Title: Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface

Natalie Mrachacz-Kersting1*, Ning Jiang2, Andrew James Thomas Stevenson1, Imran Khan Niazi 1, Vladimir Kostic, MD3, Aleksandra Pavlovic3, Sasa Radovanovic3, Milica Djuric-Jovicic4, Federica Agosta5, Kim Dremstrup1 and Dario Farina2

1Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
2Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology, Göttingen, Bernstein Center for Computational Neuroscience, University Medical Center, Göttingen, Georg-August University, Göttingen, Germany
3Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
4Innovation center, School of Electrical Engineering (ICEF), Bulevar kralja Aleksandra 73 Belgrade, Serbia
5Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan, Italy

*Corresponding author:
Natalie Mrachacz-Kersting
Center for Sensory-Motor Interaction (SMI)
Department of Health Science and Technology
Aalborg University
Fredrik Bajers Vej 7 D3
9220 Aalborg Ø
Denmark

Running title: Associative BCI in stroke patients

Keywords: neuroplasticity, Brain-Computer-Interface, associativity, stroke, Hebb
Abstract

Brain-computer interfaces (BCIs) have the potential to improve functionality in chronic stroke patients when applied over a large number of sessions. Here, we evaluate the effect and the underlying mechanisms of three BCI training sessions in a double-blind-sham-controlled design. The applied BCI is based on Hebbian principles of associativity that hypothesizes that neural assemblies activated in a correlated manner will strengthen synaptic connections.

Twenty-two chronic stroke patients were allocated into two training groups. Movement-related cortical potentials (MRCPs) were detected using electroencephalography during repetitions of foot dorsiflexion. Detection triggered a single electrical stimulation of the common peroneal nerve timed so that the resulting afferent volley arrived at the peak negative phase of the MRCP (BCI_{associative} group) or randomly (BCI_{non-associative} group). Fugl-Meyer motor assessment (FM), 10-m walking speed, foot and hand tapping frequency, diffusion tensor imaging (DTI) data and the excitability of the corticospinal tract to the target muscle (tibialis anterior (TA)) were quantified.

The TA motor evoked potential increased significantly following the BCI_{associative} intervention, but not for the BCI_{non-associative} group. Fugl-Meyer motor scores (0.8±0.46 point difference \(p=0.01 \)), foot (but not finger) tapping frequency, and 10-m walking speed improved significantly for the BCI_{associative} group, indicating clinically relevant improvements. Corticospinal tract integrity on DTI did not correlate with clinical or physiologic changes.

For the BCI as applied here, the precise coupling between the brain command and the afferent signal was imperative for the behavioral, clinical and neurophysiological changes reported. This association may become the driving principle for the design of BCI rehabilitation in the future.
Indeed no available BCIs can match this degree of functional improvement with such a short intervention.
Introduction

Brain-Computer Interfaces (BCIs) intended for the restoration of lost motor function have been explored only recently. The activation of relevant brain areas generated by a patient’s intention to move is detected, interpreted and used to drive an external device, e.g., electrical stimulator or robot. The hypothesis is that the afferent signal generated artificially induces central nervous system plasticity because it is in causal association with the cortical activity associated with the intention to move. Several research groups have recently provided evidence that this type of BCI lead to functional improvements in upper limb or hand function (Daly et al. 2009; Ang et al. 2010; Broetz et al. 2010; Cincotti et al. 2012; Li et al. 2014; Young et al. 2014; Mukaino et al. 2014; Ramos-Murguialday et al. 2013; Pichiorri et al. 2015; Kasashima-Shindo et al. 2015), although others have found no changes (Buch et al. 2008; Ang et al. 2014) and data are lacking for the use of such a BCI for altering lower limb function (Teo and Chew 2014). These studies report evidence for neuroplasticity, typically inferred from an improved performance of the BCI (Buch et al. 2008; Li et al. 2014) or from alterations in the amplitude (Broetz et al. 2010; Cincotti et al. 2012; Li et al. 2014; Pichiorri et al. 2015) or latency (Yilmaz et al. 2013) of the extracted EEG signal, or by fMRI (Young et al. 2014; Song et al. 2014; Mukaino et al. 2014). However, there are no reports on the alterations in the excitability of the cortical projections to the target muscle following BCI interventions, although this is a natural consequence of learning new motor skills (Pascual-Leone et al. 1995; Perez et al. 2004). In addition, only a few previous studies have explored the underlying mechanisms of the induced plasticity using fMRI (Ramos-Murguialday et al. 2013) or electroencephalographic (EEG) connectivity (Pichiorri et al. 2015), while no studies have implemented transcranial magnetic stimulation (TMS). According to Hebb, synapses are strengthened through correlated activation of two different inputs to a postsynaptic neuron, yet weakened by uncorrelated activity (Hebb 1949). This implies that the sensory signal artificially...
induced through the BCI must be associated to relevant brain activation with specific timing in
order to induce plasticity.

In a recent series of studies, we have introduced an innovative non-invasive BCI designed
specifically for neuromodulation (Mrachacz-Kersting et al. 2012a; Mrachacz-Kersting et al. 2012b;
Niazi et al. 2012; Xu et al. 2014) based on the principle of Hebbian associativity. In this BCI, the
slow component of the scalp electroencephalogram (EEG), i.e. the movement related cortical
potential (MRCP), extracted with optimized temporal-spatial filtering (Niazi et al. 2011) and
manifold learning algorithms (Xu et al. 2014), was used to detect the intent of the user’s movement
execution. The MRCP is a cortical potential generated when a movement is either imagined or
performed and occurs for both self-initiated (Kornhuber and Deecke 1965) and cue-based
movements (Walter et al. 1964). The MRCP is comprised of several well defined components,
linked to specific neurophysiological mechanisms where the peak negativity is associated to
movement execution. Once the MRCP is detected, the artificial activation of somatosensory
afferents projecting onto the motor cortex is triggered by means of non-invasive direct nerve
stimulation. The signal is timed to arrive at the cortex during the peak negative phase of the MRCP
and therefore induces a causal and systematic relationship between the sensory signals arising from
muscles involved in the movement and the volitionally generated brain wave during imagination,
attempt or execution of that movement. This timing is critical as we have shown that neither earlier
nor later arrival can induce plasticity (Mrachacz-Kersting et al. 2012a). In healthy subjects, this BCI
intervention induces plasticity that is long lasting, and specific to the muscle targeted (Mrachacz-
Kersting et al. 2012a; Niazi et al. 2012; Xu et al. 2014). Previous studies have timed the sensory
stimulus to arrive at the motor cortex at the precise time that a transcranial magnetic stimulus
(TMS) was applied over the motor cortex representation of the target muscle (Stefan et al. 2002).
This type of intervention, termed paired associative stimulation (PAS), induces plasticity similar to
what we have shown in our BCI\textsubscript{associative} intervention in healthy participants. Since the peak negativity of the MRCP represents the maximal activation of the motor cortex, our intervention is designed to replace the volley induced by TMS.

In the present proof of concept study, we present for the first time the application of this novel associative BCI to chronic stroke patients with motor disability and hypothesized that it would lead to an increased output of the motor cortex to the target muscle. The demonstration of this hypothesis would strongly support the theory that timing is critical in neuromodulatory BCIs and that associativity is the main physiological mechanism underlying the induced plasticity. In an additional control experiment, a control group was exposed to the same protocol, with the exception that the afferents were activated randomly in relation to the user’s intent (BCI\textsubscript{non-associative} intervention). This is, to our best knowledge, the first systematic study on chronic stroke patients that explicitly explores the associative long-term potentiation theory within a BCI rehabilitation approach that includes patients’ volition.
Methods

Ethical approval

Patient demographical data and baseline clinical evaluation are shown in table 1. Nineteen male and three female patients (49.57 ± 12.52 years) underwent neuropsychological assessment, with none meeting DSM-IV criteria for diagnosis of dementia. Inclusion criteria encompassed, aged over 18 years having suffered from superior division MCA stroke 3-24 months before recruitment; able to follow commands (no or limited cognitive impairment). Patients were excluded if they presented with concomitant neurological or other severe medical problems, seizure history, cognitive impairments, treatment with drugs that act on central nervous system, complete paralysis of legs, cardiovascular or respiratory symptoms contraindicative of walking, contraindications to transcranial magnetic stimulation (TMS) or magnetic resonance imaging (MRI), and any other significant non-stroke-related impairment affecting walking. Procedures were approved by the Ethics Committee of the Clinical Center of Serbia and all patients provided their written informed consent.

Movement related cortical potential (MRCP)

Monopolar EEG signals were recorded by an EEG amplifier (Nicolet 1, VIASYS healthcare Inc, USA) at 1024 Hz (0.016-70 Hz). Ag/AgCl scalp electrodes were placed according to the International 10–20 system in the positions FP1, F3, F4, Fz, Pz, P3, P4, C3, C4, and Cz. Impedance was maintained below 5 KΩ. Both ear lobes were used as a reference and the ground electrode was placed at the nasion.

Patients were asked to attempt a dorsiflexion of the foot contralateral to the lesion site 30-50 times. The experimental set-up is depicted in Figure 1B. A custom made Matlab script provided visual information via a screen positioned 2 m in front of the subject on when to mentally prepare,
execute, and release the movement (Fig. 1D). Patients were instructed to attempt to perform a single
dorsiflexion movement as fast as possible when the cursor had reached the upwards turn (Fig D)
and to maintain the new position for 2 s, following which they relaxed again 4-5 s prior to the next
cue being provided. Data from recorded EEG trials was used to quantify the time of peak negativity
of the MRCP’s before proceeding to the intervention described under the section ‘Interventions’.

Feature extraction from the MRCP

EEG data were divided into epochs of 3 s (from 2 s before to 1 s after the visual cue) for each
attempted movement, band pass-filtered from 0.05 Hz to 10 Hz, and subsequently a Laplacian
channel (McFarland et al. 1997) was used, to enhance the MRCP in each epoch. Next, a window of
500 ms on either side of task onset was chosen. If any epoch’s peak negativity was outside the
selected window it was discarded. Epochs with EOG activity exceeding 125 µV were also
discarded. Based on these remaining epochs, the mean peak negativity (PN) was defined as the time
of occurrence of the minimum value of the averaged MRCP in relation to the visual cue. The mean
PN was used to calculate the points in time for when to apply the peripheral stimulation in the
subsequent intervention session.

Recording and stimulation

Surface electrodes (20 mm Blue Sensor Ag/AgCl, AMBU A/S, Denmark) were used to record the
electromyographic (EMG) activity of the tibialis anterior (TA) muscle of the affected leg. EMG
data were sampled at 4 kHz, amplified and band pass filtered at 10 Hz - 1 kHz.

A monophasic transcranial magnetic stimulator (Magstim 200, Magstim Company, UK) with
a focal figure of eight double coned coil (110 mm diameter) was used to apply single pulses
(inducing a posterior to anterior directed current in the brain) to elicit a motor evoked potential
(MEP) in the TA muscle. MEPs were elicited pre, post and 30 min after the cessation of the
Peripheral nerve stimulation was performed during the interventions only. The deep branch of common peroneal nerve (CPN – L4 and L5) was stimulated using an external stimulator (Noxitest IES 230, Aalborg, Denmark) with the cathode proximal. A suitable position for the stimulation electrodes (Pals Platinum, Axelgaard Manufacturing Co., Ltd, Denmark) was located where a palpable response was produced in the distal tendon of the TA muscle with no activity from the synergistic peroneal muscles and no activity from the antagonist soleus (SOL). This site corresponded to a point just anterior to the level of the caput fibulae. The pulse width was set to 1 ms, and the stimulation intensity to motor threshold (MT).

Experimental procedures

Details of the experimental procedures are shown in Figure 1A and C. Subjects were seated with their right and left feet resting on a footplate. The intensity of the magnetic stimulation was set to 50% of stimulator output (S.O.) to find the optimal site for evoking a MEP in the target muscle. In some patients (n = 3) this had to be increased to 90% in order to evoke a MEP. Initially we delivered three consecutive stimuli over Cz and proceeded to move in approximately 1-cm steps laterally. The hotspot was identified as that area where the most consistent MEPs were elicited in the three trials. This position was marked on the patient’s head using a felt pen to ensure that the stimuli were consistently delivered over the same area of the motor cortex during the experimental session. Subsequently, the resting motor threshold (RMT), defined as the highest stimulus intensity that in no more than five out of 10 consecutive stimuli evoked a motor evoked potential (MEP) with amplitude of ~50 μV while the muscle was at rest, was identified. Ten MEPs were subsequently elicited in the resting TA at five TMS intensities: 90, 100, 110, 120, and 130% of RTh. The stimuli were delivered randomly every 5–7 s. The mean peak-to-peak TA MEP amplitudes were extracted...
pre, post and 30 minutes following the cessation of the intervention. In some patients it was not possible to evoke a MEP in the TA at intensities below 90% of the stimulator output. In these cases (n = 3) the input-output relation was obtained by stimulating at 87, 90, 93, 95 and 98% of the stimulator output.

Interventions

The BCI_{associative} intervention protocol (n = 13) consisted of a single electrical stimulation (ES) timed so that the artificially generated afferent flow arrived at the PN of the MRCP as outlined in detail in our previous publication (Mrachacz-Kersting et al. 2012a). In that study, we provided conclusive proof that only if the ES was timed so that the resulting afferent inflow would coincide with PN was significant plasticity induced. If it arrived prior to or following PN, no significant changes were observed (Mrachacz-Kersting et al. 2012a). The timing was calculated according to the following equation: mean PN – 50 ms. The 50 ms represents the mean latency for the afferent inflow resulting from the peripheral stimulus to reach the somatosensory cortex plus a cortical processing delay and is based on previous work (Mrachacz-Kersting et al. 2007). The left panel of Figure 1E shows an example from one patient where the red arrow denotes the instant of the electrical stimulus being triggered with a delay of 50 ms in relation to the PN. A second intervention termed the BCI_{non-associative} intervention (n = 9) served as a control condition. Here, the ES was delivered randomly without any association to the PN of the MRCP. The right panel of Figure 1E shows an example from one patient where the two red shaded areas represent the time window of where the electrical stimulus was triggered in a randomized order across the two windows. A total of 30-50 pairings (every 10-12 s) were applied. Subjects attended three separate testing sessions within one week. A minimum of 24 hours elapsed between sessions. Patients were blinded as to the intervention they received and the two interventions were performed at different time points with the BCI_{associative} intervention conducted first. A-posteriori verified that the groups matched (Table 2).
Clinical and behavioral measures

Upon the patients first and last visit, they were assessed using several clinical scales by a clinician blinded to the protocol: modified Rankin scale score (mRS) (Bonita and Beaglehole 1988), National Institutes of Health Stroke Scale (NIHSS) score (Lyden et al. 2001), Hamilton Depression Rating Scale (HDRS) Score (Hamilton 1967), the Lower-Extremity Fugl-Meyer assessment (LE-FM) – motor performance (Fugl-Meyer et al. 1975) and the Ashworth scale for spasticity (ASS) of the affected leg (Bohannon and Smith 1987).

All subjects performed the 10m walk test at their fastest pace. A sub-group of seven patients from the BCI associative group and all patients from the BCI non-associative group performed two additional motor tasks; index finger and foot tapping of the affected side at the fastest possible pace in the sagittal plane. This was to establish the specificity of the protocol on inducing functional changes. Tapping data was recorded for 14 – 27 seconds depending on the patient’s ability using a wireless inertial sensor system, as described in (Djuric-Jovicic et al. 2011). A high performance 12-bit digital accelerometer LIS3LV02 (SGS-Thomson Microelectronics, USA), with ±6g range of sensors was modified by displacing one triaxial accelerometer from the inertial unit box. This was placed on the middle phalanges of the hand, or on the metatarsal bone of the foot and secured using elastic Velcro bands. The number of finger or foot taps was quantified during the patient specific time interval.

Magnetic resonance imaging (MRI) parameters and analysis

Diffusion tensor imaging (DT) MRI scans were obtained on a 1.5 Tesla Achieva system (Philips) using a pulsed gradient spin-echo single shot echo-planar sequence (TR=6714, TE=86, flip angle=90°, matrix size=112x110; 50 axial slices, thickness=2.6-mm with no gap), with diffusion-encoding gradients applied in 65 non-collinear directions (b factor= 1000 s/mm², 1 average). These
data were collected only for the BCI\textsubscript{associative} group as we were interested to quantify if DT MRI
measures of the corticospinal tracts (CST) and corpus callosum could predict alterations induced by
the BCI\textsubscript{associative} intervention.

\textbf{Evaluation of DTI data}

DT MRI analysis was performed using FSLv4.1.7 (http://www.fmrib.ox.ac.uk/fsl/). Diffusion-
weighted images were first corrected for distortions induced by eddy currents, and then registered to
the non-diffusion weighted volume (b=0) with 6 degrees of freedom transformation to correct for
head movements. The DT was estimated on a voxel-by-voxel basis using the DTI fit toolbox, part
of the FMRIB Diffusion Toolbox within FSL. Maps of mean diffusivity (MD) and fractional
anisotropy (FA) were obtained. To transform diffusion data from DT MRI native space to the
Montreal Neurological Institute (MNI) space the following procedure was performed: (i) FA
volumes were aligned to the FA template in MNI space using FMRIB's linear Image Registration
Tool (FLIRT) with 12 degrees of freedom, (ii) the non-linear transformation to FSL’s FA template
was then computed using FMRIB's non-linear Image Registration Tool entering the information
from the linear transformation and obtaining a coefficient file with both the linear and non-linear
component of the transformation to MNI space, (iii) inverse transformations were calculated from
the coefficient file obtained from FNIRT. Seeds for tractography of the CST and corpus callosum
were defined in the MNI space on the FA template provided by FSL. Regions of interest (ROIs)
were defined manually on sagittal or axial slices based on a priori knowledge of the anatomy of the
tracts. Seeds were drawn where these tracts pass through a bottleneck in order to include the highest
number of fibres constituting the tract in the starting seed for tractography. Seeds were then
transformed back to the native diffusion space and tractography was performed using a single-seed
approach. Masks were used to exclude fibres from neighbouring tracts. The seed for the corpus
callosum was a sagittal ROI including the four median slices on which the corpus callosum is clearly visible. For the CST, an axial ROI was drawn at the top of the bulbar pyramids of each side and included four slices. Average FA and MD values were obtained from the CST and the corpus callosum. Relative asymmetry indices for FA (reflecting the preferential directionality of water diffusion along the white matter tracts) were calculated according to the following formulae:

\[
\frac{\text{FA}_{\text{unaffected}} - \text{FA}_{\text{affected}}}{\text{FA}_{\text{unaffected}} + \text{FA}_{\text{affected}}}.
\]

Asymmetry indices for MD (reflecting the magnitude of diffusion) were calculated according to the following formulae:

\[
\frac{\text{MD}_{\text{unaffected}} - \text{MD}_{\text{affected}}}{\text{MD}_{\text{unaffected}} + \text{MD}_{\text{affected}}}.
\]

Asymmetry indices of FA and MD values comparing lesional with nonlesional hemispheres were correlated with motor impairment scores, functional changes and neurophysiological measures.

Statistical procedures

The main outcome measures were the changes in MEP size as well as all the clinical tests. One-way repeated measures analysis of variance (ANOVA) with the factor ‘day’ (day1, day2 and day3 of the intervention) was used to establish the repeatability of PN, the RMT and ES intensity. Separate two-way ANOVAs were performed to evaluate the pre measures of TMS evoked MEP’s across all testing days for both groups, with ‘days’ (intervention day1, day2 and day3) and ‘stimulus intensity’ (90%, 100%, 110%, 120% and 130% RMT) as the repeated measures factors.

Furthermore, separate three-way repeated measures ANOVAs with factors ‘time’ (pre, post0 and post 30), day (intervention day1, day2 and day3) and ‘stimulus intensity’ (90%, 100%, 110%, 120% and 130% RMT) were used to investigate the effects of the days and interventions on changes in MEP amplitude. Students t-tests were used to compare clinical, behavioral and prior to and following all interventions. Correlation coefficients were determined for DT MRI measures (average FA and MD values from CST and corpus callosum) and MEP changes as well as between DT MRI measures and behavioral changes. Statistical significance was set to P < 0.05. Tukey’s
honestly significant difference with Bonferroni correction post hoc tests were administered to determine the locus of the differences. All statistical analyses were conducted using SPSS.
Results

Reliability of the MRCP

Patients performed 30-50 attempted movements per session, where an average of 12 ± 3 attempts were rejected due to eye-blinks or movement artefacts. For seven patients we investigated the repeatability of the MRCP across days. The peak negativity (PN) occurred at -20·49 ± 77·71 ms in relation to the cue indicating to attempt the dorsiflexion task. The time and standard deviation of the occurrence of the PN for each of the seven subjects across the three sessions was not statistically different (F(6, 12) = 1·76; p = 0·29).

Changes in the output properties of the motor cortex for the BCI associative intervention group

Three patients were excluded from the MEP analysis as it was not possible to record data for all days and time points. The size of the MEP evoked at the highest stimulation intensity prior to the application of the interventions across all patients attained values of 191 ± 148 µV, 284 ± 275 µV, 331 ± 351 µV for intervention days 1-3 respectively. The two-way ANOVA on the pre-session measures found no significant interaction between days and stimulation intensity (F(8,80) = 1.21, p = 0.299). After pooling the interaction term, ‘days’ was not significant (F(2,20) = 0.77, p = 0.473), indicating that for all days, the experiment started with similar baseline excitability across all subjects (Table 3).

Figure 2A shows the averaged MEP data for one subject prior to, following and 30 minutes after each of the three days in relation to the TMS intensity. The small insert represents the raw MEP at 120% RMT for Day 1 for this subject. Also shown are the respective averaged MRCP signals for this subject at the start of each session (Fig 2B). Figure 3A-C contains the averaged TA MEP size for all subjects plotted against RMT for each intervention session. Data are expressed as a fraction of the maximum TA MEP prior to the intervention.
In the full model three-way ANOVA, the three-way interaction was not significant (p = 0.928). After pooling the three-way interaction term, there was a significant time by stimulation intensity interaction (F(8, 72) = 4.06, p < 0.001. Simple main effects post-hoc analyses revealed that, at the 90%, 110% and 130% intensities, MEPs were significantly larger 30 minutes after the intervention than before the intervention (p = 0.016, p = 0.030 and p = 0.022, respectively).

Furthermore, MEPs at the 130% intensity were significantly larger immediately following the intervention compared to prior to the intervention. The day by time and day by intensity interactions, along with the day main effect, were not significant (all p’s > 0.21).

These analyses demonstrate the effectiveness of the proposed intervention in inducing significant neurophysiological changes. The intervention resulted in a significant increase of the TA MEP size and this outlasted the intervention time by at least 30 minutes.

Control experiment: Changes in the output properties of the motor cortex for the BCI_{non-associative} intervention group

The size of the MEP evoked at the highest stimulation intensity prior to the interventions across all patients attained values of 517 ± 489 μV, 448 ± 247 μV, 454 ± 320 μV for the BCI_{non-associative} sessions. There was no significant interaction between days and stimulation intensities (F(8, 56) = 0.77, p = 0.631). After pooling the interaction terms, ‘day’ was found to be not significant (F(2, 14) = 0.48, p = 0.629), indicating that for all three BCI_{non-associative} intervention days, the experiment started with similar baseline excitability across subjects (Table 3).

Figure 3D-F shows the averaged TA MEP size prior to and following the intervention for all subjects plotted against RMT for each intervention session. Data are expressed as a fraction of the maximum TA MEP prior to the intervention.
In the full model three-way ANOVA, none of the interaction terms (three-way and two-way) were significant (all p’s > 0.22). After pooling all interaction terms, the three-way analysis on the main effects found that factors 'day' and ‘time’ were not significant (both p’s > 0.39), while the factor ‘stimulation intensity’ (F(4,28) = 9.14, p < 0.001) was significant. For stimulation intensity, the post-hoc comparisons found that the higher stimulation intensity resulted in larger MEP magnitudes than lower stimulation intensities, which was expected. These results indicate that the random stimulation did not have any effect on the TA MEP size following the intervention.

Clinical and behavioral measures

Baseline clinical scores for the BCI\textsubscript{associative} intervention group and for the BCI\textsubscript{non-associative} intervention are shown in table 2. There were no statistically significant differences between the BCI\textsubscript{associative} and the BCI\textsubscript{non-associative} intervention group for the ASS (p = 0.47) and LE-FM (p = 0.86) upon enrolment. However, the patients in the BCI\textsubscript{associative} intervention group were significantly slower in the 10-meter walking test (t\textsubscript{19}=2.339, p = 0.03).

The clinical assessments were repeated following the three days of both interventions. For the BCI\textsubscript{associative} intervention group, significant differences were obtained in the 10-meter walking (t\textsubscript{12}=3.279, p = 0.007) and the LE-FM scale pre- and post-intervention (t\textsubscript{12}=-2.993, p = 0.011) as shown in table 2. No significant changes were detected for mRS (p = 0.34) or ASS (p = 0.186). For the BCI\textsubscript{non-associative} patients, no significant changes were detected following the intervention for any of the clinical measures (10-meter walking test, p = 0.688; LE-FM scale, p = 0.25; mRS, p = 0.35 and ASS, p = 0.977).

Prior to the intervention, the BCI\textsubscript{associative} patients performed 80 ± 16 taps using the index finger and 70 ± 16 foot taps of the affected side. Following the intervention, a statistically significance difference (t\textsubscript{6}=-3.099, p = 0.02) was observed for the foot tapping task, where tapping
frequency increased from 3.43 ± 0.85 Hz pre to 4.05 ± 0.52 Hz post. No statistical significance was found ($p = 0.48$) for the index finger tapping task. For the BCI\textsubscript{non-associative} patients, neither foot tapping frequency (pre: 3.29 ± 1.23 Hz, post: 3.16 ± 1.28 Hz; $p = 0.54$) nor index finger tapping frequency (pre: 2.26 ± 1.48 Hz, post: 2.98 ± 2.48 Hz; $p = 0.23$) changed significantly.

Diffusion tensor imaging (DTI)

These data were only analysed for the BCI\textsubscript{associative} patient group. Four patients were not scanned due to personal reasons. There was a significant decrease of FA values for the CST originating in the lesioned (0.54 ± 0.48) versus the non-lesioned (0.59 ± 0.03) side ($t(8) = -3.863$, $p = 0.005$); FA asymmetry $= 0.048 \pm 0.038$. MD values were also significantly different between the two sides (lesioned: 0.85 ± 0.08; non-lesioned: 0.76 ± 0.03; ($t(8) = 3.928$, $p = 0.004$), MD asymmetry $= -0.05 \pm 0.04$. FA and MD values of the CC were 0.56 ± 0.02 and 0.96 ± 0.07 respectively. No significant correlation was found between FA values with any of the neurophysiological or functional changes induced by the intervention.
Discussion

In this proof of concept study, the BCI\textsubscript{associative} intervention led to significant neurophysiological and behavioural improvements in all patients investigated after only three sessions. No such alterations were observed for patients engaged in the BCI\textsubscript{non-associative} intervention. Importantly, the effective duration of each BCI\textsubscript{associative} intervention session over which the patients were required to be engaged in the task itself was only approximately 15 minutes per session. The key feature of our paradigm is that the expected sensory information, triggered by user volition, coincides with the physiologically generated brain activation at the cortical level, satisfying the requirements of the Hebbian associative learning theory (Hebb 1949).

The importance of the precise temporal association between a peripherally generated afferent volley and the activation of the motor cortex was first reported by Stefan and colleagues (Stefan et al. 2002). Their intervention was comprised of a single electrical stimulus delivered to the median nerve that innervates the target muscle abductor pollicis brevis (APB), and a single stimulus applied directly to that area of the motor cortex with projections to the APB using non-invasive TMS. The TMS was triggered 25 ms following the peripheral stimulus and this represents the delay for the afferent volley to reach the motor cortex. Only with this specific interval of 25 ms between the two stimuli, was a significant change in the excitability of the cortical projections to the APB observed. A similar protocol has been applied to the TA though the delay between the two stimuli was reported to be longer (50 ms) for any significant induction of plasticity (Mrachacz-Kersting et al. 2007). In the current study, the ES was timed to occur 50 ms prior to the PN of the MRCP, since the PN is associated to movement execution and may be seen as a more natural activation of the motor cortex compared to TMS. In our past study using this paradigm in healthy participants, we demonstrated that only if the ES was timed so that the generated afferent signal arrived at PN, was a significant effect observed. In the current study we thus did not expose our patients to different time
intervals between the ES and PN. Instead, the control condition involved the BCI\textsubscript{non-associative} patient group receiving ES timed to occur randomly throughout the MRCP (right panel of Figure 1E). In this way, there was no association between the arrival of the afferent inflow generated by the ES and the PN of the MRCP. It should be noted that the BCI\textsubscript{non-associative} group was tested separately in a control experiment and thus it was not possible to run a statistical analysis with a group factor which may have provided a more robust analysis.

The signal modality (MRCP) used here is natural and physiologically associated with the movement (Leifert-Fiebach et al. 2013; Salinet et al. 2012; Kuhtz-Buschbeck et al. 2003), so no user training was necessary to produce this signal. This is in contrast to other BCIs for neuromodulation in stroke where patients were required to spend several sessions (15 or more, over the duration of months) for learning to produce controllable brain signals (Ang et al. 2009; Buch et al. 2008). Stroke patients have altered temporal as well as spatial MRCPs (Platz et al. 2000; Yilmaz et al. 2013) and it is known that a patient’s ability to perform a motor task accurately is significantly enhanced when a cue is provided (Heremans et al. 2009). This was the case in our intervention and may have led to the enhanced effects in the BCI\textsubscript{associative} group.

The BCI\textsubscript{associative} intervention led to statistically significant improvements in the LE-FM scale and the 10 m walking test in all subjects (table 2) and in foot tapping frequency in a subgroup of patients, which was not expected. Although from a clinical perspective the improvements are too small to be considered significant it is important to mention that the patients only performed three intervention sessions and each session comprised only 30-50 pairings. It is likely that the intervention would lead to even greater improvements if applied over a longer duration as has been done for past BCIs in this context (Ramos-Murguialday et al. 2013). The control group taking part in the BCI\textsubscript{non-associative} intervention showed no such improvements so that the changes in the patients of the BCI\textsubscript{associative} cannot be attributed to an experimental participation effect. The improvements
occurred in tasks that were unrelated to the task executed in the BCI intervention. Similar reports of
such transfer come from the area of spinal cord plasticity. Wolpaw and colleagues (Wolpaw 2007;
Chen et al. 2014) have induced such plasticity by using an operant conditioning of a spinal reflex
(the H-reflex). Changes in this simple reflex arc are transferred to dynamic tasks in lesioned animals
and most recently similar results have been shown in spinal cord injured humans (Thompson and
Wolpaw 2015).

All patients in the BCI\textsubscript{associative} showed significant increases in the MEP recorded at the TA
following the intervention. The presence of MEPs in the TA in the acute phase following a stroke
has been associated to recovery of motor function (Hendricks et al. 2003b). In chronic patients,
increases in MEP amplitude over time is an indicator for functional improvements (Piron et al.
2005). In the current study, the changes in MEP size through all three sessions were only weakly
correlated with the improvements in function. In light of previous publications, this was
unexpected. However, a few recent reports have documented that improvements in motor function
are not necessarily mirrored by alterations in the excitability of the cortical projections to the target
muscle (Hendricks et al. 2003a; Avanzino et al. 2011). However, it is also important to note that
although within each session the size of the MEPs were significantly increased for the BCI\textsubscript{associative}
intervention, there was no significant difference between the changes induced across the three days
and baseline MEP values did not differ between days. This implies that, although a significant
within session effect is present, MEPs do not change across sessions. However, in the present proof-
of-concept study patients only partook in a total of three sessions. It is likely that if the intervention
was of longer duration, significant changes in MEP size would occur also across sessions.

The MEP amplitudes were significantly larger 30 minutes after the cessation of the
BCI\textsubscript{associative} intervention compared the immediately post. A similar effect has been reported in
previous studies using paired associative stimulation (PAS) as the intervention and targeting lower
limb muscles (Kumpulainen et al. 2012). This effect is not easily explained based on current knowledge on the underlying mechanisms following such interventions. It is likely caused by complex interactions between different neuronal populations in the motor cortex of the lesioned hemisphere. However, in the absence of invasive neuronal investigation any hypothesis about the precise nature of this effect remains speculative.

One possible reason for the significant improvements after so few intervention sessions and task repetitions reported here as opposed to other available BCIs may be directly related to the temporal association. Following stroke that damages part of the sensory cortex, the intact part significantly enhances its output to both motor cortex and other cortical regions (Murphy and Corbett 2009; Brown et al. 2009). In our BCI intervention, the afferent volley induced by the peripheral nerve stimulus, was timed to arrive during the movement execution phase of the MRCP and can thus be viewed as a means to guide the afferent input appropriately to restore the connectivity between the sensory cortex and the motor cortex. In healthy subjects when the timing was altered to either prior to or following this phase, no plasticity was induced (Mrachacz-Kersting et al. 2012a). This was substantiated by the results from the control BCI_non-associative intervention where the timing was such that the afferent volley arrived randomized during either the motor preparation phase or the reafferent phase but never during the movement execution phase. Taken together, the results from the BCI_associative and the BCI_non-associative intervention underline the importance of the correct sequence of signals for inducing long lasting plastic changes. The critical importance of the delay between motor command and sensory input shown here for patients and in previous studies for healthy subjects (Mrachacz-Kersting et al. 2012a) may also explain the substantially less efficient outcome of BCI neuromodulation in stroke patients in previous studies (for review see (Silvoni et al. 2011)).
Repeated activation of somatosensory afferents projecting onto M1 has a pivotal role in motor skill learning in monkeys (Pavlides et al. 1993). In a recent BCI study of chronic stroke patients, somatosensory feedback triggered from detected brain signals led to functional improvements, while visual feedback induced no such changes (Ono et al. 2014), thus further highlighting its importance. In the current study, the CPN, which is a mixed nerve, was electrically stimulated to generate the afferent volley. Since the intensity of the stimulus was set to MT we expect that mainly afferents arising from muscle receptors were stimulated and thus provided their input to the sensory cortex. Sensory information arising from muscles contributes substantially (up to 50%) to the activation of muscles by the nervous system (Nielsen and Sinkjaer 2002; Mazzaro et al. 2006; Grey et al. 2004; Nielsen 2004). Sensory information is also modulated by the brain, allowing either large or small influences during a particular movement (Nielsen 2003). For example, during walking, sensory feedback from calf muscles directly activates these muscles during the push-off phase where a strong contraction is required. However, during the time when the foot has to be placed in the correct position for heel strike, the brain stops the sensory signals from the calf muscles by inhibition of the relevant spinal pathways (Sinkjaer et al. 2000). In this way, these signals will not interfere with the placement of the heel on the ground. The ES was applied at a time when the patient attempted to dorsiflex the foot and was therefore task related and delivered within a meaningful context. However, a dorsiflexion will also impose a lengthening of the antagonist muscles (soleus and the two heads of the gastrocnemius) which would generate afferent signals arising from those muscle that travel towards the brain. Indeed, the effects observed here might be more potent when applied during a walking task at the appropriate time of dorsiflexion (early swing phase) and with relevant additional input from afferents located in the antagonist and also the sole of the foot. In a recent experiment we have demonstrated the feasibility of detecting gait initiation from single trial MRCPs (Jiang et al. 2014) setting the stage for such experiments.
The peripheral afferent volley induced comprised a single volley set to an intensity at the vicinity of MT. It is currently not known how signals arising from the periphery are attenuated as they are conveyed to the motor cortex. Indeed, functional electrical stimulation (FES) is another therapy that has been used specifically to target the TA muscle following stroke either alone (Burridge et al. 1997; Lyons et al. 2002; Knash et al. 2003; Thompson and Stein 2004; Everaert et al. 2010) or in combination with a BCI (Daly et al. 2009; Li et al. 2014; Cincotti et al. 2012). FES uses a higher frequency and intensity of stimulation to alter the excitability of the cortical projections to the target muscle than what was applied in the current study. The effects of FES are enhanced when the voluntary drive to the TA is augmented such as through an active contraction of the TA (Khaslavskaia and Sinkjaer 2005), suggesting that some form of coincident summation is also involved. It is possible that the effects of our intervention may be further enhanced when the peripheral stimulus is similar to FES in aspects of frequency and stimulus strength. Indeed using only FES for a duration of 3-12 months, walking speed was significantly increased by 24% in chronic stroke as well as multiple sclerosis patients when the stimulator was in the off position (Everaert et al. 2010).

Residual corticospinal tract integrity and improvement in function

Past studies have suggested that residual corticospinal cord integrity is a predictor for recovery of upper limb function (Tombari et al. 2004; Stinear et al. 2007). In the current study, residual corticospinal integrity was not significantly correlated both to functional improvements and to changes in MEP size, which is in support of such studies targeting lower limb muscles (Dawes et al. 2008). Lower limb muscles have been suggested to be under less cortical control compared to upper limb muscles (Peters 1990). However, one exception is the TA muscle that requires precise control during foot clearance in the late swing phase of human walking and that has been shown to have a strong cortical contribution to its activation (Petersen et al. 2003; Bawa et al. 2002; Brouwer and
Presence of MEPs in the TA but not in the larger quadriceps muscle group are predictors of functional recovery (Hendricks et al. 2003b), so it was surprising that DTI data were not well correlated to functional improvements. Possible confounding factors include both the types of patients recruited as well as the low number of patients that took part in the scans.

Conclusion

We have introduced an innovative BCI intervention for stroke rehabilitation, based on Hebbian principles of associativity (Hebb 1949). Different from other BCI protocols reported in the literature, it requires no subject training (all patients were BCI-naïve prior to the study); the attempted movement does not need to have residual muscle control, and a small number of repetitions and sessions were sufficient to induce a significant effect. The results presented prove the possibility of neurofeedback systems, based on BCI concepts, to be used for efficient and targeted induction of plastic changes in the motor cortex in stroke therapy. Because of the efficacy of the intervention and the relatively simple equipment needed, the proposed approach opens a strong perspective for a clinically viable BCI therapy for patient populations to promote functional plasticity and to improve motor function after stroke.
Acknowledgements

We would like to thank all the patients for participating in this study as well as Mrs. Mercy Lain, who helped with graphics (Fig. 1A-C).

This work was supported by the Danish Agency for Science and Technology and Innovation, by the European project BETTER (contract # 247935), and by the Bernstein Focus Neurotechnology Göttingen and the Project No 159070 of the MESTD of Serbia.

Broetz D, Braun C, Weber C, Soekadar SR, Caria A and Birbaumer N. Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report.

Peters M. Neuropsychological identification of motor problems: can we learn something from the feet and legs that hands and arms will not tell us? *Neuropsychol Rev* 1: 1040-7308; 1040-7308; 2: 165-183, 1990.

Figure Legends

Figure 1: Schematic of the experimental set-up (A) Pre-intervention quantification of the excitability of the cortical projections to the target muscle tibialis anterior (TA) using non-invasive transcranial magnetic stimulation (TMS). Subjects are seated with the TA relaxed while 60 or 72 stimuli at five or six different intensities were applied. (B) Schematic of the brain controlled electrical stimulation of the target muscle. Subjects watched a screen placed 2 m in front of them on which a cue provided information on when to attempt the dorsiflexion movement. Relevant brain activity was measured, detected and converted into an output command for an electrical stimulator. The stimulator applied a single pulse (1ms duration at an intensity of motor threshold) to the deep branch of the common peroneal nerve. The induced sensory signal produced was timed to arrive at the motor cortex during the time of maximum activation of the motor cortex as seen in the EEG signal for the BCI_{associative} group and randomly for the BCI_{non-associative} group. 50 such pairs were performed in two sets of 25. (C) Immediately post-intervention and 30 min later, measures as for A. (D) The visual display shown to the patients during the intervention. FOCUS appeared on the screen initially followed by the schematic of a step-function. Subjects were required to start the attempted movement once the moving cursor (triangle) reached the upward slope. The word REST appeared last on the screen. (E) Illustration of the timing of the single electrical stimulus in relation to the MRCP during the BCI_{associative} intervention (red arrow –time of PN) and during the BCI_{non-associative} intervention (red shaded areas represent the time window where the single electrical stimulus was triggered). Data are from two different patients of each intervention group respectively.

Figure 2: Changes in motor output after the BCI_{associative} intervention for a single representative participant (A) TA MEP recruitment curve prior to and following the three interventions. TA MEP size is expressed as the peak-to-peak amplitude (p-p MEP) and the TMS intensity as a percentage of the stimulator output (S.O.). Each data point represents the average of 12 stimuli. The small inset is a representative MEP for this subject for a stimulation intensity of 62% S.O. at Day 1. (B) The slow movement related cortical potential recorded during imaginary movement during the intervention. Data are the average of 30 trials. The vertical dashed line indicates when the cue was presented indicating when the patient should start to attempt the dorsiflexion movement. All data are for n = 1.
Figure 3: Input–output properties of the TA MEP prior to, immediately following and 30 min after the cessation of the BCI_associative (A-C) and the BCI_non-associative intervention (D-F) across all subjects. TA MEP size is expressed as a fraction of the maximum peak-to-peak TA MEP (TA p-p MEP) amplitude prior to any intervention. Each graph represents a different day of the intervention and each data point represents the average of 11 subjects (A-C) and 8 subjects (D-F). Also shown are S.E.

Table Legends

Table 1: Patient demographic data for the main BCI_associative (patient 1-13) and the control BCI_non-associative experiment (patient 14-22).

Table 2: Patient clinical and behavioural data for the main BCI_associative (patients 1-13) and the control BCI_non-associative experiment (patients 14-22) mRS (modified Rankin scale score), NIHSS (National Institutes of Health Stroke Scale) score, LE-FM (Lower-Extremity Fugl-Meyer assessment) – motor performance ASS (Ashworth scale for spasticity) of the affected leg.

Table 3: Results of the separate two-way repeated-measures ANOVAs for each group investigating the pre-test MEP amplitudes across days. The two repeated-measures factors were day (intervention day 1, day 2 and day 3) and stimulus intensity (90%, 100%, 110%, 120% and 130%). All significant results are in bold. Note that the two-way interaction for both groups was not significant, so the two-way interaction term was pooled.
(A) Pre-measures

(B) Intervention

(C) Post-measures

(D) Visual display on computer screen during the intervention (B)

(FOCUS) 2-3s | (REST) 4-5s

(E) BCI associative intervention

BCI non-associative intervention
Table 1: Patient demographic data for the main BCI\textsubscript{associative} (patients 1-13) and the control BCI\textsubscript{non-associative} experiment (patients 14-22)

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Age [yrs]</th>
<th>G</th>
<th>Time after stroke [months]</th>
<th>MCA stroke side</th>
<th>Type of ischemic lesion</th>
<th>Patient No.</th>
<th>Age [yrs]</th>
<th>G</th>
<th>Time after stroke [months]</th>
<th>MCA stroke side</th>
<th>Type of ischemic lesion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29</td>
<td>M</td>
<td>10</td>
<td>L</td>
<td>cortico-subc</td>
<td>14</td>
<td>55</td>
<td>M</td>
<td>20</td>
<td>L</td>
<td>cortico-subc</td>
</tr>
<tr>
<td>2</td>
<td>61</td>
<td>M</td>
<td>24</td>
<td>L</td>
<td>cortico-subc</td>
<td>15</td>
<td>58</td>
<td>M</td>
<td>22</td>
<td>R</td>
<td>cortico-subc</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>F</td>
<td>23</td>
<td>L</td>
<td>cortico-subc</td>
<td>16</td>
<td>63</td>
<td>F</td>
<td>15</td>
<td>R</td>
<td>cortico-subc</td>
</tr>
<tr>
<td>4</td>
<td>41</td>
<td>M</td>
<td>23</td>
<td>L</td>
<td>cortical</td>
<td>17</td>
<td>51</td>
<td>M</td>
<td>23</td>
<td>R</td>
<td>cortico-subc</td>
</tr>
<tr>
<td>5</td>
<td>53</td>
<td>M</td>
<td>11</td>
<td>L</td>
<td>cortical</td>
<td>18</td>
<td>59</td>
<td>M</td>
<td>14</td>
<td>L</td>
<td>cortico-subc</td>
</tr>
<tr>
<td>6</td>
<td>52</td>
<td>M</td>
<td>24</td>
<td>L</td>
<td>cortical</td>
<td>19</td>
<td>42</td>
<td>M</td>
<td>21</td>
<td>L</td>
<td>cortico-subc</td>
</tr>
<tr>
<td>7</td>
<td>58</td>
<td>M</td>
<td>9</td>
<td>L</td>
<td>cortico-subc</td>
<td>20</td>
<td>36</td>
<td>M</td>
<td>22</td>
<td>R</td>
<td>cortico-subc</td>
</tr>
<tr>
<td>8</td>
<td>43</td>
<td>M</td>
<td>19</td>
<td>R</td>
<td>cortico-subc</td>
<td>21</td>
<td>65</td>
<td>M</td>
<td>14</td>
<td>L</td>
<td>cortico-subc</td>
</tr>
<tr>
<td>9</td>
<td>57</td>
<td>M</td>
<td>12</td>
<td>L</td>
<td>cortico-subc</td>
<td>22</td>
<td>68</td>
<td>M</td>
<td>11</td>
<td>R</td>
<td>cortico-subc</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>M</td>
<td>12</td>
<td>R</td>
<td>cortical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>45</td>
<td>M</td>
<td>9</td>
<td>L</td>
<td>cortico-subc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>51</td>
<td>M</td>
<td>14</td>
<td>R</td>
<td>cortico-subc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>59</td>
<td>M</td>
<td>10</td>
<td>L</td>
<td>cortico-subc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean Age: 46.31 months; StDev Age: 12.51 months

Mean Time after Stroke: 15.38 months; StDev Time after Stroke: 6.2 months

MCA – middle cerebral artery, G – gender
Table 2: Patient clinical and behavioural data for the main BCI\textsubscript{associative} (patients 1-13) and the control BCI\textsubscript{non-associative} experiment (patients 14-22) mRS (modified Rankin scale score), NIHSS (National Institutes of Health Stroke Scale) score, LE-FM (Lower-Extremity Fugl-Meyer assessment) – motor performance ASS (Ashworth scale for spasticity) of the affected leg.
<table>
<thead>
<tr>
<th>Effect</th>
<th>F-statistic</th>
<th>df</th>
<th>p-value</th>
<th>F-statistic</th>
<th>df</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td>0.78</td>
<td>2,20</td>
<td>0.473</td>
<td>0.48</td>
<td>2,14</td>
<td>0.629</td>
</tr>
<tr>
<td>Intensity</td>
<td>11.56</td>
<td>4,40</td>
<td>< 0.001</td>
<td>6.65</td>
<td>4,28</td>
<td>0.001</td>
</tr>
<tr>
<td>Day * Intensity</td>
<td>1.22</td>
<td>8,80</td>
<td>0.299</td>
<td>0.77</td>
<td>8,56</td>
<td>0.631</td>
</tr>
</tbody>
</table>

Table 3: Results of the separate two-way repeated-measures ANOVAs for each group investigating the pre-test MEP amplitudes across days. The two repeated-measures factors were day (intervention day 1, day 2 and day 3) and stimulus intensity (90%, 100%, 110%, 120% and 130%). All significant results are in **bold**. Note that the two-way interaction for both groups was not significant, so the two-way interaction term was pooled.