cutaneous reflexes during

Edgley SA, and Jankowska E. Information processed by dorsal horn spinocerebellar tract

Edgley SA, and Jankowska E. An interneuronal relay for group I and II muscle afferents in the

Egger MD, and Wall PD. The plantar cushion reflex circuit: an oligosynaptic cutaneous reflex.

Lu DC, Niu T, and Alaynick WA. Molecular and cellular development of spinal cord locomotor circuitry. Front Mol Neurosci 8: 25, 2015.

FIGURE LEGENDS

Figure 1. Genetically identified spinal interneurons implicated in microcircuits integrating tactile information for sensorimotor control.
(A) Diagram representing the typical spinal circuitry integrating tactile sensory information, where a low-threshold mechanoreceptor (LTMR) sensory neuron (SN), enters the spinal cord and bifurcates to project to spinal interneurons and neurons in supraspinal centres.

Subpopulations of spinal interneurons (Spinal INs) receiving tactile inputs project to spinal targets, including motoneurons of the lateral motor column (LMC) and medial motor column (MMC) and/or to supraspinal centres.

(B-E) Diagrams representing dI3 INs (B), RORα INs (C), dI4 INs (D) and dI1 INs (E). Sensory neurons (blue) connect to spinal IN populations. The established implication of some LTMR subtypes is indicated. IN connections to and from supraspinal centres are indicated. Ascending and descending projections are not represented at their exact location for simplicity purposes.

(B) dI3 INs project to motoneurons as well as to the lateral reticular nucleus (LRN). Note the weaker connection to MMC motoneurons.

(C) RORα INs project to both V0 cholinergic INs (V0c, maroon) and motoneurons. RORα INs also receive inputs from the cortex via corticospinal tracts (CST) and the vestibular nucleus (Vestib N) via the lateral vestibulospinal tract (LVST).

(D) dI4 INs are involved in a presynaptic axo-axonic inhibition of sensory projection onto spinal interneurons (IN, pink). dI4 INs that mediate axo-axonic inhibition of proprioceptive afferents are not depicted. dI4 IN supraspinal connections have yet to be identified.

(E) Two defined subpopulations of dI1 INs are represented by having either ipsilateral (light purple) projections to the cerebellum (Cereb) via the ventral spinocerebellar tract (vSCT) or contralateral (deep purple) projections to the dorsal spinocerebellar tract (dSCT). Subpopulation-specific genetic markers are listed above the INs symbols, a number of shared genetic identifiers is listed below the INs symbol.
Transcriptional code involved in the development of genetically-identified spinal interneurons that integrate tactile information. Note that the progenitor domain or domains from which RORα INs originate is not known. This panel is adapted from Lu et al. (2015). Copyright © 2015 Lu, Niu and Alaynick. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Figure 2. Demonstration of a genetically-identified spinal circuit integrating tactile input for motor control

(A) Scheme of isolated in-vitro spinal cord preparation with sural nerve left in continuity used to test for the presence of reflexes evoked by stimulation of tactile inputs. Stimulating electrodes (red) were placed on the sural nerve, which is predominantly cutaneous, and the mixed sensory tibial nerve distal to the sural nerve branchpoint. Recording suction electrodes (green) were placed on the ipsilateral lumbar L5 dorsal (sensory) and L5 ventral (motor) roots.

(B) To demonstrate the predominantly cutaneous nature of the sural nerve, electroneurogram (ENG) recordings of L5 dorsal root potentials (DRPs) in response to sural nerve or tibial nerve stimulations were made. In this example, note the longer latency of the sural nerve DRP as compared to the tibial nerve DRP, which is due to the proprioceptive component of the tibial nerve. Also, the threshold to evoke a DRP was higher for sural nerve (cut. DRP, 3 μA) than tibial nerve (proprio. DRP, 2 μA) stimulation.
To test for motor reflexes in response to stimulation of cutaneous afferents, ENG recordings of L5 ventral root responses to multiple stimulation pulses applied to the sural nerve were made. A putative disynaptic reflex response, highlighted in dashed box, can be observed in control mice but not in animals which had dI3 INs genetically silenced (dI3OFF).

Diagram of experimental design used to test for the presence of motor reflexes evoked by tactile inputs conveyed by the sural nerve and mediated by dI3 INs. Chronically implanted electrodes into gastrocnemius and tibialis anterior muscles of adult control and dI3OFF mice enabled electromyographic (EMG) recordings in awake, behaving mice.

Similar to in-vitro tests, EMG recordings of gastrocnemius to multiple stimulation pulses applied to the sural nerve show a putative disynaptic reflex response (dashed box) that is absent in dI3OFF mice.

Diagram representing dI3 INs as part of a disynaptic pathway between sensory neurons (SNs) that are low threshold mechanoreceptors (LTMRs), dI3 INs (dI3) and motoneurons (MN). Adapted with permission from Bui et al. (2013).

Figure 3. Conceptual model of sensorimotor neural processing in the spinal cord.

Proposed scheme in which sensory inputs from multiple modalities are conveyed in parallel to partially overlapping spinal interneuron populations. The converging sensory information is processed and sets of instructive motor commands are generated. These commands diverge to motor modules that generate individual motor actions that together form the desired coordinated motor response. We propose that this anatomical and functional structure provides a biological framework to neuronal computations underlying spinal sensorimotor integration.
Sural nerve stimulation (1 to 10 mA)

dl3^{off}

Gastrocnemius

Control

10 ms

proprio. DRP

cut. DRP

10 ms

5 ms

L5 Dorsal Root

L5 Ventral Root

Tibial nerve stimulation (1 to 10 mA)

L1

L6

L5 dorsal root

L5 ventral root

Sural nerve

Tibial nerve

Amplifier Stimulator

Sural Nerve Gastrocnemius

Tibialis Anterior

DRG

SN

dl3

MN

LTMRs
TABLE 1. Molecular markers expressed by spinal interneurons involved in sensorimotor integration of tactile information

<table>
<thead>
<tr>
<th>Common name</th>
<th>Approved name</th>
<th>Uniprot ID</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascl1</td>
<td>Achaete-scute family bHLH transcription factor 1</td>
<td>P50553</td>
<td>dI3 IN, dI4 IN: Mizuguchi et al. 2006</td>
</tr>
<tr>
<td>BarH1</td>
<td>BarH-like homeobox 1</td>
<td>Q9BZE3</td>
<td>dI1 IN: Bermingham et al. 2001</td>
</tr>
<tr>
<td>Brn3a</td>
<td>POU class 4 homeobox 1</td>
<td>Q01851</td>
<td>dI1 IN, dI3 IN: Zou et al. 2012</td>
</tr>
<tr>
<td>Brn3b</td>
<td>POU class 4 homeobox 2</td>
<td>Q12837</td>
<td>dI3 IN: Zou et al. 2012</td>
</tr>
<tr>
<td>Cbln2</td>
<td>Cerebellin 2 precursor</td>
<td>Q81UK8</td>
<td>RORα IN: Bourane et al. 2015</td>
</tr>
<tr>
<td>c-Maf</td>
<td>v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog</td>
<td>O75444</td>
<td></td>
</tr>
<tr>
<td>Drg11</td>
<td>Dorsal root ganglia homeobox</td>
<td>A6NNA5</td>
<td>dI3 IN: Rey et al. 2010</td>
</tr>
<tr>
<td>Enkephalin</td>
<td>Prodynorphin</td>
<td>P01213</td>
<td>dI4 IN: Betley et al. 2009</td>
</tr>
<tr>
<td>Gad2</td>
<td>Glutamate decarboxylase 2 (pancreatic islets and brain, 65kDa)</td>
<td>Q05329</td>
<td>dI4 IN: Betley et al. 2009</td>
</tr>
<tr>
<td>GlyT2</td>
<td>Solute carrier family 6 (neurotransmitter transporter), member 5</td>
<td>Q9Y345</td>
<td></td>
</tr>
<tr>
<td>Gsh1</td>
<td>GS homeobox 1</td>
<td>Q9H4S2</td>
<td>dI3 IN: Mizuguchi et al. 2006</td>
</tr>
<tr>
<td>Gsh2</td>
<td>GS homeobox 2</td>
<td>Q9BZM3</td>
<td>dI3 IN, dI4 IN: Mizuguchi et al. 2006</td>
</tr>
<tr>
<td>Isl1</td>
<td>ISL LIM homeobox 1</td>
<td>P61371</td>
<td>dI3 IN: Liem et al. 1997; Pfaff et al. 1996</td>
</tr>
<tr>
<td>Lhx1</td>
<td>LIM homeobox 1</td>
<td>P48742</td>
<td>dI4 IN: Pillai et al. 2007</td>
</tr>
<tr>
<td>Lhx2</td>
<td>LIM homeobox 2</td>
<td>P50458</td>
<td>dI1 IN: Bermingham et al. 2001</td>
</tr>
<tr>
<td>Lhx5</td>
<td>LIM homeobox 5</td>
<td>Q9H1C1</td>
<td>dI4 IN: Pillai et al. 2007</td>
</tr>
<tr>
<td>Lhx9</td>
<td>LIM homeobox 9</td>
<td>Q9NQ69</td>
<td>dI1 IN: Bermingham et al. 2001</td>
</tr>
<tr>
<td>Lmx1b</td>
<td>LIM homeobox transcription factor 1, beta</td>
<td>O60663</td>
<td>RORα IN: Bourane et al. 2015</td>
</tr>
<tr>
<td>Math1</td>
<td>Atonal homolog 1 (Drosophila)</td>
<td>Q92858</td>
<td>dI1 IN: Bermingham et al. 2001</td>
</tr>
<tr>
<td>Neurepotide Y</td>
<td>Neuropeptide Y</td>
<td>P01303</td>
<td>dI4 IN: Betley et al. 2009</td>
</tr>
<tr>
<td>Pax2</td>
<td>Paired box 2</td>
<td>Q02962</td>
<td>dI4 IN: Glasgow et al. 2005</td>
</tr>
<tr>
<td>Ptf1a</td>
<td>Pancreas transcription factor 1 subunit alpha</td>
<td>Q7RTS3</td>
<td>dI4 IN: Glasgow et al. 2005</td>
</tr>
<tr>
<td>RORα</td>
<td>RAR-related orphan receptor A</td>
<td>P35398</td>
<td>RORα IN: Del Barrio et al. 2013</td>
</tr>
<tr>
<td>Smarca2</td>
<td>SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2</td>
<td>P51531</td>
<td>dI1 IN: Miesegaes et al. 2009</td>
</tr>
<tr>
<td>Tag-1</td>
<td>Contactin 2 (axonal)</td>
<td>Q02246</td>
<td>dI1 IN: Miesegaes et al. 2009</td>
</tr>
<tr>
<td>Tlx3</td>
<td>T-cell leukemia homeobox 3</td>
<td>O43711</td>
<td>dI3 IN: Cheng et al. 2004; Mizuguchi et al. 2006</td>
</tr>
<tr>
<td>vGluT2</td>
<td>Solute carrier family 17 (vesicular glutamate transporter), member 6</td>
<td>Q9P2U8</td>
<td>dI3 IN: Bui et al. 2013; RORα: Bourane et al. 2015</td>
</tr>
</tbody>
</table>

Sources: genenames.org, uniprot.org